45
IN VIVO STUDIES IN ANIMALS : PRECLINICAL PHARMACOLOGY An essential step between molecular and human studies for understanding the pathophysiological mechanisms involved in human diseases and the mechanisms of action of pharmacological agents.

IN VIVO STUDIES IN ANIMALS : PRECLINICAL PHARMACOLOGY

  • Upload
    butch

  • View
    36

  • Download
    0

Embed Size (px)

DESCRIPTION

IN VIVO STUDIES IN ANIMALS : PRECLINICAL PHARMACOLOGY. An essential step between molecular and human studies for understanding the pathophysiological mechanisms involved in human diseases and the mechanisms of action of pharmacological agents. DEVELOPMENT OF EXPERIMENTAL MODELS - PowerPoint PPT Presentation

Citation preview

IN VIVO STUDIES IN ANIMALS :PRECLINICAL PHARMACOLOGY

An essential step between molecular and human studies for

understanding the pathophysiological mechanisms involved in human

diseases and the mechanisms of action of pharmacological agents.

DEVELOPMENT OF EXPERIMENTAL MODELS OF CARDIAC AND RENAL DISEASES

•Post-Ischemic Heart Failure (Coronary ligation) (Pons et al., Clin. Exp. Physiol. Pharmacol., 2003; J. Cardiovasc. Pharmacol., 2003; Richer et al., Circulation, Abstract, 2003)

•Myocardial Ischemia-Reperfusion Injury (reversible coronary oclusion)(Richer et al., FASEB J, 2005)

•Renovascular Hypertension (clip on renal artery)

•Experimental Aldosterone-induced Cardiac Remodeling

•Insulinoprive Diabetes (Streptozotocin)(Huang et al., PNAS, 2003)

ANIMAUX TRANSGENIQUES ET MALADIES CARDIOVASCULAIRES

Ce sont des modèles avec une ou plusieurs modifications ciblées d’une hormone ou d’un second messager impliquésdans la régulation cardiovasculaire

GENETICALLY MODIFIED ANIMALS

Generation of genetically altered animals :

- Models of gene inactivation : Tissue Kallikrein, ApoE.

- Models of gene inactivation and duplication, genetic titration :ACE, Angiotensinogen,Tissue Kallikrein.

Candidate genes : Vasoactive peptide systems, Ionic transporters.

Breeding of mutated strains :

- Importance of genetic backgrounds (Trabold et al., Hypertension, 2OO2)

- Need of individual genotyping

- Use of control littermates

- Role of environmental factors : housing, diet.

Survie des rats Brown Norway (BN) et Fischer344 (F) après traitement au L-NAME.

Souche Fischer 344 susceptible

Développement d’AVC

Effets variables du traitement au L-NAME selon les souches de rats

Souche Brown Norway résistante

Absence d’AVC

BN

F

0 10 20 30 40 50 60 70 80 90

Time (days)

0

.2

.4

.6

.8

1

Su

rviv

al r

ate

(%)

Pression artérielle des deux souches après traitement au L-

NAME.

0

50

100

150

200

250

300

pression artérielle (mmHg)

PA 15j 153 187 132 163

PA 30j 157 278 134 210

FT FL BNT BNL

INVESTIGATED PARAMETERS

•PHYSIOLOGICAL ANALYSES

•Mortality •Invasive or non Invasive Cardiovascular Explorations Blood pressure (invasive and non invasive : telemetry) Cardiac function (invasive : Millar microcatheter transducer

and non invasive : 2D Echography, Acuson Sequoia 512) Cardiac output, Regional blood flows (fluosphere technique)•Renal studies (metabolic cages)•Biochemical and hormonal studies (micromethods)•Morphological and morphometric studies

•PHARMACOLOGICAL APPROACH

• Agonists, Antagonists• Mechanisms of Action of Pharmacological Agents

Insuffisance cardiaque

Incapacité du cœur à adapter le débit sanguin aux besoins métaboliques et fonctionnels des différents organes.

Véritable problème de santé publique dont la prévalence augmente régulièrement.

Cause la plus fréquente : insuffisance coronarienne responsable d’une dysfonction ventriculaire systolique.

Mécanismes adpatatifs :

Précoces Retardés

- système adrénergique- système rénine-angiotensine- système kallicréine-kinines- autres…

- hypertrophie myocardique- fibrose interstitielle- dilatation des ventricules

ANGIOTENSINOGENE

ANGIOTENSINE I (1-10)

ANGIOTENSINE II (1-8)

ANGIOTENSINE III (2-8)

ANGIOTENSINE IV (3-8)

ANGIOTENSINE (1-7)

Endopeptidases

Cathepsine G,

Tonine, tPA.

Aminopeptidase M

Rénine

ECACAGE,

Cathepsine G, Chymase.

Aminopeptidase AProlylcarboxypeptidase

ECA2

ANGIOTENSINE (1-5)

ECA

ANGIOTENSINE (1-9)

Cathepsine A

ECA2

Voies de synthèse et de dégradation de l’AII. CAGE : chymostatin-sensitive angiotensin II generating enzyme ;

ECA : enzyme de conversion de l’angiotensine ; tPA : tissue plasminogen activator.

ECA

Méthodes (4)

Paramètres mesurés :

- Survie

- Hémodynamique : PAM, FC, PTDVG, débit cardiaque, débit rénal

- Fonction cardiaque : FE (échocardiographie bi-dimensionnelle, méthode

« surface-longueur » monoplan) dP/dtmax

- Morphologie ventriculaire gauche : Taille d’infarctus Poids VG/poids total, poids VD/poids total Périmètre interne VG

Masse VG/poids total Volume fin de diastole VG

- GMPc urinaire

Analyse d’image

Echocardiographie bi-dimensionnelle

dP/dtmax (mmHg/s)

25 30 35 40 45 500

20

40

60

80r = 0.56p < 0.05

Eje

ctio

n f

ract

ion

(%

)Infarct size (%)

3000 4000 5000 6000 7000 80000

10

20

30

40

50

60

r = 0.54p < 0.05

Sh

orte

nin

g fr

acti

on (

%)

SHAM MI

Comparisons of Invasive and non Invasive (echocardiography) Cardiac Explorations

Pons et al., Clin. Exp. Physiol. Pharmacol., 2003.

Correlations between Cardiac Morphological and Echocardiographic Parameters

4 6 8 10 12 14 16 18050

100150200250300 r = 0.90

p < 0.001

LV

Dia

stol

ic V

olu

me

(mm

3 )

LV perimeter (mm)25 30 35 40 45 504

8

12

16

20

LV

per

imet

er (

mm

)

Infarct size (%)

r = 0.75p < 0.001

SHAM MI

Irbesartan and survival in CHF in ratsIrbesartan and survival in CHF in rats

00 44 88 1212 1616 2020 2424 2828 3232 363600

2020

4040

6060

8080

100100

ShamSham

MI-ControlMI-Control

MI-Irbesartan, 50 mg/kg/dMI-Irbesartan, 50 mg/kg/d

%%

WeeksWeeks

P<0.001

P<0.001

P<0.01

P<0.01

Irbesartan and survival in CHF in ratsIrbesartan and survival in CHF in rats

00 44 88 1212 1616 2020 2424 2828 3232 363600

2020

4040

6060

8080

100100

ShamSham

MI-ControlMI-Control

MI-Irbesartan, 5 mg/kg/dMI-Irbesartan, 5 mg/kg/d

MI-Irbesartan, 50 mg/kg/dMI-Irbesartan, 50 mg/kg/d

%%

WeeksWeeks

P=0.11

P=0.11

P<0.05

P<0.05

P<0.001

P<0.001

1. Up- regulation of the renin- angiotensin system (RAS) is a primary feature associated with chronic heart

failure (CHF) in animal models and in humans. 2. Angiotensin I- converting enzyme inhibitors (ACEIs)

prolong survival and prevent cardiac remodeling in the rat model of post- -ischemic heart failure (Pfeffer et al., 1985).

ACEIs reduce morbidity and mortality and improve quality of life in patients with CHF and in patients who have had a myocardial infarction (Consensus,

Solvd, Save, Aire, Trace, etc...).

3. Angiotensin II AT1 receptor blockers (ARBs) also prolong survival and prevent cardiac remodelingin the rat model of post- -ischemic heart failure.

In patients with CHF, Losartan was effective at reducing mortality and morbidity but its efficacy

was not greater than that of Captopril (Elite II). .

RATIONALE FOR ACEIs -ARBs COMBINATION IN CHF

1. ACEIs alone do not completely and permanently

suppress Ang II production (reactive rise in renin, chymase). Addition of ARBs should result in a more complete inhibition of the RAS.

2. In hypertensi on, ACEIs and ARBs prove to be

synergistic and , the greater the RAS blockade achieved, the greater the antihypertensive effect.

Pressor responsesPressor responsesto Ang I (100 ng/kg)to Ang I (100 ng/kg)

00 55 1010 1515 2020-60-60

-50-50

-40-40

-30-30

-20-20

-10-10

00

1010

mm

Hg

mm

Hg

Absolute variations in MAPAbsolute variations in MAP

vehiclevehicle

benazeprilat 1 mg/kg/dbenazeprilat 1 mg/kg/d

valsartan 1 mg/kg/dvalsartan 1 mg/kg/d

benazeprilat 1 mg/kg/dbenazeprilat 1 mg/kg/d+ valsartan 1 mg/kg/d+ valsartan 1 mg/kg/d

PP <0.05 vs vehicle <0.05 vs vehicle** PP <0.05 vs benazeprilat <0.05 vs benazeprilat## Webb et al., 1998Webb et al., 1998

Valsartan - Benazeprilat combination in SHRs Valsartan - Benazeprilat combination in SHRs

00

2020

4040

6060

8080

mm

Hg

mm

Hg

** **** ##

Absolute variations in Absolute variations in sitting DBPsitting DBP

Azizi et al., 2000Azizi et al., 2000

Losartan - Enalapril combination in hypertensive patients Losartan - Enalapril combination in hypertensive patients

Absolute variations in Absolute variations in active reninactive renin

00

1010

2020

3030

4040

5050

-15-15

-10-10

-5-5

00

LL EE L+EL+E

LL EE L+EL+ENSNS ****

NSNS

****

mm

Hg

mm

Hg

pg/m

lpg

/ml

RESULTS (1) : SurvivalRESULTS (1) : Survival

00 44 88 1212 1616 2020 2424 2828 3232 3636 404000

2020

4040

6060

8080

100100

SHAMSHAM

MI-CMI-C--

4444±±11MI-VMI-V 4444±±11

MI-EMI-E 4343±±11

MI-V+EMI-V+E 4343±±11

IS (%)IS (%)

%%

WeeksWeeks

P=0.06

P=0.06

P=0.03

P=0.03

P=0.006

P=0.006

SHAMSHAM

MI-CMI-C

MI-VMI-V

MI-EMI-E

MI-V+EMI-V+E

PP <0.05 vs SHAM <0.05 vs SHAM**

RESULTS (2) : Cardiovascular parametersRESULTS (2) : Cardiovascular parameters

00

50005000

1000010000

1500015000

00

5050

100100

150150

200200

00

1010

2020

3030

** ** ** **

** ** ** ** **** **

mm

Hg

mm

Hg

mm

Hg

mm

Hg

mm

Hg/

sm

mH

g/s

SAPSAP LVEDPLVEDP

dP/dtdP/dt

00

11

22

33

44

55

Subendocardial collagenSubendocardial collagen

%%

SHAMSHAM

MI-CMI-C

MI-VMI-V

MI-EMI-E

MI-V+EMI-V+E

PP <0.05 vs SHAM <0.05 vs SHAM**PP <0.05 vs MI-V <0.05 vs MI-V

##

00

11

22

33

44

0.00.0

0.50.5

1.01.0

RESULTS (3) : Cardiac remodelingRESULTS (3) : Cardiac remodeling

mg/

gm

g/g

mg/

gm

g/g

HW/BWHW/BW RVW/BWRVW/BW

****

** ## ** ##** ##

****

**

****

** **

SUMMARY

In the rat model of post-ischemic heart failure :

-

Valsartan, Enalapril and their combination reduced mortality at 9 months by 39, 21 and 33%, respectively (NS),

- Valsartan, but not Enalapril and the combination, limited the rise in LVEDP,

-

Valsartan, but not Enalapril and the combination, limited cardiac hypertrophy and fibrosis development.

Valsartan like other ARBs, reduces mortality,and limits cardiac remodeling

-

AT1 receptor blockade and ACE inhibition when combined do not exert synergistic effects

-

KININOGÈNE BPM

KININOGÈNE HPM

KININOGÈNE BPM

KININOGÈNE BPM

KININOGÈNE HPM

KININOGÈNE HPM

RÉCEPTEUR B2

ConstitutifRÉCEPTEUR B1

inductibleConstitutifConstitutif

inductibleinductible

Lys-des-Arg9-BK

Carboxypeptidases

Fragments inactifs

ECA ECAFragments

inactifs

des-Arg9-BK Fragments inactifs

ECA2

Carboxypeptidases

Lys-des-Arg9-BK

Carboxypeptidases

Aminopeptidase NFragments inactifs

ECAFragments

inactifs

des-Arg9-BK Fragments inactifs

ECA2

KALLIDINE

(Lys-BK)

KALLICRÉINE PLASMATIQUE

BRADYKININE

(BK)

KALLICRÉINE TISSULAIRE

KALLICRÉINE

KALLIDINE

KALLICRÉINE PLASMATIQUE

BRADYKININE

(BK)

RÉCEPTEUR B1

inductible

Angiotensinogène

Angiotensine I

Angiotensine II

Rénine

ECA

Kininogènes

Kinines

Fragments inactifs

Kallicréine

Récepteur AT2Récepteur AT1 Récepteur B1Récepteur B2

ECA

IP3, DAG, JAK, FAK, PI3K, MAPK

NO, PGI2, EDHF

Vasoconstriction,Effets trophiques,

prolifératifs

Vasodilatation,Effets anti-trophiques,

anti-prolifératifs

IEC IEC

AT1-

Insuffisance cardiaque

- Vasoconstriction- Pro-arythmisante- Hypertrophie myocardique- Fibrose interstitielle- stress oxydatif- Pro-inflammatoire- Pro-coagulante

Bradykinine

- Vasodilatation- Anti-arythmique- Anti-hypertrophique- Antifibrotique- Anti-coagulante

Angiotensine II

Le modèle d’insuffisance cardiaque post-ischémique peut être appliqué à des souris génétiquement modifiées pour étudier :

• l’implication d’un ou plusieurs gènes dans le développement de la maladie,

• le rôle de certains peptides dans le mécanisme d’action d’agents pharmacogiques utilisés dans le traitement de cette maladie.

ACTIVITÉ DE LA KALLICRÉINE TISSULAIRERein

05

101520

253035

4045

+/+ +/- -/-

Colon

05

101520253035404550

+/+ +/- -/-

Pancréas

0

1000

2000

3000

4000

5000

6000

7000

+/+ +/- -/-

Glandes salivaires

0

100000

200000

300000

400000

500000

600000

700000

+/+ +/- -/-

Cœur

0

0,5

1

1,5

2

2,5

3

+/+ +/- -/-

Urine

0

500

1000

1500

2000

2500

3000

+/+ +/- -/-

Oreillette gaucheOreillette droite

Zone anévrismale

Ligature

Zone non infarcieMichael et al., 1995;269:H2150.

Circulation coronaire chez la souris:

10 mm

5 mmLigature

Sham

IM-Témoin *p<0.05 vs valeur sham correspondante

Fonction cardiaque

0

10

20

30

40

50

60

70

80FE

(%

) * *

0

1000

2000

3000

4000

5000

6000

7000

dP/dtmax

(mm

Hg/s

)

**

3 mois 12 mois6 mois 12 mois6 mois

Sham

IM-Témoin

*p<0.05 vs valeur sham correspondante

†p<0.05 vs valeur 3 mois correspondante

Hypertrophie myocardique

0

1

2

3

4

5

6

Poids VG/Poids total

(mg

/g)

3 mois 12 mois6 mois

***

0

1

2

3

4

5

6

**

Poids VD/Poids total

(mg

/g)

3 mois 12 mois6 mois

Sham

IM-Témoin *p<0.05 vs valeur sham correspondante

Dilatation ventriculaire gauche

0.0

0.5

1.0

1.5

2.0

2.5

3.0

6 mois

(nm

ol/µm

ol cr

éat)

GMPc urinaire

*

0

2

4

6

8

10

12

14

** *

3 mois 12 mois6 mois

Périmètre interne VG

(mm

)

Survival

p<0.02

10 20 30 40 50 60 70WEEKS

(%)

20

40

60

80

100

p<0.05

Sham-TK-/- (n=19)

MI-TK-/- (n=28)

p<0.02

MI-TK+/+ (n=25)

Sham-TK+/+ (n=18) Infarct size (%)

MI-TK+/+: 35±2

MI-TK-/-: 34±2

Pons et al., Circulation, 2003,108: IV 152, Abstract

LV function

Sham-TK+/+

MI-TK+/+

Sham-TK-/-

MI-TK-/-

EF

(%

)

0

20

40

60

80

**

4 w 12 w 42 wE

F (

%)

42 w

p<0.05 vs corresponding Sham *

0

20

40

60

80

MI-TK-/- vs MI-TK+/+

Cardiac remodeling: LV hypertrophy

0

1

2

3

4

5

6

LV

M/B

W (

mg/

g)

†**

LV

M/B

W (

mg/

g)

4.0

4.5

5.0

5.5

6.0

4 w 12 w 42 w42 w

Sham-TK+/+

MI-TK+/+

Sham-TK-/-

MI-TK-/-

* p<0.05 vs corresponding Sham p<0.05 vs corresponding TK+/+†

MI-TK-/- vs MI-TK+/+

0

40

80

120

160

200

240

LV

dia

stol

ic v

olum

e (m

m3 )

†*

*

Cardiac remodeling: LV dilatation

100

120

140

160

180

200

220

LV

dia

stol

ic v

olum

e (m

m3 )

4 w 12 w 42 w42 w

Sham-TK+/+

MI-TK+/+

Sham-TK-/-

MI-TK-/-

* p<0.05 vs corresponding Sham p<0.05 vs corresponding TK+/+†

MI-TK-/- vs MI-TK+/+

PHENOTYPING, EXPERIMENTAL PATHOLOGY, PHARMACOLOGY

• Generation of pathogenic hypotheses,

• Establishment of causality links between genes and diseases,

• Development of therapeutic strategies

Coupling between animal and human studies