20
Ingemar Quintero Chemical Engineer I.D. Quintero 1 , M.A. Rodríguez 2 , J.A. Sorrentino 3 . DEMULSIFIER-F REE SLOP-OIL EMULSION DESTABILIZATION Keywords:  Slop-Oil Pits, Water-in-Oil emulsions, Electrostatic dehydration, coalescense, Coalescer media, Treatment Cell; Electrode Geometry; Optical microscope. Central University Of Venezuel a Mechanical Separation Lab UCV FIUCV-EIQ- LSM-WOSS UCV FIUCV- EIQ- LSM-WOSS

Ingemar Quintero Presentation

Embed Size (px)

Citation preview

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 1/20

Ingemar QuinteroChemical Engineer 

I.D. Quintero1, M.A. Rodríguez2, J.A. Sorrentino3.

DEMULSIFIER-FREE SLOP-OIL EMULSION DESTABILIZATION

Keywords: Slop-Oil Pits, Water-in-Oil emulsions,

Electrostatic dehydration, coalescense, Coalescer media,

Treatment Cell; Electrode Geometry; Optical microscope.

Central University Of Venezuela

Mechanical Separation Lab

UCV –FIUCV-EIQ- LSM-WOSS

UCV –FIUCV-EIQ- LSM-WOSS

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 2/20

Slop-Oil Pits Emulsion Estability CoalescenceElectrostatic separation

Slop-Oil Pits  – Orinoco Oil Belt - Venezuela

Problem Description

Work hypothesis: DEMUSIFIER-FREE SLOP-OIL EMULSION DESTABILIZATION 

Electrical field has an destabilizing effect itself and not just a coalescence

acceleration consequence (like a centrifuge) and that some synergistic 

effects are possible introducing coalescence promoters.

UCV –FIUCV-EIQ- LSM-WOSS

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 3/20

Methodology

Microscope

Observation Cell

“THREE  LEVELS” :  Three cells with emphasis on volumen increase,

batch and continuos.

Batch

Cell

Preliminary

ContinuosCell

UCV –FIUCV-EIQ- LSM-WOSS

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 4/20

Results on Microscope Cell

Direct Current (DC)

 Acema-100

DC

Sample volume: 2.25 mm3

Before… 

 After… 

Microscope Observation Cell

Sampling zone

UCV –FIUCV-EIQ- LSM-WOSS

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 5/20

0

10

20

30

40

50

60

70

80

0 2 4 6

  ø

   W

   (   4   0  µ  m   ) ,   (   %   )

E, (KV/cm)

Acema-100

Results on Microscope Cell

 Alter Current (AC)

 Acema-100

 AC

Sample volume: 2.25 mm3

Before… 

 After … 

Microscope Observation Cell

Sampling zone

UCV –FIUCV-EIQ- LSM-WOSS

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 6/20

Results on Microscope Cell

D50 (µm): Droplet diameter for a 25 % accumulate water fraction.

W (%): Approximately total water content. 

DF: Destabilization Factor. DC AC

UCV –FIUCV-EIQ- LSM-WOSS

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 7/20

Results on Batch Cell

- +

Zones for image capture

 Acema-100

E: 2 KV/cm

DC

Sample volume: 150 mm3

Sampling zones

Results on Batch Cell:

E l   e c  t  r  o d 

 e

   E   l  e  c   t  r  o   d  e

UCV –FIUCV-EIQ- LSM-WOSS

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 8/20

Results on Batch Cell

- +

 Acema-100

E: 2 KV/cm

 AC

Sample volume: 150 mm3

Sampling zones

Results on Batch Cell:

E l   e c  t  r  o d 

 e

   E   l  e  c   t  r  o   d  e

 Acema-100

E: 2 KV/cm

Sample volume: 150 mm3

X A, (µm)

   F   2

   (   X   A

   ) ,   (  -   )

   F   2

   (   X   A

   ) ,   (  -   )

X A, (µm)

N

M

P

Original

N

M

P

Original

DC: 2 KV/cm AC: 6 KV/cm

Current type application effect  – Batch Cell

F2(X A): Cumulative distribution.

X A, (µm): Water droplet diameter 

UCV –FIUCV-EIQ- LSM-WOSS

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 9/20

Sampling zones

 Acema-100E: 2 KV/cm

Sample volume: 150 mm3

Microscope Cell and Batch Cell Comparison

Results on Batch Cell

Destabilization Factor / DC  – AC / Sampling zones 

Negative electrode

zoneMiddle zone Positive electrode

zoneGlobal

   D   F

   (  -   )

X A, (µm) X A, (µm)

   F   2

   (   X   A

   ) ,   (  -   )

   F   2

   (   X   A

   ) ,   (  -   )

Batch Cell

Batch Cell

Original

Microscope Cell

Microscope CellOriginal

F2(X A): Cumulative distribution.

 AC DC

X A, (µm): Water droplet diameter.

UCV –FIUCV-EIQ- LSM-WOSS

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 10/20

Slop-Oil Sample Density

 Acema-100 (g/ml) 0.95

°API 17.0

Guara-2 (g/ml) 0.98

°API 12.5

Merey-31(g/ml) 0.98

°API 12.3

Results on preliminary Continuous Cell

Three Samples:

- Acema-100 

- Guara-2 

- Merey-31

Slop-Oil Samples Water content (% v/v)

 Acema-100  37

Guara-2  38

Merey-31 16

cP

Temperature (°C)

Viscosity:

Guara-2 Acema-100 Merey-31

Weight fraction (%)

S.A.R.A. Analisis:

   F   2

   (   X   A

   ) ,   (  -   )

X A, (µm)

F2(X A): Cumulative fraction.

X A, (µm): Water droplet diameter 

Drop size distribution:

UCV –FIUCV-EIQ- LSM-WOSS

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 11/20

Sample recolector 

Continuos system scheme:

Thermical resistanceSample recipient 

Valve

Field application cell 

Mixer 

Results on preliminary Continuous CellDesign and Operating conditions:

Flat Cell 

Electric Field 

e

o

e

E l 

e

o

e

Electric field 

application cell 

Sample volume: 5 ml. 

Electric Field 

Electrode

Sample volume: 5 ml. 

Flat Cell 

Heating:

Glass fiber insulation

Residence time:

Orifices:

(a): 3.45 mm

(b): 2.70 mm

(a) (b)

Slop-Oil Cell Voltage application ranges (V) CurrentResidence

time

 Acema-100

Flat and cylindrical

electrodes

300-600

DC / AC

Low : 20-30 s

High: 50-60 s

Guara-2 500-1000

Merey-31 400-800

UCV –FIUCV-EIQ- LSM-WOSS

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 12/20

Results on preliminary Continuous CellMeasurement and analysis:

Destabilization factor:

Microscope cell (batch analysis)

Batch Cell

W0(X A) (%): Water content in droplets with higher diameters than X A in the original sample.

W(X A) (%): Water content in droplets with higher diameters than X A after electric field application.

Continuos Cell

R2 (X A, µm): Cumulative distribution; droplets fraction with diameter > X A after electric field application.

R20 (X A, µm): Cumulative distribution; droplets fraction with diameter > X A in the original sample.

.

Stadistical method: Factorial Design  Acema-100 / Merey-31

UCV –FIUCV-EIQ- LSM-WOSS

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 13/20

Test

number Cell Voltage Current

Residence

time

Recovered water before

centrifugation (%)

Recovered water after 

centrifugation (%)

1 Flat High DC Low 9,60 25,95

2 Flat High AC High 4,54 11,95

 Acema-100 

Test number  

Results on preliminary Continuous Cell

Test # 3: Flat cell, high voltage, DC, low residence time.

Test # 9: Flat cell, high voltage, AC, low residence time.

Guara-2 

Test number  

Emulsion properties

Merey-31 

Test number  

Test # 2: Flat cell, high voltage, DC, low residence time.

Test # 4: Cylindrical cell, high voltage, AC, low residence time

Measurement and analysis:

 Acema-100 

Oil phase

 Aqueous phase

Centrifugal effect: 

UCV –FIUCV-EIQ- LSM-WOSS

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 14/20

Residence time:Low 

Medium

High

Media coalescer Wettability Void fraction

Glass Rings Hydrophilic 0,84Polyethylene Spheres Hydrophobic 0,52

Glass Spheres Hydrophilic 0,56

Rocks Intermediate 0,62

Peanut shells Hydrophobic 0,72

Results on preliminary Continuous Cell with Coalescer Media

Flat Cell with Media

Coalescer 

Design and Operating conditions:

Flat Cell  

Tests were conducted putting media coalescer ins ide the cell.

Only flat cell was used.

 Applied electric field was limited by the Chain Format ion phenomenon.

Samples: Acema-100 

Merey-31

Current: AC 

DC 

Media Coalescer:

Centrifugation:2.700 rpm by 5 minutes

UCV –FIUCV-EIQ- LSM-WOSS

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 15/20

Media

coalescer Geometry

Void

fraction

Residence

time

Recovery water (% v/v)

DC FieldDC Field +

Centrifugation

Polyethylene Spheres 0,52Low 41 92

Medium 27 65

High 3 24

Glass Spheres 0,56

Low 27 65Medium 16 38

High 3 19

Phases distributions/Centrifugal effect:

Measurement and analysis: 

Results on preliminary Continuous Cell with Coalescer Media

DC 

Electric field  Electric field + Centrifugation 

Recovery water (%) 

Polyethylene 

Glass Rings 

Glass spheres 

Peneaut shells 

Rocks 

No media coalescer  

Electric field  Electric field + Centrifugation

Recovery water 

Emulsion with low water 

content 

Emulsion with a very low water 

content 

Big water droplets (floccules)High estable emulsion

Test

Tube

 Acema-100 (No heating ): 

Polyethylene 

Glass spheres 

Rocks 

No media coalescer  

Peneaut shells 

Glass Rings 

Electric field  Electric field + Centrifugation 

Recovery water (%) 

 Acema-100 (No heating ): 

 AC 

GLASS

Espheres Rings

UCV –FIUCV-EIQ- LSM-WOSS

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 16/20

Results on preliminary Continuous Cell with Coalescer Media

Merey-31 (heating ): 

Optical microscopy was used to measure the destabilization.

Polyethylene spheres and glass rings were used only.

Design and Operating conditions:

UCV –FIUCV-EIQ- LSM-WOSS

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 17/20

Measurement and analysis: 

Results on preliminary Continuous Cell with Coalescer Media

Glass Rings Polyethylene spheres

Sample volumen collected (ml)

   D   F   C    (  -

   )

5 X

Glass Rings Polyethylene spheres

Sample volumen collected (ml)

   D   F

   C    (  -

   )

20 X

UCV –FIUCV-EIQ- LSM-WOSS

R lt li i C ti C ll ith C l M di

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 18/20

Continuos phase (oil)

Colaescer media (Polyethylene)

Surfactant molecule

Water droplets (disperse phase)

Hydrophobic 

Lipophilic tail 

Hydrophilic head 

1 2

34

Colaescer media (Glass)

1 2 3

4

Polyethylene

Glass

Measurement and analysis: 

Results on preliminary Continuous Cell with Coalescer Media

Hydrophilic 

Continuos phase (oil)

UCV –FIUCV-EIQ- LSM-WOSS

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 19/20

Conclusions

This findings can conduct to an hybrid system for separating this slop-oils

with no chemical addition or at least with an important lowering of the

required dosage.

• Continuous system unlike batch systems, allowed the collection of separated water emulsion

during the electrostatic treatment.

• Coalescence of water droplets was observed in high stable emulsions obtaining, in some

cases, a very "good" destabilization grade. No demulsifier was added.

• There is a non-linear increment between the electric field strength and the water droplets

sizes.

• Centrifugation promotes phase separation only if the sample has previously been treated with

electric field. Electrical field has an destabilizing effect itself 

• Preliminary results show that coalescer media destabilizing effect is associated with multilayer 

adsorption on the material surface. Because of this, the destabilizing effect of the media decreases

significantly over time due to the saturation of the material.

UCV –FIUCV-EIQ- LSM-WOSS

UCV–FIUCV-EIQ- LSM-WOSS

7/28/2019 Ingemar Quintero Presentation

http://slidepdf.com/reader/full/ingemar-quintero-presentation 20/20

Ingemar QuinteroChemical Engineer 

I.D. Quintero1, M.A. Rodríguez2, J.A. Sorrentino3.

DEMULSIFIER-FREE SLOP-OIL EMULSION DESTABILIZATION

UCV FIUCV EIQ LSM WOSS

UCV –FIUCV-EIQ- LSM-WOSS