Improved Algorithm for MIMO Antenna Measurement

Embed Size (px)

Citation preview

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    1/24

    SRANT Lab., Korea Maritime University

    A Study on Improved Algorithm for

    MIMO Antenna Measurement

    Thanh-Ngon Tran

    Supervisor: Professor Kyeong-Sik Min

    SRANT Laboratory, Korea Maritime University

    November, 2006

    Master Thesis

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    2/24

    SRANT Lab., Korea Maritime University 2

    Contents

    Chapter 1: Introduction

    Chapter 2: Algorithm of antenna measurement

    software with noise reduction

    Chapter 3: Measurement of key parameters of

    MIMO antenna Chapter 4: Design of multi-band MIMO test-bed

    Chapter 5: Conclusion

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    3/24

    SRANT Lab., Korea Maritime University 3

    Introduction (1)

    Cordless phone

    Voice

    Wireless LAN

    High Data rate

    Home/office systems

    Multi-media

    Voice/Data

    Mobile phone

    Single

    Antenna

    Single

    Antenna

    Single/Multiple

    Antenna

    Multiple

    Antenna

    Antenna development vs.

    Antenna measurement

    system

    Chapter 1

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    4/24

    SRANT Lab., Korea Maritime University 4

    Introduction (2) The goal and limitation

    The goal: Develop measurement software & system

    for MIMO antenna & channel measurement.

    Apply the

    improved mea.software for

    MIMO ant. mea.

    Improve

    single antennameasurement

    software

    Design 22MIMO testbed

    for MIMO

    measurement

    Futureworks

    Diversities,

    Correlation,

    Mutual Coupling

    Gain,2D/3D pattern,

    Polarization,

    w/ Filter algorithm

    Direct up/downconverters,

    Software structure

    and algorithm

    MIMOantenna and

    channel

    characterizat

    ion

    (1) (2) (3) ()Steps:

    Chapter 1

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    5/24

    SRANT Lab., Korea Maritime University 5

    Single antenna measurement system

    EL-AZ

    PositionerPositioner

    Controller

    Microwave

    Receiver

    CW Signal

    Generator

    Directional

    Coupler

    Frequency

    Converter

    Polarization

    Positioner

    Computer

    Linear

    Polarization

    Antenna

    Antenna

    Under

    Test

    GPIB GPIBMicrowaveAmplifier

    Chapter 2

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    6/24

    SRANT Lab., Korea Maritime University 6

    Previous Software vs. New Software

    There are two

    independent programs Gain

    Radiation Pattern

    This program is not

    divided in specificfunctions

    Simple structure

    When there are

    changes, wholeprogram have to bechanged

    Chapter 2

    Ref.: Young-Hwan Park, A study on construction of antenna measurement

    environment, Master Thesis, Korea Maritime University, Feb. 2005

    The program can be modified easily when equipment is changed.

    4 measurement functions: gain, 2D and 3D pattern, polarization.

    New algorithm for noise reduction

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    7/24SRANT Lab., Korea Maritime University 7

    Software algorithmChapter 2

    Layer 4

    Graphic userinterface

    Layer 3

    Data processing

    Layer 2

    Equipment

    interface

    Layer 1

    GPIB interface of

    computer (DLL)

    Layer 1

    GPIB interface of

    Equipment

    Equipment

    processor

    GPIB

    Equipment

    CommandsCommand sets

    in text file

    Software structure

    Enter measurement

    parameters (layer 4)

    Start measurement

    Process input parameters

    (layer 3)

    Send commands to

    equipments and receive

    data (layer 2&1)

    Process measurement data

    (layer 3)

    Display data (layer 4)

    End

    Software flowchart

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    8/24SRANT Lab., Korea Maritime University 8

    TX-RX Antenna in anechoic chamber

    TX Ant

    AUT

    4m

    Chapter 2

    For experimentalmeasurement:

    TX Ant.: Horn antenna, 1-

    18 GHz

    RX Ant.: Helical antenna,

    ~ 3 GHz

    Distance: ~4 meter

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    9/24SRANT Lab., Korea Maritime University 9

    Measurement Results with filter algorithm

    Original Signal (pattern)

    Measured by conventional

    measurement system

    Filtered Signal (pattern)

    Measured and processed real-time

    by noise reduction algorithm

    Chapter 2

    -100-95-90-85-80-75-70-65-60-55

    -50

    0 50 100 150 200 250 300 350

    Angle (degree)

    PowerLevel(dB)

    Time 1

    Time 2

    -100-95-90-85-80-75-70-65-60-55-50

    0 50 100 150 200 250 300 350

    Angle (degree)

    PowerLevel(dB)Signalprocessing

    algorithm

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    10/24SRANT Lab., Korea Maritime University 10

    Noise Reduction Algorithm

    Combination of time and space mean filter

    Noise in measurement system is Additive WhiteGaussian Noise (AWGN)

    Mean filter is suitable for removing AWGN

    d[j-1]

    d[j-W/2]

    d[j]d[j+1]

    d[j+W/2]

    Angle[degree]

    Power

    [dB]

    Space Mean FilterTime Mean Filter

    2

    2

    ][1

    ][

    Wi

    Wij

    jdW

    iD

    N

    j

    jtidN

    iD1

    ],[1

    ][

    d[i-1]

    d[i, tj]

    d[i+1]

    Angle[degree]

    Power

    [dB]

    d[i, tj+1]

    Time

    [ms]

    d[i, tj+1]

    d[i, tj+N]

    ],[],[],[ jjj tintiDtid

    Measured

    Power

    Expected

    Power

    Noise

    Chapter 2

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    11/24SRANT Lab., Korea Maritime University 11

    MIMO antenna measurement

    Metal box, PDA-size with 4 IFA antennas

    (PDA: Personal Data Assistant)

    (a) Front view (b) Inside view

    Measure and

    evaluate:

    Diversities: pattern,polarization.

    Pattern correlation.

    Mutual coupling.

    Chapter 3

    #1

    #2 #3

    #4

    z

    y

    x

    This EUT is chosen

    because it is: One of MIMO appli-

    cation.

    Elements have differ-

    ent polarization, pattern,

    gain, coupling

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    12/24SRANT Lab., Korea Maritime University 12

    Pattern (gain) diversityChapter 3

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    Element #1

    Element #2

    Element #3

    Element #4

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    Element #1

    Element #2

    Element #3

    Element #4

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    Element #1

    Element #2

    Element #3

    Element #4

    Gain of antenna elements

    on x-y planeGain of antenna elements

    on x-z planeGain of antenna elements

    on y-z plane

    x

    yz

    x

    z

    y

    #4 is the best choice#3 is the best choice #1 is the best choice

    #2 is thebest choice

    Maximum gain of EUT antenna elements on three planes is about 6 dBi (y-z plane).

    In any direction, there is at least one element with high gain. Difference between the

    highest and lowest gain is higher than 3 dB at any direction.

    Conclusion: This difference of gain pattern shows good gain diversity.

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    13/24SRANT Lab., Korea Maritime University 13

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    E-theta

    E-phi

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    E-theta

    E-phi

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    E-theta

    E-phi

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    E-theta

    E-phi

    Polarization diversityChapter 3

    Element #1 and #4: linear horizontal polarization.

    Element #2 and #3: linear vertical polarization.

    Conclusion: Good the polarization diversity.

    Element #1, x-z plane

    XPD = 22dB @ 178oElement #4, x-z plane

    XPD = 20dB @ 183oElement #2, x-y plane

    XPD = 20dB @ 89oElement #3, x-y plane

    XPD = 20dB @ 268o

    dBcrossdBcocross

    co

    EEE

    E

    XPD

    log20E

    co andE

    cross areco-polarization and

    cross-polarization

    components of E-

    field, respectively.

    x

    yz

    x x

    y z

    x

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    14/24SRANT Lab., Korea Maritime University 14

    Pattern Correlation

    Elements

    x-y plane x-z plane y-z plane x-y plane x-z plane y-z plane

    #1 and #2 0.103 0.426 0.022 0.331 0.222 0.175

    #1 and #3 0.152 0.481 0.260 0.071 0.131 0.269

    #1 and #4 0.100 0.616 0.352 0.382 0.607 0.073

    #2 and #3 0.486 0.822 0.198 0.107 0.847 0.027

    #2 and #4 0.196 0.616 0.085 0.186 0.118 0.244

    #3 and #4 0.147 0.543 0.270 0.110 0.343 0.139

    E E

    Chapter 3

    359

    0

    359

    0

    222

    211

    359

    0

    2211

    )][()][(

    )][)(][(

    i i

    ic

    EiEEiE

    EiEEiE

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -40

    -35

    -30

    -25-20

    -15

    -10

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    E-theta

    E-phi

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    E-theta

    E-phi

    x

    y

    x

    y

    Element #2, x-y plane Element #3, x-y plane

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    15/24SRANT Lab., Korea Maritime University 15

    Mutual Coupling Measurement

    Frequency (GHz)

    5.0 5.1 5.2 5.3 5.4 5.5

    Mutualco

    upling(dB)

    -40

    -35

    -30

    -25

    -20

    -15

    -10C12

    C13

    C14

    C23

    Chapter 3

    MW Receiver &

    Freq. converter

    EUT

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    16/24SRANT Lab., Korea Maritime University 16

    MIMO TestbedChapter 4

    Block diagram of

    22 MIMO testbed FPGA:APEX-

    20K600

    Output

    CPU: SH-4(SH7750)

    OS:

    NetSBD

    Analog

    (RF)

    DACI/O

    DAC:DAC904

    FPGA:

    APEX-

    20K600

    Input

    Direct Up-converter

    1

    Direct Up-

    converter

    2

    TX Ant. 1

    TX Ant. 2

    I1

    I2

    Q1

    Q2

    TCP/IP

    Network

    FPGA:

    APEX-

    20K600

    Output

    CPU: SH-4(SH7750)

    OS:

    NetSBD

    Analog

    (RF)

    ADCI/O

    ADC:SPT7938

    FPGA:

    APEX-

    20K600

    Input

    DirectDown

    converter 1

    Direct

    Down

    converter 2

    RX Ant. 1

    RX Ant. 2

    I1

    I2

    Q1

    Q2

    Windows PC

    Brains Co. - DA System

    Brains Co. - AD System

    Freq.: 1.85.8 GHz

    Use direct-conversion

    technique for analog RF

    circuits

    RF analog circuits are

    coupled with DSP algorithm

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    17/24SRANT Lab., Korea Maritime University 17

    RX - Design of Down-converter

    FPGA:

    APEX-

    20K600

    Output

    CPU: SH-4(SH7750)

    OS:

    NetSBD

    Analog

    (RF)

    DACI/O

    DAC:DAC904

    FPGA:

    APEX-

    20K600

    Input

    Direct Up-converter

    1

    Direct Up-

    converter

    2

    TX Ant. 1

    TX Ant. 2

    I1

    I2

    Q1

    Q2

    TCP/IP

    Network

    FPGA:

    APEX-

    20K600

    Output

    CPU: SH-4(SH7750)

    OS:

    NetSBD

    Analog

    (RF)

    ADCI/O

    ADC:SPT7938

    FPGA:

    APEX-

    20K600

    Input

    DirectDown

    converter 1

    Direct

    Down

    converter 2

    RX Ant. 1

    RX Ant. 2

    I1

    I2

    Q1

    Q2

    Windows PC

    Brains Co. - DA System

    Brains Co. - AD System

    Design the wide bandwidth direct

    down-conversion receivers by: Combine the analog front-end

    circuit with base-band DSP

    Freq.: 1.8 5.8 GHz

    Analog

    front-end

    Baseband

    DSP

    Bandwidth is

    Wider

    RF LNA

    I

    Q

    Quadrature

    down-converter

    90 LO

    A

    B

    LPF

    LPF

    A/D

    A/D

    DSP

    xLO,I(t) = cos(2pfC t)

    xLO,Q (t) = gsin(2pfC t + )

    xI(t)

    xQ(t)

    Analog

    front endcircuit is

    simpler

    LORF

    Q

    12

    3

    Phase shifterMixer

    Baseband Amp.

    Power div. I

    Chapter 4

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    18/24SRANT Lab., Korea Maritime University 18

    0.00

    0.20

    0.40

    0.60

    0.801.00

    1.20

    1.40

    1.60

    1.80

    2.00

    1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0

    Frequency (GHz)

    Amplitude

    Imbalance

    Simulation

    Measurement

    5%

    amplitude

    imbalance

    Imbalance parameters

    -90.00

    -70.00

    -50.00

    -30.00

    -10.00

    10.00

    30.00

    50.00

    70.00

    90.00

    1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0

    Frequency (GHz)

    PhaseImbalance(degree) Simulation

    Measurement

    Conventional

    bandwidth: 0.25 GHz

    (5o

    imbalance)

    Chapter 4

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    19/24

    SRANT Lab., Korea Maritime University 19

    RX - I/Q signalsChapter 4

    Lissajuos graph of the I and Q signal at 1.8 GHz

    V_Q (Volts)

    Measured sig.

    Processed sig.

    Reference sig.

    V_

    I(V

    olts)

    Frequency: 1.8 GHz

    Amp. imbalance: 0.898

    Phase imbalance: -75.74

    degree

    Lissajuos graph of the I and Q signal at 4.0 GHz

    V_Q (Volts)

    Measured sig.

    Processed sig.

    Reference sig.

    V_

    I(V

    olts)

    Frequency: 4.0 GHz

    Amp. imbalance: 1.118

    Phase imbalance: -13.25

    degree

    Lissajuos graph of the I and Q signal at 5.6 GHz

    V_Q (Volts)

    Measured sig.

    Processed sig.

    Reference sig.

    V_

    I(V

    olts)

    Frequency: 5.6 GHz

    Amp. imbalance: 1.125

    Phase imbalance: 44.50

    degree

    I

    Q

    A/D

    A/D

    xI(t)

    xQ(t)

    +

    cos1

    g

    cos

    sin

    DSP

    'Iz

    'Qz

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    20/24

    SRANT Lab., Korea Maritime University 20

    TX - Design of Up-converter

    FPGA:

    APEX-

    20K600

    Output

    CPU: SH-4(SH7750)

    OS:

    NetSBD

    Analog

    (RF)

    DACI/O

    DAC:DAC904

    FPGA:

    APEX-

    20K600

    Input

    Direct Up-converter

    1

    Direct Up-

    converter

    2

    TX Ant. 1

    TX Ant. 2

    I1

    I2

    Q1

    Q2

    TCP/IP

    Network

    FPGA:

    APEX-

    20K600

    Output

    CPU: SH-4(SH7750)

    OS:

    NetSBD

    Analog

    (RF)

    ADCI/O

    ADC:SPT7938

    FPGA:

    APEX-

    20K600

    Input

    DirectDown

    converter 1

    Direct

    Down

    converter 2

    RX Ant. 1

    RX Ant. 2

    I1

    I2

    Q1

    Q2

    Windows PC

    Brains Co. - DA System

    Brains Co. - AD System

    RF AMP

    I

    Q

    Quadrature

    up-converter

    90LO

    A

    B

    LPF

    LPF

    D/A

    D/A

    DSP

    xLO,I(t) = cos(2pfLO t)

    xLO,Q (t) =gsin(2pfLO t + )

    xI(t)

    xQ(t)

    LPF

    Analog front-end circuit is coupled with DSP algorithm to

    compensate the imbalance characteristics of analog circuit (as in

    down converter).

    LO leaky is controlled by bias voltage on MIXER chips.Measurement setup

    Up converter circuit

    LORF

    QPhase shifterMixer

    Power

    combiner

    I

    Chapter 4

    Ch 4

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    21/24

    SRANT Lab., Korea Maritime University 21

    Leaky signal suppression

    RF AMP

    I

    Q

    Quadrature

    up-converter

    90LO

    A

    B

    LPF

    LPF

    D/A

    D/A

    DSP

    xLO,I(t) = cos(2pfLO t)

    xLO,Q (t) =gsin(2p fLO t + )

    xI(t)

    xQ(t)

    LPF

    fLO + f0fLO f0 fLO fLO + f0fLO f0 fLO

    Desired

    signal

    Desired

    signal

    Sideband

    leakageCarieer

    leakageCarieer

    leakage

    Sideband

    leakage

    Spectrum of output signal before and after imbalance compensation

    Suppressed

    by

    controlling

    amplitude

    and phase

    coefficient

    Suppressed

    by

    controlling

    bias voltage

    on MIXER

    chips

    Chapter 4

    Ch t 4

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    22/24

    SRANT Lab., Korea Maritime University 22

    Measurement results of output spectrum

    RF AMP

    I

    Q

    Quadrature

    up-converter

    90LO

    A

    B

    LPF

    LPF

    D/A

    D/A

    DSP

    xLO,I(t) = cos(2pfLO t)

    xLO,Q(t) =gsin(2pfLO t + )

    xI(t)

    xQ(t)

    LPF

    Spectrum of

    output signal

    without I/Q

    imbalance

    compensationat 3.0 GHz

    Spectrum of

    output signal

    with I/Q

    imbalance

    compensationat 3.0 GHz

    I-Channel: 0.402VDC + 0.142Vac, phase = 0o

    Q-Channel: 0.308VDC + 0.150Vac, phase = 112.3

    o

    Spectrum of

    output signal

    without I/Q

    imbalance

    compensationat 5.0 GHz

    Spectrum of

    output signal

    with I/Q

    imbalance

    compensationat 5.0 GHz

    I-Channel: 0.239VDC + 0.120Vac, phase = 0o

    Q-Channel: 0.638VDC + 0.122Vac, phase = 73.9

    o

    Chapter 4

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    23/24

    SRANT Lab., Korea Maritime University 23

    Conclusion and future study

    Development of measurement software & system for

    MIMO antenna & channel measurement is dividedinto 3 steps with the good experiments results:

    Improve single antenna measurement software:

    Gain, 2D/3D pattern, polarization with noise reduction.

    Apply the improved measurement software for MIMO

    antenna measurement:

    Diversities, Correlation, Mutual Coupling.

    Design 22 MIMO testbed for MIMO measurement. Direct up/down converter, system design.

    Future study: Develop algorithm for MIMO

    antenna and channel characterization.

  • 7/28/2019 Improved Algorithm for MIMO Antenna Measurement

    24/24

    SRANT Lab Korea Maritime University 24

    THANK YOU FOR YOUR ATTENTION!