12
I. Opening I-1. Welcome address U.Stroth I-2. Logistics M.Ramisch I-3. Opening remarks H.Yamada II. Definition of the goal of CWGM5 II-1. Brief review and input from CWGM4 M.Yokoyama II-2. Information of ISHW2009 A.Dinklage II-3. Discussion to get consensus III. Linkage with other activities III-1. Messages from the discussion on ITPA E.Ascasibar, A.Dinklage III-2. ITPA view in the edge/divertor topic P.Tabares III-3. Discussion IV. Information about activities and international collaborations IV-1. Japan LHD, Heliotron J, etc. H.Yamada, Agenda of Opening Session at CWGM5 Agenda of Opening Session at CWGM5

I. Opening   I-1. Welcome address   U.Stroth 

  • Upload
    kalil

  • View
    66

  • Download
    0

Embed Size (px)

DESCRIPTION

Agenda of Opening Session at CWGM5. I. Opening   I-1. Welcome address   U.Stroth  I-2. Logistics  M.Ramisch  I-3. Opening remarks H.Yamada - PowerPoint PPT Presentation

Citation preview

Page 1: I.  Opening   I-1. Welcome address   U.Stroth 

I. Opening   I-1. Welcome address   U.Stroth  I-2. Logistics  M.Ramisch  I-3. Opening remarks H.Yamada

II. Definition of the goal of CWGM5   II-1. Brief review and input from CWGM4  M.Yokoyama  II-2. Information of ISHW2009   A.Dinklage  II-3. Discussion to get consensus 

III.  Linkage with other activities  III-1. Messages from the discussion on ITPA   E.Ascasibar, A.Dinklage III-2. ITPA view in the edge/divertor topic P.Tabares  III-3. Discussion  

IV. Information about activities and international collaborations IV-1. Japan LHD, Heliotron J, etc.   H.Yamada, S.YamamotoIV-2. Spain   TJ-II, etc.   E.Ascasibar  IV-3. Germany  W7-X, etc.  A.Dinklage IV-4. USA  HSX, etc.   J.Harris 

Agenda of Opening Session at CWGM5Agenda of Opening Session at CWGM5

Page 2: I.  Opening   I-1. Welcome address   U.Stroth 
Page 3: I.  Opening   I-1. Welcome address   U.Stroth 
Page 4: I.  Opening   I-1. Welcome address   U.Stroth 

Task

10 theme groups Mission oriented : High density, High beta, High Ti, Steady state Physics oriented : Core transport, SOL/Divertor, MHD,

High energetic particles, Wave physics Engineering oriented : Device engineering

47 days about 7,000 plasma discharges

LHD 13th Experimental Campaign in 2009LHD 13th Experimental Campaign in 2009

Page 5: I.  Opening   I-1. Welcome address   U.Stroth 

Nearest PlanNearest Plan

13th experimental Campaign in 2009

20-barrel pellet injector

density limit and quasi-steady state operation of IDB/SDC

Pulsed power supplies for poloidal coils further investigation of real time Rax control

Steady state gyrotrons 0.6 MW in CW

Careful work-out plan for significant upgradein 2010 (14th exp. camp.)

Closed divertor 2 inboard sections without cryo-pump

NBI #5 perpendicular, 60 keV total NBI power 30 MW

Super computer 77TF (2009) 315TF (2012)

Plasma simulator

New initiative of fusion engineering PWI

Collaboration network

Page 6: I.  Opening   I-1. Welcome address   U.Stroth 

Revision of LHD Experiment Technical GuideRevision of LHD Experiment Technical Guide

Page 7: I.  Opening   I-1. Welcome address   U.Stroth 
Page 8: I.  Opening   I-1. Welcome address   U.Stroth 
Page 9: I.  Opening   I-1. Welcome address   U.Stroth 

““Impurity hole” is established with increaseImpurity hole” is established with increasein ion temperaturein ion temperature

Profile of carbon impurities becomes extremely hollowwith increase in Ti while electron density profile remains

flat. unlike tokamak ITB

Suppression of impurity in the core is enhanced with ion temperature gradient.

Even with carbon pellet injection, carbon is expelled

with outward convection. nC(0)/ne(0) << 1 %

  contradict prediction by neoclassical transport with negative radial electric field

0

5

10

15

20

0

0.05

0.10

0.15

0.20

3.5 4.0 4.5

Ca

rbon

de

nsity (10

18m

-3)Major radius (m)

plasmacenter

plasma edge

Ele

ctro

n d

en

sity

(10

18m

-3)

Soft X-ray image

Page 10: I.  Opening   I-1. Welcome address   U.Stroth 

High beta <> = 5.1 % at B = 0.425 T <> 5 % is maintained for > 100 E

High density ne(0) = 1.21021m-3

1.5 atmospheric pressure at B = 2.5 T an innovative concept of super dense core reactor ( ignition at T(0) = 6-7 keV)

High ion temperature Ti = 5.6 keV at ne = 1.61019m-3

accompanied by impurity hole

Long pulse : 0.6 MW for 1 hour

n E T = 5 1019 m-3 s keV

0

1

2

3

4

5

1 10 100 1000

<>

(%

)

sus

/E

LHD is exploring high-performanceLHD is exploring high-performancenet-current free plasmasnet-current free plasmas

In 2008, 7,000 plasma discharges were served for cooperative researches.

Page 11: I.  Opening   I-1. Welcome address   U.Stroth 

High ion temperature (5.6 keV) is achieved by High ion temperature (5.6 keV) is achieved by enhancing ion heatingenhancing ion heating

Ion temperature profile is peaked, where the gradient of ion temperature is enhanced in the core

Ti (0) = 5.6 keV at ne(0) = 1.6x1019m-3 Ti (0) > Te (0)

Moderate Internal Transport Barrier

High ion temperature is accompanied with “impurity hole”

11/16

0

1

2

3

4

5

6

3.5 4.0 4.5

IonElectron

T (

keV

)

R(m)

=0.49

=0.59

Page 12: I.  Opening   I-1. Welcome address   U.Stroth 

40keV-perpendicularNB injector

4 beam lines of NBI = 3 tangential + 1 perpendicular ( + 1 perpendicular in 2010)

Perpendicular beam • 7 MW, ENBI = 40kV

with positive-ion sources • Ion heating (Ti(0) = 5.6 keV)

• works as a diagnostic beam for CXRS (Ti, V, V, Er)

• Confinement of trapped particles secured by geometrical

optimization

Tangential beams • 16 MW in total, ENBI = 180 kV

with negative-ion sources • Primarily electron heating • Less fraction of trapped particles

New perpendicular NBI much improvesNew perpendicular NBI much improvesion transport studyion transport study - High-power NBI of 23 MW in total - - High-power NBI of 23 MW in total -

180keV-tangential NB injector