17
  FACULTAD : Ingeniería  ESCUELA: Ingeniería Industrial CICLO: IV  TEMA:  Diodo semiconductor CURSO:  Electrónica y electricidad AUTOR ES) Mori Chalán, Henry Rodríguez Sánchez, Fernando DOCENTE Ing. Palmer Luis Dionicio Torres FECHA DE PRESENTACIÓN 14/05/2015

Informe-De-diodo-semiconductor (Mori Chalan y Rodriguez Sánchez)

Embed Size (px)

DESCRIPTION

Laboratorio del diodo semiconductor

Citation preview

  • FACULTAD: Ingeniera

    ESCUELA: Ingeniera Industrial

    CICLO: IV

    TEMA: Diodo semiconductor

    CURSO: Electrnica y electricidad

    AUTOR(ES)

    Mori Chaln, Henry

    Rodrguez Snchez, Fernando

    DOCENTE

    Ing. Palmer Luis Dionicio Torres

    FECHA DE PRESENTACIN

    14/05/2015

  • LABORATORIO DE ELECTRNICA Y ELECTRICIDAD INDUSTRIAL

    LABORATORIO DIODO SEMICONDUCTOR

    II.-) OBJETIVO:

    El presente laboratorio tiene por objetivo familiarizarse con el manejo del equipo

    del laboratorio y los diodos y sus caractersticas principales de funcionamiento.

    III.-) INFORMACION PRELIMINAR:

    EL DIODO SEMICONDUCTOR

    El diodo semiconductor es un dispositivo no lineal porque la tensin aplicada a

    este no es proporcional a la corriente que circula por l. As mismo, el diodo es un

    dispositivo unilateral porque este conduce solamente cuando esta polarizado

    directamente. Cuando esta polarizado en inverso se considera que no conduce.

    El diodo semiconductor es el dispositivo semiconductor ms sencillo se puede

    encontrar, prcticamente en cualquier circuito electrnico. Los diodos se fabrican

    en versiones de silicio (la ms utilizada) y de germanio.

    El diodo se puede hacer funcionar de 2 maneras diferentes:

    Polarizacin directa: Es cuando la corriente que circula por el diodo

    sigue la ruta de la flecha (la del diodo), o sea del nodo al ctodo.

    En este caso la corriente atraviesa con mucha facilidad el diodo

    comportndose ste prcticamente como un corto circuito.

    Polarizacin inversa: Es cuando la corriente en el diodo desea circular en

    sentido opuesto a la flecha (la flecha del diodo), o se del ctodo al nodo.

    En este caso la corriente no atraviesa el diodo, comportndose ste

    prcticamente como un circuito abierto.

    CLASIFICACION:

    EL DIODO ZENER

    Es un tipo especial de diodo que diferencia del funcionamiento de

    los diodos comunes, como el diodo rectificador, en donde se aprovechan sus

    caractersticas de polarizacin directa y polarizacin inversa, el

    diodo Zener siempre se utiliza en polarizacin inversa, en donde la corriente desea

    circular en contra de la flecha que representa el mismo diodo.

  • Smbolo del diodo zener (A - nodo K - ctodo)

    EL DIODO LED

    Si alguna vez has visto, unas pequeas luces de diferentes colores que se encienden y apagan, en algn circuito electrnico, sin lugar a dudas has visto el diodo LED en funcionamiento.

    El LED es un tipo especial de diodo, que trabaja como un diodo comn, pero que al ser atravesado por la corriente emite luz.

    Existen diodos LED es de varios colores y estos dependen del material con el cual fueron construidos. Hay de color rojo, verde, amarillo, mbar, infrarrojo.

    Debe de escogerse bien la corriente que atraviesa el LED para obtener una buena intensidad luminosa. El LED tiene un voltaje de operacin que va de 1.5 V a 2.2 Voltios. Aproximadamente y la gama de corrientes que debe circular por el va de 10 mA a 20 mA en los diodos de color rojo y de entre 20 mA y 40 mA para los otros LEDs.

    Tiene enormes ventajas sobre las lmparas indicadoras comunes, como son su bajo consumo de energa, su mantenimiento casi nulo y con una vida aproximada de 100,000 horas.

    Qu Aplicaciones tiene el diodo LED?

    Se utiliza ampliamente en aplicaciones visuales, como indicadoras de cierta situacin especfica de funcionamiento.

    Ejemplos:

    -Se utilizan para desplegar contadores -Para indicar la polaridad de una fuente de alimentacin de corriente directa.

  • Diodos rectificadores

    El encapsulado de estos diodos depende de la potencia que hayan de disipar. Para los de baja y media potencia se emplea el plstico hasta un lmite de alrededor de 1 vatio. Por encima de este valor se hace necesario un encapsulado metlico y en potencias ms altos deber estar la cpsula preparada para que pueda ser instalado el diodo sobre un radiador de color, por medio de un sistema de sujecin a tornillo. Cualquier sistema rectificador de corrientes, tanto monofsicas como trifsicas o polifsicas, se realiza empleando varios diodos segn una forma de conexin denominada en puente. No obstante, tambin se utiliza otro sistema con dos diodos, como alternativa del puente en algunos circuitos de alimentacin monofsicos.

    Debido al gran consumo a nivel mundial de diodos que ms tarde son empleados en montajes puente, los fabricantes decidieron, en un determinado momento, realizar ellos mismos esta disposicin, uniendo en fbrica los cuatro diodos y cubrindolos con un encapsulado comn. Esto dio lugar a la aparicin de diversos modelos de puentes de diodos con diferentes intensidades mximas de corriente y, por lo tanto, con disipaciones de potencia ms o menos elevadas, en la misma forma que los diodos simples. En los tipos de mayor disipacin, la cpsula del puente es metlica y est preparada para ser montada sobre un radiador.

    Caractersticas

    Cualquier diodo rectificador est caracterizado por los siguientes factores: - inversa Corriente directa mxima (If). - Tensin directa (Vd), para una corriente If determinada. - Tensin inversa mxima de pico de trabajo (VRWM). - Tensin mxima de pico repetitiva (VRRM). - Corriente mxima de pico (Ifsm). - Corriente inversa mxima de pico (IRM), medida a VRRM. - Potencia total (P/tot).

    Estas caractersticas debern ser tenidas en cuenta en el momento de la eleccin del modelo ms adecuado para cada aplicacin, procurando no ajustarse demasiado a los valores lmites, ya que ello acortara excesivamente la duracin del componente.

    DIODO VARACTOR

    El diodo varactor tambin conocido como diodo varicap o diodo de sintona. Es un dispositivo semiconductor que trabaja polarizado inversamente y actan como condensadores Variables controlados por voltaje. Esta caracterstica los

  • hace muy tiles como elementos de sintona en receptores de radio y televisin. Son tambin muy empleados en osciladores, multiplicadores, amplificadores, generadores de FM y otros circuitos de alta frecuencia. Una variante de los mismos son los diodos SNAP, empleados en aplicaciones de UHF y microondas.

    DIODO ESTABILIZADOR

    Est formados por varios diodos en serie, cada uno de ellos produce una cada de tensin correspondiente a su tensin umbral.

    Trabajan en polarizacin directa y estabilizan tensiones de bajo valores similares a lo que hacen los diodos Zner.

    Diodos de seal

    Los diodos de seal de use general se emplean en funciones de tratamiento de la seal, dentro de un circuito o bien para realizar operaciones de tipo digital formando parte de puertas lgicas y circuitos equivalentes, Son de baja potencia. Las caractersticas de estos diodos son:

    - Tensin inversa (Vr), hasta 75 V como mximo. - Corriente directa (If), 100 mA. - Potencia mxima (P/tot), 200 milivatios (mW)

    El encapsulado es en forma de un cilindro miniatura, de plstico o vidrio, estando los dos terminales de conexin situados en los extremos. Sobre el cuerpo deber estar marcado el hilo de conexin que corresponde al ctodo, mediante un anillo situado en las proximidades de ste.

  • EQUIPAMIENTO:

    - 1 fuente de alimentacin CC variable de 0 a 15 V.

    -1 diodo 1N914, 1 diodo 1N4148, 1 diodo 1N4007

    -5 Resistores: 02 de 200 , 01 de 1K , 01 DE 100K Y 1 DE 470K

    Todos son de 1/2w

    -1 multmetro

    -1 protoboard

    IV.-) CURVA CARACTERISTICA DEL DIODO:

    A.- PROCEDIMIENTO:

    1.- Usamos un multimetro en la funcin de ohmmetro medimos las resistencias

    CC, directa e inversa de un diodo 1N914, realizamos las mediciones colocando el

    selector del rango del multimetro en la posicin de pruebas de diodos. Si el diodo

    estuviera en buen estado de funcionamiento, debemos obtener una lectura de 500

    Diodos de conmutacin

    Los diodos de conmutacin o rpidos se caracterizan por ser capaces de trabajar con seales de tipo digital o que presenten unos tiempos de subida y bajada de sus flancos muy breves. El factor o parmetro que caracteriza a estos diodos es el tiempo de recuperacin inverso (TRR) que expresa el tiempo que tarda la unin P-N en desalojar la carga elctrica que acumula, cuando se encuentra polarizada inversamente (efecto similar a la acumulacin de carga de un condensador), y recibe sbitamente un cambio de tensin que la polariza en sentido directo. Pueden ser considerados rpidos aquellos diodos con un TRR inferior a 400 nanosegundos, en modelos de media potencia, para los de baja potencia este tipo es del orden de los 5 nanosegundos.

    Diodos de alta frecuencia

    Los diodos de alta frecuencia se emplean en aquellas partes de un circuito que deben de funcionar con frecuencias superiores a 1 megahertz (1 milln de ciclos por segundo). Se caracterizan por presentar una baja capacidad de difusin (Cd) entre las dos zonas semiconductoras que forman la unin P-N, cuando stas estn polarizadas en sentido directo.

  • entre 1500 ohms, de resistencia directa, y una lectura muy alta o infinita de

    resistencias inversa.

    2.- Implementamos el circuito de la figura 1, usamos un resistor limitador de

    corriente (Rs) de 1kS. Para cada valor de tensin anotado en la tabla 1, medimos

    y anotamos la tensin Vf y corriente If del diodo.

    3.- Calculamos y anotamos los valores de resistencia CC directa (Rf) del diodo

    para cada corriente anotada en la tabla 1.

    4.- Invertimos la polaridad de la fuente de tensin. Para cada valor de tensin en la

    tabla 2 medimos y anotamos los valores de V1 y I1 del diodo

    5.- Calculamos y anotamos los valores de resistencia CC inversa (R1) del diodo

    para cada valor de tensin de la tabla 2

    6.- En base a los valores obtenidos de la tabla 1 y 2 diseamos la curva

    caracterstica del diodo (I vs V)

  • 7.- Los procedimientos anteriores probaron que un diodo conduce cuando est

    directamente polarizado y conduce muy mal cuando esta inversamente polarizado.

    Se comporta como si fuese un conductor de un solo sentido de conduccin. Con

    esto calculamos los valores de corriente de la figuras 2 y 2b. Registramos estos

    valores en la tabla 3

    8.- Implementamos el circuito de la figura 2 (polarizado directo). Medimos y

    anotamos la corriente del diodo en la tabla 3

    9.- Implementamos el circuito de la figura 2b (polarizado inverso). Medimos y

    anotamos la corriente del diodo en la tabla 3

    10.- Implementamos el circuito de la figura 3. Calculamos el valor de tensin de

    carga (Vl) y anotamos en la tabla 4. Despus medimos y anotamos el valor de (Vl)

    11.- Cortocircuitamos el diodo con un puente conductor. Calculamos el valor de

    (Vl) en estas condiciones y anotamos valores en la tabla 4. Medimos y anotamos

    el valor de (Vl)

  • 12.- Retiramos el puente conductor. Desconectamos un lado del diodo.

    Calculamos el valor de (Vl) y anotamos. Ahora medimos y anotamos el valor de

    (Vl) en la tabla 4

    13.- Escogimos un valor de tensin y un resistor para limitar la corriente del diodo

    en (10 mA), como muestra la figura 1 (Usamos unos de los resistores del

    laboratorio). Implementamos el circuito y medimos la corriente. Anotamos los

    valores de Vs y Rs en la tabla 5

    V.-) CUADROS DE RESULTADOS

    Tabla 1. Polarizacin directa

    Vs Vf If Rf

    0 V 0 0 0

    0.5 V 0.45 V 0.54 mA 0.83

    1.0 V 0.55 V 0.45 mA 1.15

    2.0 V 0.60 V 1.43 mA 0.42

    4.0 V 0.65 V 3.35 mA 0.19

    6.0 V 0.68 V 5.27 mA 0.13

    8.0 V 0.69 V 6.28 mA 0.11

    10.0 V 0.75 V 8.25 mA 0.09

    15.0 V 0.82 V 9.26 mA 0.09

    Promedio 0.33

    Tabla 2. Polarizacin Inversa

    Vs V1 L1 R1

    -1 V -0.99 0 Infinito

    -5 V -5.01 0 Infinito

    -10 V -10.01 0 Infinito

    -15 V -14.98 0 Infinito

    Tabla 3. Conduccin del diodo

    Vs I (calculado) I(medido)

    Figura 2a 0.0422 42.3 mA

    Figura 2b 0 0

  • Tabla 4. Verificacin de estado del diodo

    Vs VL (calculado) VL (medido)

    Diodo normal 0.79

    Diodo en corto 0

    Diodo abierto 10.03

    Tabla 5. Verificacin del proyecto

    VI.-) CUESTIONARIO:

    1.- En este laboratorio, la curva caracterstica de la tensin de barrera de

    potencial del diodo se aproxima a:

    0,7 v

    2.- En polarizacin directa la resistencia cc del diodo disminuye cuando:

    La corriente aumenta.

    3.- Un diodo acta como una resistencia de alto valor cuando:

    Esta Directamente polarizado.

    4.- Cul o cules de las siguientes afirmaciones describe la parte de la

    curva del diodo que esta sobre la barrera de potencial en la polarizacin

    directa?

    La corriente en esta parte aumenta rpidamente

    5.- Cul de las siguientes afirmaciones describe la curva del diodo cuando

    esta inversamente polarizado?

    La corriente es aproximadamente cero debajo la tensin de ruptura

    Vs Rs L

  • 6.- Describe resumidamente las diferencias de un diodo y de un resistor

    comn

    Un diodo sirve como paso o ruptura y un resistor comn o resistencia

    sirve, para generar una resistencia al paso de la corriente, as que una

    resistencia reduce la corriente en su salida.

    7.- Por qu la tensin de carga 0.7 v en la figura 3, cuando el diodo est en

    buenas condiciones?

    Es cuando la corriente que circula por el diodo sigue la ruta de la flecha,

    es decir del nodo al ctodo.

    Aqu la corriente atraviesa al diodo con mucha facilidad (Cortocircuito).

    8.- Por qu la tensin de carga es ligeramente menor que 15v cuando el

    diodo est abierto en la figura 3?

    Aqu la corriente no atraviesa al diodo, es por eso que la tensin de

    carga es ligeramente menor..

    9.- Si usted necesita ajustar un valor fijo de corriente en un diodo, es mejor

    usar un valor de tensin bajo o alto. Justifique

    Para este caso de ajustar un valor fijo de corriente en un diodo,

    utilizaremos un valor de tensin bajo, con el fin de correr el riesgo de

    que la fuente de alimentacin sufra algn dao.

    VII.-) ANEXOS

  • II) APRROXIMACION DEL DIODO

    Idealmente en una primera aproximacin, un diodo actua como un interructor

    cerrado cuando esta directamente polarizado y como un interruptor abierto cuando

    esta inversamente polarizado, en una segunda aproximacin, incluimos una

    tensin de barrera cuando el diodo directamente polarizado. Esto significa que

    consideramos una tensin de 0.7V en los terminales de un diodo de silicio en

    conduccin (0.2V para diodos de germanio). Para verificacin de proyectos, la

    segunda aproximacin es visualmente adecuada. En esta experiencia

    trabajaremos con las dos aproximaciones del diodo.

    PROCEDIMIENTO

    1.- Implementamos el circuito conforme muestra la figura 4 y ajustamos la fuente

    de alimentacin hasta que la corriente en el diodo sea de 10 mA. Calculamos el

    valor de tensin Vf en el diodo y anote en la tabla 6.

    2.- Medimos la tensin Vf y anotamos en la tabla 6.

    3.- Ajustamos la fuente hasta que circule 50 mA por el diodo. Calculamos la

    tensin Vf y anotamos en la tabla 6. Medimos y anotamos la tensin Vf en la tabla

    6.

    4.- En este la laboratorio, consideramos la tensin de barrera del diodo como la

    tensin medida con 10 mA en el diodo. Anotamos la tensin de barrera en la tabla

    7 (este valor debe ser aproximadamente 0.7V)

  • 5.- Calculamos la resistencia de barrera del diodo usando: rb = Vf/ If donde Vf e If

    son las variaciones medidas en la tensin y en la corriente anotadas en la tabla 6.

    Anotamos rb en la tabla 7.

    6.- Calculamos la corriente en el diodo de la figura 4b de la manera siguiente:

    aplicamos el teorema de thevenin en el circuito representando entre los puntos A y

    B. A continuacin calculamos la corriente en el diodo usando las aproximaciones

    ideal y segunda (use la tensin de barrera y rb anotados en la tabla7). Anotamos

    respuestas en la tabla 8.

    7.- Implementamos el circuito de la figura 4b. Medimos y anotamos en la tabla 8 la

    corriente en el diodo.

    8.- Calculamos el valor de la corriente en el diodo de la figura 4b para cada una de

    las siguientes acondiciones: resistor de 470s en corto circuito y circuito abierto.

    9.- Medimos y anotamos la corriente en el diodo de la figura 4b con el resistor de

    470s en corto circuito y circuito abierto.

    10.- Usamos la segunda aproximacin en la figura 5. Escogemos valores de

    resistores y tensiones de alimentacin para producir una corriente de 8.9 mA en el

    diodo (usamos los mismos valores de resistencias de la figura 4b, pero podemos

    variar la posicin de los resistores).

    11.-

    Implementamos el circuito que proyectamos y medimos la corriente del diodo.

    Anotamos todos los valores en la tabla 10. Repetimos este proceso para 02

    alternativas adicionales y anotamos los resultados en la tabla 10.

  • CUADROS DE RESULTADOS

    Tabla 6. Dos puntos de curva del diodo polarizado

    10 mA 0.7 V 0.72

    50 mA 0.7 V 0.81

    Tabla 7. Valores del diodo

    V Barrera Rb

    0.072

    Tabla 8. Corriente en el diodo

    If (Ideal) 10.45 mA

    If (segunda aprox.) 7.90

    If (Medida) 26.6

  • Tabla 9. Verificacin diversa del diodo

    If (calculado) If (medido)

    Resist. 470 en corto 0 0

    Resist. 470 en abierto 32.9 32.1