16
FALL 2015 University of California, Irvine Department of Biomedical Engineering Inspiring Engineering Minds to Advance Human Health

Inspiring Engineering Minds to Advance Human Healthengineering.uci.edu/files/bme-discovery-magazine-fall-2015.pdf · Inspiring Engineering Minds to Advance Human Health. ... BME Discovery

  • Upload
    vandieu

  • View
    216

  • Download
    1

Embed Size (px)

Citation preview

FALL 2015

University of California, Irvine Department of Biomedical Engineering

Inspiring Engineering Minds to Advance Human Health

Chair’s Message 1

Hybrid Heart 2

Promising Pathways 4

Faculty Accolades 6

Student Highlights 8

Alumni News 9

Core Faculty 10

Affiliated Faculty 12

BME Discovery is published once a year in the fall by the Biomedical Engineering Department, UC Irvine Samueli School of Engineering.

Chair: Abraham LeeDepartment Administrator: Cathy H. TaBusiness Office Analyst: Julio Rodriguez

Established in 2002, the UCI Biomedical Engineering Department offers two undergraduate degree programs, M.S. and Ph.D. degrees in biomedical engineering, and a combined M.D./Ph.D. degree in conjunction with the UCI School of Medicine. There are currently 22 full-time faculty and 59 affiliated faculty. Research areas include micro/nano medicine, biophotonics, biocomputation and tissue engineering, with clinical emphases in neuroscience, cardiovascular diseases, cancer and ophthalmology. For more information, visit www.bme.uci.edu

I N T H I S I S S U E

On the cover: Heart disease is the No. 1 killer of men and women across the globe, according to the World Health Organization. UC Irvine biomedical engineering researchers are creating a hybrid tissue-engineered heart valve that may expand options for cardiac surgery patients.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From the Chair

BME Discovery 1

establishing global partnerships, facilitating entrepreneurship, increasing student/faculty recruitment and advancing interaction with the community in which we live.

Over the past six months, we have notched several important accolades. One of our students won the Schlumberger Faculty of the Future Award, a recognition intended to encourage female graduate students from developing countries to carry out research pertinent to the needs of their home country, and eventually return to impact education and technological infrastructure. Additionally, former students are starting companies to commercialize biomedical devices and apps, a trend that is burning like wildfire through our department. The BioENGINE program led by Associate Professor Michelle Khine is spearheading this effort; I will highlight the activities and vision of BioENGINE in a future BME Discovery issue. Another outstanding student, Li Xiao, won the Lambert Prize, which is awarded every other year for the best paper submitted by a UCI graduate student, in any school or department, addressing issues in natural or social sciences. Faculty accolades include the Beckman Foundation Young Investigator’s Award, won by Assistant Professor Chang Liu, and the Innovator of the Year Award won by Associate Professor Elliot Botvinick.

Our faculty continues to garner large grants and awards, providing the resources to lead the next generation of BME cutting-edge research. Liu is a model representative of this cohort, having been awarded five grants/awards in the last six months.

I am proud of all these accomplishments and am honored to be part of this young and talented department. Continue reading to learn more about the people we cherish at UCI BME — their stories, their aspirations, their visions and their accomplishments.

Abe LeeWilliam J. Link Professor and ChairBME at UC Irvine

We live in an exciting time in the history of technological advances. I believe people today are more conscientious about their personal health and well-being due to the explosion of accessible information at their fingertips. More and more, we pay attention to our health indicators – blood pressure, blood sugar, heart rate variability, sleep/deep sleep and BMI – at an earlier age. Information soon will be available in real time with dynamic access, thanks to the development of the Internet of Things. This phenomenon is going to democratize our awareness of the predictive power of molecular (e.g. DNA, protein) markers and the preventive power of healthy lifestyles, nutrition and exercise. People are taking their healthcare into their own hands, constantly seeking gadgets, apps and bio- and physiological sensors to help them understand where they stand on the scale of healthy living. I like to think of it as the era of “personal biomedical engineering,” and together, we “BMEers” have tremendous opportunities and responsibilities to increase access to the wealth of health technologies.

As one of the presidential candidates stated in a recent debate, doctors treat the things that make people who they are. Skin or hair color doesn’t make a person. The biomedical engineering field, in particular, should embrace this spirit, and harness talent and creative insights from diverse back-grounds. In the next few years, I will work hard to bring diversity to BME at UCI in many dimensions, through

Current valve replacement options are limited to those made solely from manufactured products (mechanical valves) or animal tissue (bioprosthetic valves). Mechanical heart valves tend to last longer than bioprosthetic valves, but theycarry a greater long-term risk for blood clots that may lead to stroke and arterial thrombosis (clotting in the arteries), as well as bleeding from anticoagulant medications designed to prevent thrombosis.

“Bioprosthetic valve replacements, on the other hand, are prone to limited durability, which means patients may need a reoperation usually 10 to 15 years after implantation,” said Alavi.

Traditionally, tissue-engineered valves are built on a scaffold that will degrade once the tissue is more mature. Once the scaffold has degraded, however, the valve leaflets often shrink, which can cause leaks and result in valve failure.

“For our research, we decided to use a non-degradable scaffold that stays within the valve to provide the support it needs without interfering with its normal function,” said Kheradvar. “The valve we created uses an ultra-flexible scaffold made of an alloy of nickel and titanium (nitinol) that is enclosed within the patient’s own cultured tissue. The entire process takes about three to eight weeks.”

The researchers said they expect the hybrid valve to regenerate inside the body, eventually incorporating itself into the patient’s heart structure. By using the patient’s own cells, the valve will become a “living” replacement for the diseased valve.

BME Discovery2

Hybrid Heart

UC Irvine BME researchers have created a new

heart valve that combines a patient’s own cells

with metal alloy for a more durable replacement

with potentially fewer complications. They

published their research in the June 2015 issue

of The Annals of Thoracic Surgery.

BME postdoctoral scholar S. Hamed Alavi and Associate Professor Arash Kheradvar, M.D., developed the potentially revolutionary hybrid tissue-engineered heart valve.

Novel technology creates patient-specific valve that won’t degrade over time

Featured Research

“We believe this new hybrid technology will significantly improve a patient’s quality of life by eliminating the need for lifelong medications and without compromising the durability of the valve,” said Alavi. “This is particularly beneficial for younger patients who are in need of a heart valve replacement.”

The researchers have completed initial lab testing and now plan to initiate the next phase of trials. If all goes well, they anticipate the hybrid heart valve will be available for use in patients in five to 10 years.

The Society of Thoracic Surgeons

BME Discovery 3

“We believe this new hybrid technology will significantly improve a

patient’s quality of life by eliminating the need for lifelong medications

and without compromising the durability of the valve.”

Three types of cells are extracted from the patient’s tissue. Over a three-week period, the cells are seeded on a nitinol mesh scaffold.

WEEK 1Smooth muscle cells

WEEK 2Fibroblast/myofibroblast cells

AFTER IMPLANTATIONOver time, the hybrid valve regeneratesto become more like the patient’s own valve.

WEEK 8The hybrid valve is ready to be implanted in the patient.

A small piece of tissue is taken from the patient’s peripheral vasculature.

Building a Personalized Heart ValveResearch project uses cells from the patient’s own body to help create a hybrid heart valve.

Together, these two cell layers mimic the composition of the patient’s own heart valve.

nitinol meshsca�old

This layer protects against blood clot formation.

1 2 3WEEK 3Endothelial cells

Illustration by Sharon Henry

BME Discovery4

research. The collaborators seek to map out pathways of the molecular process in cancer cells.

At the heart of the research is a nanofluidic chip, which can manipulate and probe single mitochondrion from healthy and cancer cells, allowing them to be tested with libraries of proteins and chemicals – both natural and manufactured – to learn more about why cancer cells respond to signals differently than non-cancerous cells. Researchers will

Burke, professor of electrical engineering and computer science, who is an affiliate faculty member in biomedical engineering, along with researchers from Harvard and the University of Pennsylvania recently were awarded nearly $1.2 million from the National Cancer Institute. The grant is funded through the NCI’s Innovative Molecular Analysis Technologies program, which supports the development, technical maturation and dissemination of potentially transformative next-generation technologies in cancer

A national team of scientists, led by Samueli School Professor Peter Burke, is using nanofluidics to peer

into the life-and-death cycle of cancer cells, hoping the information will one day lead to personalized

treatment protocols and the development of more effective, cell-targeted pharmaceuticals.

Promising Pathways National Cancer Institute Funds Cancer Cell Project

measure the cell life-death decision-making process, using a variety of methods including nanosensors capable of measuring mitochondrial electrical energy.

The mitochondria, often known as the cell’s power plants, metabolize sugar to create energy; this energy is stored as a voltage across their surface. But mitochondria have a secondary role: they regulate the cell-death pathway. Normal cells react to stress by undergoing a process called apoptosis – programmed cell death. In response to certain triggers, themitochondria form a pore or pores on their surface, spilling out a signaling protein that prompts the cell to self-destruct. When a cell dies, the voltage from the mitochondria shuts down as well. But cancer cells express an abundance of BCL2, a protein that keeps these apoptotic functions suppressed.

By subjecting mitochondria from cancerous tissue to different combinations and concentrations of chemotherapy drugs and manufactured and natural proteins, researchers hope to learn which unique combinations can overpower the effect of BCL2 cell proteins on apoptosis and force mitochondria to form the pores that lead to cell death.

“Here is the question we’re trying to answer: Why don’t cancer cells die and how does chemotherapy work?” Burke says. “Cancer cells are resistant to the signals that cause them to die. Understanding that process is very important in understanding cancer.”

Researchers do know that two people with the same cancer often react differently to the exact same treatment. Similar tumors can have different properties, causing some cells to depolarize (die) more easily than others. This lab-on-a-chip technology could one day lead to advances in personalized medicine, using test results from specific tumors to create individualized treatment plans, “because not only are people different, but tumors themselves are different,” Burke says.

Current cancer treatment has another well-known drawback; chemotherapy drugs routinely kill healthy cells along with tumors. “This [technology] could help us figure out a way to cause the cancer cells to commit suicide without causing the same reaction in other cells,” says Burke.

The tiny chip, currently in development, ultimately will contain thousands of half-micronwide channels, allowing high-throughput testing. (One-half a micron is 500 nanometers, less than 1/100 the width of a human hair.)

Current tumor profiling is still rudimentary; it requires tens of thousands of cells to obtain a small amount of information. The chip being developed in Burke’s lab will have the capability to test single cells or mitochondrion, allowing researchers to get a lot more information from tissue samples much more quickly. According to Burke, a 10,000-cell assay on the chip could yield up to 1 million times more information than current techniques. “We’re going to make that assay thousands of times more powerful by testing not just one or two drugs at a time but thousands of different combinations of drugs or different concentrations.”

Researchers also are hoping to develop on-chip technology that will allow them to understand the biophysical mechanisms that create the formation of the mitochondrial pores. Scientists aren’t sure exactly how the pores form, what their electrical properties are and whether mitochondria produce one pore or multiple pores during apoptosis.

“If we can figure out what is causing the mitochondria to depolarize, we will have a better understanding of why the cancer cell lives or dies,” Burke says. “The technology will help us start asking questions about these metabolic pathways and start answering the questions of why cancer cells don’t die.”

Collaborators on the project include Anthony Letai from Harvard University and Douglas Wallace from University of Pennsylvania.

Anna Lynn Spitzer

BME Discovery 5

“Cancer cells are resistant to the signals that cause them to die. Understanding that process is very important in understanding cancer.”

Faculty Accolades

BME Discovery6

enzymes; it also can allow cells to be turned into “polymer synthesis factories,” for evolving new antibiotics and other materials.

His lab received a $580,000 grant from NSF to develop orthogonal DNA replication for XNA incorporation, and it will be the U.S. member of an international consortium aimed at developing XNA biosystems in vivo. And DARPA granted him $560,000 for a project aimed at slowing down evolution using orthogonal DNA replication.

“At the more fundamental level, our excitement over orthogonal genetic systems is that they may provide the platform for synthesizing life from the ground up,” said Liu.

Elliot Hui Promoted

Congratulations to Elliot Hui on his promotion to associate professor with tenure.

Hui earned his Ph.D. from UC Berkeley. His research interests include both microfabrication and tissue engineering. In particular, his lab has developed

tools for precisely controlled co-culture, allowing the dynamic manipulation of cell-cell contact, the probing of short-range paracrine gradients, and the rapid purification of mixed populations. His lab also is actively pursuing the development of autonomous microfluidic platforms through the implementation of pneumatic digital logic, and the application of optogenetics to the control of tissue patterning.

Peter Burke Wins DoD Instrument Grant

BME affiliate faculty member Peter Burke is the recipient of a highly competitive instrumentation award from the Department of Defense. The $329,000 Defense University Research Instrumentation Program (DURIP) grant will fund a scanning microwave microscope that will allow for nanoscale-resolution imaging of microwave conductivity in nanostructures.

Chang Liu Receives Research Acclaim and Funding Awards

BME Assistant Professor Chang Liu recently accumulated two prestigious accolades and two research grants.

Liu was named both a Beckman Young Investigator and a DuPont Young Professor.

He was one of just eight 2015 Beckman Young Investigators

spanning physics, chemistry, biology, bioengineering and electrical engineering selected nationwide. Each awardee receives $750,000 over four years in support of his/her research.

The Beckman Young Investigator program provides research support to the most promising early-stage young faculty members in the chemical and life sciences, specifically those fostering new methods, instruments and materials that will open up new avenues of scientific research.

The 2015 DuPont Young Professors comprise nine researchers on four continents; each receives $50,000 during the next two years to support research that advances basic science addressing global challenges in food, energy and protection.

“I am thrilled to receive both of these honors,” he added. “It is recognition of the creativity and dedication of my research group and welcome (and well-funded) support to help turn our ambitious ideas into reality. I am humbled to be a part of both programs, which have supported many of my favorite scientists.”

Liu also garnered two recent funding awards for his research. He works to engineer synthetic genetic systems that go beyond the capabilities of natural systems. These “orthogonal” genetic systems can accelerate the speed of evolution and reinterpret genetic code, for example. The work can advance the discovery and production of cancer drugs and useful

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CADMIM Receives NFS and Industry Funding

BME chairperson Abraham Lee and Michelle Khine secured over $300,000 in funding from NSF and industry. The grant will be used to develop the Center for Advanced Design and Manufacturing of Integrated Microfluidics (CADMIM) lab’s super hydrophobic surfaces for microfluidic applications. As an NSF Industry/University Cooperative Research Center (I/UCRC), CADMIM develops design tools and manufacturing technologies for integrated microfluidics targeting cost-effective, quick and easy diagnosis of the environment, agriculture and human health.

TinyKicks Wins BioAccel Solutions Challenge

TinyKicks, a startup spun out of Associate Professor Michelle Khine’s lab, was awarded the BioAccel Solutions Challenge. This award provides private funding from a “Scorpion Pit”

investor and a funding match from BioAccel.

TinyKicks is developing a wearable health-monitoring smart sensor that captures fetal movement and uses machine learning to predict and guide healthy pregnancy outcomes. The sensor, similar in size to a Band-Aid, consists of a conformal strain sensor and a wireless Bluetooth module to send data to the mother’s smartphone.

Botvinick Receives Innovator of the Year Award

Elliot Botvinick, associate professor, was honored with the Innovator of the Year Award at the Samueli School’s spring faculty meeting.

Botvinick’s research looks at intrinsic and external mechanical forces in cellular microenvironments and their efforts on the behavior and molecular signaling of cells.

The faculty award is presented to an individual or team who best demonstrates innovation in the development of a product or technology, and recognizes achievements in which the innovation has successfully translated research emanating from our laboratories into new products and technologies that can be used by the public.

BME Discovery 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BME Faculty on Wining Business Plan Competition Team

Several BME faculty – Elliot Botvinick, Jonathan Lakey and Weizheng Zhao – were part of the first place team in the 2015 Business Plan Competition at the Paul Merage School of Business. Team Kapsoulas TherapeutiX, which developed a safe, proprietary cell delivery system to improve blood sugar control and alleviate the complications of diabetes in pets, won in a sweep. They placed first in the campuswide division and won both the UCI School of Medicine Award and the TechPortal Calit2 Residency Award for a grand total of more than $32,000 in prize money.

Student Highlights

BME Discovery8

Graduate Student Receives Future Faculty Award

BME doctoral student Neha Garg received the Schlumberger Foundation Future Faculty award. This award supports outstanding women from developing countries with up to $50,000 a year in their pursuit of doctoral or post-graduate STEM studies. Winners are chosen based on leadership qualities, academic performance, outstanding references, research

relevance and engagement toward science and education as a development tool in their home countries.

Garg works on the separation and enrichment of circulating tumor cells (CTCs) using acoustics in a microfluidic device, called a lateral cavity acoustic transducer. Because the CTCs are much larger than the other blood cells, they can be separated by the device which, she says, can also be used for pumping, DNA shearing, cell sorting and separating impurities from water. Garg, who has a strong interest in global health issues, hopes to use the technology to advance point-of-care diagnostics platforms for developing countries.

Since the program’s 2004 launch, 560 women from emerging countries, including this year’s 155 awardees, have received Faculty for the Future fellowships to pursue advanced graduate studies at top universities abroad. After completing their studies, the Fellows return to their home countries, contributing to economic, social and technological advancement.

UCI Project Earns People’s Choice Award

BME graduate student Jonathan Pegan, working with Associate Professor Michelle Khine, won the People’s Choice award at the UC-wide Bioengineering Shark Tank for his work with TinyKicks during the 16th annual UC Systemwide Bioengineering Symposium in June.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Two Grad Students Publish Research Findings

Science Advances published Xiang Li’s work on heterologous expression of sulfated peptides, as part of an effort to identify an activator of an important innate immune receptor in plants. This project is led by the Ronald Lab at UC Davis, which seeks to help collaborators pursue further studies of sulfated peptides in plant immunity and to develop

sulfated peptides as therapeutic reagents for plants and animals.

Caitlin Regan and co-authors published their paper, “Fiber- based laser speckle imaging for the detection of pulsatile flow,” in the August 2015 edition of Lasers in Surgery and Medicine. The research team designed and characterized a fiber-based laser speckle-imaging system to study pulsatile blood flow in the tooth.

Doctotal Candidate Wins Lambert Prize

BME doctoral candidate Li Xiao was named one of two winners of this year’s UCI Justine Lambert Prize. The prize is awarded every other year for the best paper submitted by a graduate student addressing issues in natural or social sciences. The Lambert Prize competition is open to all UCI graduate students regardless of department or school affiliation and is made possible by J. Karel Lambert.

Xiao’s winning paper was titled “A multi-scale method for dynamics simulation in continuum solvent models I: finite-difference algorithm for Navier-Stokes equation.”

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BME Discovery 9

home or in a clinic to augment traditional physical therapy. Flint received several Small Business Innovative Research Grants from the National Institute on Disability and Rehabilitation Research to develop the product and a $1.5 million grant that allowed the new company to manufacture it.

Friedman hit upon the idea while working on a hand robot during graduate school. His adviser, Mark Bachman, urged Friedman to design something simpler than the highly complex robots many researchers were working on. A later discussion between Friedman and Bachman – both musicians, as is Zondervan – sparked the idea of adding music to the device.

The glove is equipped with sensors on the fingertips that work with a dedicated game console or a touch-screen tablet device. Much in the same way that someone playing Guitar Hero hits buttons on a guitar to sync with notes on the screen, the Music Glove wearer taps notes with his fingertips and thumb to the beat of a song. Playing the game prompts the neural connections between the hand and brain to recover.

“The reason our software is inspired by Guitar Hero is because people get addicted to the game,” Friedman says. “We want people to get addicted to therapy. Anything that can motivate people to do therapy for a long time is the right way to go.” Clinical trials demonstrated that the Music Glove produced a threefold improvement in function compared to traditional therapy.

“The glove motivates high-intensity movement,” Friedman explains. “People have to complete their movement in order to play the game. If they try to move their finger a little bit but don’t complete that movement they won’t be able to play. It’s also very repetitive. People are doing thousands of movements per hour.”

Shari Roan

Alumni News

BME alumnus takes research from lab to marketplace

One wouldn’t expect the leaders of a company specializing in products for stroke patients to be in their mid-20s. But youth is clearly the genius behind Flint Rehabilitation Devices, a startup company founded by UCI engineering alumni Nizan Friedman (pictured above) and Danny Zondervan.

Both admit that a few years ago, they didn’t think a whole lot about the 795,000 Americans, mostly older adults, who suffer a stroke each year. But their engineering skills — Friedman in biomedical and Zondervan in mechanical — and their Millennial-generation love of the video games Guitar Hero and Rock Band have placed the duo in the unlikely position of rethinking traditional approaches to stroke rehabilitation.

A year ago, their company launched its first product, the Music Glove, a device designed to help stroke patients with hand paralysis regain function. The device can be used at

Rockin’ Recovery

BME Discovery10

Core Faculty

Abraham P. Lee, Ph.D.William J. Link Chair in Biomedical Engineering and Department Chair and Professor of Biomedical Engineering; Mechanical and Aerospace Engineering

Research Interests: Lab-on-a-Chip health monitoring instruments, drug delivery micro/nanoparticles, integrated cell sorting microdevices, lipid vesicles as carriers for cells and biomolecules, high throughput droplet bioassays, microfluidic tactile sensors

[email protected]

Michael Berns, Ph.D.Arnold and Mabel Beckman Chair in Laser Biomedicine and Professor of Surgery; Biomedical Engineering; Developmental and Cell Biology

Research Interests: photomedicine, laser microscopy, biomedical devices

[email protected]

Elliot Botvinick, Ph.D.Associate Professor of Surgery; Biomedical Engineering

Research Interests: laser microbeams, cellular mechanotransduction, mechanobiology

[email protected]

Gregory J. Brewer, Ph.D.Adjunct Professor of Biomedical Engineering

Research Interests: neuronal networks, decoding brain learning and memory, brain-inspired computing, Alzheimer’s disease, brain aging, neuron cell culture

[email protected]

James Brody, Ph.D.Associate Professor of Biomedical Engineering; Chemical Engineering and Materials Science

Research Interests: bioinformatics, micro-nanoscale systems

[email protected]

Zhongping Chen, Ph.D.Professor of Biomedical Engineering; Chemical Engineering and Materials Science; Electrical Engineering and Computer Science; Otolaryngology; Surgery

Research Interests: biomedical optics, optical coherence tomography, bioMEMS, biomedical devices

[email protected]

Bernard Choi, Ph.D.Associate Professor in Residence of Surgery; Biomedical Engineering

Research Interests: biomedical optics, in vivo optical imaging, microvasculature, light-based therapeutics

[email protected]

Michelle Digman, Ph.D.Assistant Professor of Biomedical Engineering

Research Interests: biophotonics, fluorescence Spectroscopy and microscopy, nano-scale imaging, mechanotransduction, cancer cell migration, fluorescence lifetime and metabolic mapping

[email protected]

Enrico Gratton, Ph.D.Professor of Biomedical Engineering; Developmental and Cell Biology; Physics and Astronomy

Research Interests: design of new fluorescence instruments, protein dynamics, single molecule, fluorescence microscopy, photon migration in tissues

[email protected]

Anna Grosberg, Ph.D.Assistant Professor of Biomedical Engineering; Chemical Engineering and Materials Science

Research Interests: computational modeling of biological systems, biomechanics, cardiac tissue engineering

[email protected]

Jered Haun, Ph.D.Assistant Professor of Biomedical Engineering; Chemical Engineering and Materials Science

Research Interests: nanotechnology, molecular engineering, computational simulations, targeted drug delivery, clinical cancer detection

[email protected]

Elliot E. Hui, Ph.D.Associate Professor of Biomedical Engineering

Research Interests: microscale tissue engineering, bioMEMS, cell-cell interactions, global health diagnostics

[email protected]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BME Discovery 11

Tibor Juhasz, Ph.D.Professor of Ophthalmology; Biomedical Engineering

Research Interests: laser-tissue interactions, high-precision microsurgery with lasers, laser applications in ophthalmology, corneal biomechanics

[email protected]

Arash Kheradvar, M.D.Associate Professor of Biomedical Engineering; Mechanical and Aerospace Engineering; and Medicine

Research Interests: cardiac mechanics, cardiovascular devices, cardiac imaging

[email protected]

Michelle Khine, Ph.D.Associate Professor of Biomedical Engineering; Chemical Engineering and Materials Science

Research Interests: development of novel nano- and micro-fabrication technologies and systems for single cell analysis, stem cell research, in-vitro diagnostics

[email protected]

Frithjof Kruggel, M.D.Professor of Biomedical Engineering

Research Interests: biomedical signal and image processing, anatomical and functional neuroimaging in humans, structure-function relationship in the human brain

[email protected]

Chang C. Liu, Ph.D.Assistant Professor of Biomedical Engineering; Chemistry

Research Interests: genetic engineering, directed evolution, synthetic biology, chemical biology

[email protected]

Wendy F. Liu, Ph.D.Assistant Professor of Biomedical Engineering; Chemical Engineering and Materials Science

Research Interests: biomaterials, microdevices in cardiovascular engineering, cell-cell and cell-micro-environment interactions, cell functions and controls

[email protected]

Beth A. Lopour, Ph.D.Assistant Professor of Biomedical Engineering

Research Interests: computational neuroscience, signal processing, mathematical modeling, epilepsy, translational research

[email protected]

Zoran Nenadic, Ph.D.Associate Professor of Biomedical Engineering; Electrical Engineering and Computer Science

Research Interests: adaptive biomedical signal processing, control algorithms for biomedical devices, brain-machine interfaces, modeling and analysis of biological neural networks

[email protected]

William C. Tang, Ph.D.Professor of Biomedical Engineering; Electrical Engineering and Computer Science

Research Interests: micro-electro-mechanical systems (MEMS) nanoscale engineering for biomedical applications, microsystems integration, microimplants, microbiomechanics, microfluidics

[email protected]

Bruce Tromberg, Ph.D.Director of Surgery; Biomedical Engineering; Physiology and Biophysics

Research Interests: photon migration, diffuse optical imaging, non-linear optical microscopy, photodynamic therapy

[email protected]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Welcome Timothy Downing

The BME department welcomes Timothy Downing, our newest faculty member, who will join us this winter. Downing, currently a postdoctoral fellow at Harvard University in the Alexander Meissner Lab, received his Ph.D. in bioengineering and biomedical engineering from UC Berkeley

in 2013. His work has been published in The Journal of Pediatric Surgery, Journal of Controlled Release, and Nature Materials.

BME Discovery12

Affiliate Faculty

Alpesh N. Amin, M.D.Endowed Chair in Medicine and Professor of Medicine; Biomedical Engineering; Paul Merage School of Business; Program in Nursing [email protected]

Pierre F. Baldi, Ph.D.UCI Chancellor’s Professor of Computer Science; Biological Chemistry; Biomedical Engineering; Developmental and Cell [email protected]

Lubomir Bic, Ph.D.Professor of Computer Science; Biomedical Engineering; Electrical Engineering and Computer [email protected]

Bruce Blumberg, Ph.D.Professor of Developmental and Cell Biology; Biomedical Engineering; Environmental Health Sciences; Pharmaceutical [email protected]

Donald J. Brown, Ph.D.Associate Professor in Residence of Ophthalmology; Biomedical [email protected]

Peter J. Burke, Ph.D.Professor of Electrical Engineering and Computer Science; Biomedical Engineering; Chemical Engineering and Materials [email protected]

Maxime Cannesson, Ph.D.Professor of Clinical Anesthesiology, Biomedical [email protected]

Dan M. Cooper, M.D.Professor of Pediatrics; Biomedical [email protected]

Robert Corn, Ph.D.Professor of Chemistry; Biomedical [email protected]

Carl W. Cotman, Ph.D.Professor of Neurology; Biomedical Engineering; Neu-robiology and [email protected]

Nancy A. Da Silva, Ph.D.Professor of Chemical Engineering and Materials Science; Biomedical [email protected]

Hamid Djalilian, M.D.Associate Professor of Otolaryngology; Biomedical [email protected]

James Earthman, Ph.D.Professor of Chemical Engineering and Materials Science; Biomedical [email protected]

Aaron P. Esser-Kahn, Ph.D.Assistant Professor of Chemistry; Biomedical Engineering; Chemical Engineering and Materials [email protected]

Gregory R. Evans, M.D.Professor of Surgery; Biomedical [email protected]

Lisa Flanagan-Monuki, Ph.D.Assistant Professor of Neurology; Biomedical [email protected]

Ron Frostig, Ph.D.Professor of Neurobiology and Behavior; Biomedical [email protected]

John P. Fruehauf, M.D.Professor of Medicine; Biological Chemistry; Biomedical Engineering; Pharmaceutical [email protected]

Steven P. Gross, Ph.D.Professor of Developmental and Cell Biology; Biomedical Engineering; Physics and [email protected]

Zhibin Guan, Ph.D.Professor of Chemistry; Biomedical [email protected]

Gultekin Gulsen, Ph.D.Associate Professor of Radiological Sciences; Biomed-ical Engineering; Electrical Engineering and Computer Science; Physics and [email protected]

Ranjan Gupta, Ph.D.Professor of Orthopaedic Surgery; Anatomy and Neurobiology; Biomedical [email protected]

Frank P. Hsu, M.D.Department Chair and Professor of Neurological Surgery; Biomedical Engineering; [email protected]

Christopher Hughes, Ph.D.Director of Edwards Lifesciences Cardiovascular Technology Center and Professor of Molecular Biology and Biochemistry; Biomedical [email protected]

James V. Jester, Ph.D.Professor in Residence, Ophthalmology; Biomedical [email protected]

Joyce H. Keyak, Ph.D.Professor in Residence of Radiological Sciences; Biomedical Engineering; Mechanical and Aerospace [email protected]

Baruch D. Kuppermann, M.D.Professor of Ophthalmology; Biomedical [email protected]

Young Jik Kwon, Ph.D.Associate Professor of Pharmaceutical Sciences; Biomedical Engineering; Chemical Engineering and Materials Science; Molecular Biology and [email protected]

Jonathan Lakey, Ph.D.Associate Professor of Surgery; Biomedical [email protected]

Arthur D. Lander, Ph.D.Donald Bren Professor and Professor of Developmental and Cell Biology; Biomedical Engineering; Logic and Philosophy of Science; [email protected]

Richard H. Lathrop, Ph.D.Professor of Computer Science; Biomedical [email protected]

Thay Q. Lee, Ph.D.Professor in Residence of Orthopaedic Surgery; Biomedical Engineering; Physical Medicine and [email protected]

Guann-Pyng Li, Ph.D.Director of the UCI Division of Calit2, Director of the Integrated Nanosystems Research Facility and Professor of Electrical Engineering and Computer Science; Biomedical Engineering; Chemical Engineering and Materials Science [email protected]

Shin Lin, Ph.D.Professor of Developmental and Cell Biology; Biomedical [email protected]

John Lowengrub, Ph.D.UCI Chancellor’s Professor of Mathematics; Biomedical Engineering; Chemical Engineering and Materials [email protected]

Ray Luo, Ph.D.Professor of Molecular Biology and Biochemistry; Biomedical [email protected]

Marc J. Madou, Ph.D.UCI Chancellor’s Professor of Mechanical and Aerospace Engineering; Biomedical Engineering; Chemical Engineering and Materials [email protected]

John Middlebrooks, Ph.D.Professor of Otolaryngology; Biomedical Engineering; Cognitive Sciences; Neurobiology and [email protected]

Sabee Y. Molloi, Ph.D.Professor of Radiological Sciences; Biomedical Engineering; Electrical Engineering and Computer [email protected]

Jogeshwar Mukherjee, Ph.D.Professor and Director, Preclinical Imaging, Radiological Sciences School of Medicine, Biomedical Engineering [email protected]

J. Stuart Nelson, Ph.D.Professor of Surgery; Biomedical [email protected]

Hung Duc Nguyen, Ph.D.Assistant Professor of Chemical Engineering and Materials Science; Biomedical [email protected]

Qing Nie, Ph.D.Professor of Mathematics; Biomedical [email protected]

Pranav Patel, M.D.Chief, Division of Cardiology; Director of Cardiac Catheterization Laboratory and Cardiac Care Unit (CCU) and Health Sciences Associate Clinical Professor of Medicine; Biomedical [email protected]

Susanne M. Rafelski, Ph.D.Assistant Professor of Developmental and Cell Biology; Biomedical [email protected]

David J. Reinkensmeyer, Ph.D.Professor of Anatomy and Neurobiology; Biomedical Engineering; Mechanical and Aerospace Engineering; Physical Medicine and [email protected]

Phillip C-Y Sheu, Ph.D.Professor of Electrical Engineering and Computer Science; Biomedical Engineering; Computer [email protected]

Andrei M. Shkel, Ph.D.Professor of Mechanical and Aerospace Engineering; Biomedical Engineering; Electrical Engineering and Computer [email protected]

Zuzanna S. Siwy, Ph.D.Professor of Physics and Astronomy; Biomedical Engineering; [email protected]

Ramesh Srinivasan, Ph.D.Professor of Cognitive Sciences; Biomedical [email protected]

Roger F. Steinert, M.D.Irving H. Leopold Chair in Ophthalmology and Professor of Ophthalmology; Biomedical [email protected]

Vasan Venugopalan, Sc.D.Department Chair and Professor of Chemical Engineering and Materials Science; Biomedical Engi-neering; Mechanical and Aerospace Engineering; [email protected]

Szu-Wen Wang, Ph.D.Associate Professor of Chemical Engineering and Materials Science; Biomedical [email protected]

H. Kumar Wickramasinghe, Ph.D.Henry Samueli Endowed Chair in Engineering and Department Chair and Professor of Electrical Engineering and Computer Science; Biomedical Engineering; Chemical Engineering and Materials [email protected]

Brian Wong, M.D.Professor of Otolaryngology; Biomedical [email protected]

Xiangmin Xu, Ph.D.Assistant Professor of Anatomy and Neurobiology; Biomedical Engineering; Electrical Engineering and Computer Science; Microbiology and Molecular [email protected]

Albert Fan Yee, Ph.D.Professor of Chemical Engineering and Materials Science; Biomedical Engineering; [email protected]

Fan-Gang Zeng, Ph.D.Director of Hearing Research and Professor of Oto-laryngology; Anatomy and Neurobiology; Biomedical Engineering; Cognitive [email protected]

Weian Zhao, Ph.D.Assistant Professor of Pharmaceutical Sciences; Biomedical [email protected]

BME Discovery 13

University of California, IrvineThe Henry Samueli School of EngineeringDepartment of Biomedical Engineering3120 Natural Sciences IIIrvine, CA 92697-2715

For more information about UCI’s biomedical engineering programs, please visit our new website at www.bme.uci.edu.