28
Homotopical methods in polygraphic rewriting Yves Guiraud and Philippe Malbos Categorical Computer Science, Grenoble, 26/11/2009 References. Higher-dimensional categories with finite derivation type, Theory and Applications of Categories, 2009. Identities among relations for higher-dimensional rewriting systems, arXiv:0910.4538.

Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

  • Upload
    voque

  • View
    233

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Homotopical methods in polygraphic rewriting

Yves Guiraud and Philippe Malbos

Categorical Computer Science, Grenoble, 26/11/2009

References.

• Higher-dimensional categories with finite derivation type, Theory and Applications of Categories, 2009.

• Identities among relations for higher-dimensional rewriting systems, arXiv:0910.4538.

Page 2: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Part I. Two-dimensional Homotopy and String Rewriting

Page 3: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

String Rewriting

String Rewriting System : X a set , R⊆ X∗×X∗

ulv →R urvu

oo

l

ZZ

r

¥¥ voo (r, l) ∈ R u,v ∈ X∗

→∗R : reflexive symetrique closure of →R

Terminating :

w0 →R w1 →R · · ·→R wn →R · · ·

Confluentw

∗R

||zzzz

zzzz

∗R

""DD

DDDD

DD

w1

∗R

!!CC

CCCC

CCw2

∗R

}}{{{{

{{{{

w ′

Page 4: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

String Rewriting and word problem

Word problem

w,w ′ ∈ X∗, is w = w ′ in X∗/ ↔∗R

↔∗R : derivation.

Normal form algorithm : (X,R) : finite + convergent (terminating + confluent)

w

ÄÄÄÄÄ

""EEE

E w ′

zzvvvv

!!BB

B

ÄÄÄÄÄ ##FFF

Fyyssss

##FFF

Fzzvvv

v&&MMMMM

ÂÂ???

zzvvvv

ÂÂ???

{{xxxx

%%KKKK{{xxx

x$$HHH

Hxxqqqqq

||zzzz

zzzz

##FFF

Fyyssss

##FFF

Fzzvvv

v&&MMMMM

""EEE

EÄÄÄÄÄ !!

BBB

zzvvvv

w?

w ′

Fact. Monoids having a finite convergent presentation are decidable.

Page 5: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

First Squier theorem

Rewriting is not universal to decidethe word problem in finite type monoids.

Theorem. (Squier ’87) There are finite type decidable monoids which do not have a finite convergent

presentation.

Proof :

• A monoid M having a finite convergent presentation (X,R) is of homological type FP3.

kerJ−→ ZM[R]J−→ ZM[X]−→ ZM−→ Z

i.e. module of homological 3-syzygies is generated by critical branchings.

• There are finite type decidable monoids which are not of type FP3.

Page 6: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Second Squier Theorem

Theorem. Squier ’87 (’94) The homological finiteness condition FP3 is not sufficient for a finite typedecidable monoid to admit a presentation by a finite convergent rewriting system.

Proof : • (X,R) a string rewriting system.

• S(X,R) Squier 2-dimensional combinatorial complex.

0-cells : words on X, 1-cells : derivations ↔∗R, 2-cells : Peiffer elements

ulwl ′v88

uAwl ′vxxqqqqqqqq ff

ulwA ′v&&MMMMMMMM

urwl ′vff

urwA ′v &&MMMMMMMM ulwr ′v88

uAwr ′vxxqqqqqqqq

urwr ′v

• (X,R) has finite derivation type (FDT) if

X and R are finite and S(X,R) has a finite set of homotopy trivializer.

• Property FDT is Tietze invariant for finite rewriting systems

• A monoid having a finite convergent rewriting system has FDT.

• There are finite type decidable monoids which do not have FDT and which are FP3.

Page 7: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Part II. Two-dimensional Homotopy for higher-dimensional rewritingsystems

Page 8: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Mac Lane’s coherence theorem

monoidal category is made of:

• a category C,

• functors ⊗ : C×C → C and I : ∗→ C,

• three natural isomorphisms

αx,y,z : (x⊗y)⊗z → x⊗ (y⊗z) λx : I⊗x → x ρx : x⊗ I → x

such that the following diagrams commute:

(x⊗(y⊗z))⊗tα

// x⊗((y⊗z)⊗t)α

''NNNNN

((x⊗y)⊗z)⊗t

α 77pppppα

// (x⊗y)⊗(z⊗t)α

//

c©x⊗(y⊗(z⊗t))

x⊗(I⊗y)λ##

FFFF

(x⊗I)⊗y

α 99ssssρ

// x⊗y

Mac Lane’s coherence theorem. "In a monoidal category (C,⊗, I,α,λ,ρ), all the diagrams built from C,

⊗, I, α, λ and ρ are commutative."

Program:

– General setting: homotopy bases of track n-categories.

– Proof method: rewriting techniques for presentations of n-categories by polygraphs.

– Algebraic interpretation: identities among relations.

Page 9: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

n-categories

An n-category C is made of:

• 0-cells

• 1-cells: xu

//y with one composition

u?0 v = xu

//yv

//z

• 2-cells: x

uÃÃ

v

>>yf ¦¼ with two compositions

f?0 g = x

uÃÃ

u ′>>y

v!!

v ′== zf ¦¼

g¦¼ and f?1 g = x

u

ºº

v //

w

GGy

f ¦¼Â  ÂÂ

g¦¼ÂÂÂÂÂÂ

Exchange relation:

(f?1 g)?0 (h?1 k) = (f?0 h)?1 (g?0 k)

when · ¹¹//HH·

f ¦¼g

¦¼

¹¹//HH·

h ¦¼

k ¦¼

• 3-cells with three compositions ?0, ?1 and ?2, etc.

Page 10: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Track n-categories, cellular extensions and polygraphs

A track n-category is an n-category whose n-cells are invertible (for ?n−1).

A cellular extension of C is a set Γ of (n+1)-cells •f

ÃÃ

g

>>•γ¦¼ with f and g parallel n-cells in C.

C[Γ ] C(Γ) C/Γ

f

!!

g

==•γ

¦¼

f

!!

g

==•γ

µ&γ−

Rf

≈ • f

g// •

An n-polygraph is a family Σ = (Σ0, . . . ,Σn) where each Σk+1 is a cellular extension of Σ0[Σ1] · · · [Σk].

Free n-category Free track n-category Presented (n−1)-category

Σ∗ = Σ∗n−1[Σn] Σ> = Σ∗n−1(Σn) Σ = Σ∗n−1/Σn

Page 11: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Graphical notations for polygraphs

We draw:

• Generating 2-cells as "circuit components":

. . . . . .

• 2-cells as "circuits":

. . . .

• Generating 3-cells as "rewriting rules":

. V . .V . . V

.

• 3-cells as "rewriting paths":

.V

.V

.V

.

Page 12: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Example : the 2-category of monoids

Let Σ be the 3-polygraph with one 0-cell, one 1-cell, two 2-cells . and . and three 3-cells:

..

_%9. .

._%9 .

..

_%9 .

Proposition. The 2-category Σ is the theory of monoids.

i.e., there is an equivalence:

Monoids (X,×,1) in a 2-category C ↔ 2-functors M : Σ → C

M( .) = X M(. ) = × M( .) = 1

M(. ) = c© M( .) = c© M( .) = c©

Page 13: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Example : the track 3-category of monoidal categories

Let Γ be the cellular extension of Σ∗ with two 4-cells:

.

._%9

. .E»,EEE

EEEE

EEEE

E

.

. y2Fyyyy yyyyyyyy

.SÂ3SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

SSSSSSSSSSSSSS .

..

k+?kkkkkkkkkkkkkk

kkkkkkkkkkkkkk

kkkkkkkkkkkkkk

.

ÄÂ

.

.

9µ&99

9999

99

9999

9999

9999

9999

.

. £6J£££££££

£££££££

£££££££

.

_%9 .

.

ÄÂ

Proposition. The track 3-category Σ>/Γ is the theory of monoidal categories, i.e., there is an equivalence:

Monoidal categories (C,⊗, I,α,λ,ρ) ↔ 3-functors M : Σ>/Γ → Cat

3-category Cat :– one 0-cell, categories as 1-cells, functors as 2-cells, natural transformations as 3-cells

– ?0 is ×, ?1 is the composition of functors, ?2 the vertical composition of natural transformations

The equivalence is given by:

M( .) = C M(. ) = ⊗ M( .) = I

M(. ) = α M( .) = λ M( .) = ρ

M(. ) = c© M(. ) = c©

Page 14: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Homotopy bases and finite derivation type

A homotopy basis of an n-category C is a cellular extension Γ such that:

For every n-cells ·f

ÀÀ

g

AA · in C, there exists an (n+1)-cell ·f

ÀÀ

g

AA ·¦¼ in C(Γ), i.e., f = g in C/Γ .

An n-polygraph Σ has finite derivation type (FDT) if it is finite and if Σ> admits a finite homotopy basis.

Theorem. Let Σ and Υ be finite and Tietze-equivalent n-polygraphs, i.e., Σ ' Υ. Then:

Σ has FDT iff Υ has FDT.

Mac Lane’s theorem revisited. Let Σ be the 3-polygraph(∗, ., . , ., . , ., .

).

Then the cellular extension{

. , .}

of Σ∗ is a homotopy basis of Σ>.

Page 15: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Part III. Computation of homotopy bases

Page 16: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Rewriting properties of an n-polygraph Σ: termination and confluence

A reduction of Σ is a non-identity n-cell uf

//v of Σ∗.

A normal form is an (n−1)-cell u of Σ∗ such that no reduction uf

//v exists.

The polygraph Σ terminates when it has no infinite sequence of reductions u1f1

// u2f2

// u3f3

// (· · ·)Termination ⇒ Existence of normal forms

A branching of Σ is a diagramu

f

ÄÄÄÄÄÄ

ÄÄ g

ÂÂ??

???

wv

in Σ∗.

– It is local when f and g contain exactly one generating n-cell of Σn.

– It is confluent when there exists a diagramv

f ′ ÂÂ??

????

u ′

w

g ′ÄÄÄÄÄÄ

Ä

The polygraph Σ is (locally) confluent when every (local) branching is confluent.

Confluence ⇒ Unicity of normal forms

Page 17: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Rewriting properties of an n-polygraph Σ: convergence

The polygraph Σ is convergent if it terminates and it is confluent.

Theorem [Newman’s lemma]. Termination + local confluence ⇒ Convergence.

A branching is critical when it is "a minimal overlapping" of n-cells, such as:

..

|t© ||||

||||

||||

||||

||||

|||| .

B¹*BB

BBBB

B

BBBB

BBB

BBBB

BBB

. .

..

£v­ ££££

£££

££££

£££

££££

£££

.

9µ&99

9999

99

9999

9999

9999

9999

..

Theorem. Termination + confluence of critical branchings ⇒ Convergence.

Page 18: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

The homotopy basis of generating confluences

A generating confluence of an n-polygraph Σ is an (n+1)-cell

uf}}{{{

{ g

""EEE

E

v

f ′ ÃÃBB

B %9 w

g ′}}{{{{

u ′

with (f,g) critical.

Theorem. Let Σ be a convergent n-polygraph. Let Γ be a cellular extension of Σ∗ made of one generating

confluence for each critical branching of Σ. Then Γ is a homotopy basis of Σ>.

Corollary. If Σ is a finite convergent n-polygraph with a finite number of critical branchings, then it has FDT.

Page 19: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Generating confluences : pear necklaces

Theorem, Squier ’94. If a monoid admits a presentation by a finite convergent word rewriting system, then

it has FDT.

Theorem There exists a 2-category that lacks FDT, even though it admits a presentation by a finite

convergent 3-polygraph.

• A 3-polygraph presenting the 2-category of pear necklaces.

one 0-cell, one 1-cell, three 2-cells :

four 3-cells :αV

β

VδV

• Σ is finite and convergent but does not have FDT.

Page 20: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Generating confluences : pear necklaces

• Four regular critical branching

γ

QÁ2

δ

m,@γδ

δQÁ2

γ

m,@δγ

β _%9

γ

@)@@

@@@@

@@

@@@@

@@@@

@@@@

@@@@

αy2Fyyyyyyyy

yyyyyyyy

yyyyyyyy

γ_%9

αγ

α _%9

δ

@)@@

@@@@

@@

@@@@

@@@@

@@@@

@@@@

βy2Fyyyyyyyy

yyyyyyyy

yyyyyyyy

δ_%9

βδ

• One right-indexed critical branching

k k ∈{

, , ,n}

n

Page 21: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Generating confluences : pear necklaces

β _%9

Peiffγ

)­Á

Peiff

δ

Ä5IÄÄÄÄÄÄÄÄ

ÄÄÄÄÄÄÄÄ

ÄÄÄÄÄÄÄÄ

β _%9

δ~~~ ~~~~~~

~5I~~~~~~~~~~~~

γ _%9

δ

DDDD

DDD

DDDD

DDD

DDDD

DDD

Dº+DD

DDDD

DD

DDDD

DDDD

DDDD

DDDDα

ÂEY

β¦¼

γhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhh

h*>hhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhαγ

δVVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVV

VÃ4VVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVβδ

Peiff

α _%9

γ?)??

????

??

????

????

????

????

δ _%9

γ@@

@@@

@ @@@

@)@@

@@@@

@@ @@@@Peiff

γzzzzzzz

zzzzzzz

zzzzzzz

z3Gzzzzzzzz

zzzzzzzz

zzzzzzzz

α_%9

δ

@T

Peiff

Page 22: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Generating confluences : pear necklaces

α _%9

β D»,DDDDDDD

DDDDDDD

DDDDDDD

δVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVV

VVVVVVVVVVVVVVV

VÃ4VVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVV

δ _%9

Peiff

α_%9

βδ

δ_%9

α

¦8L¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦¦¦

β _%9 γ _%9

β

9µ&99

9999

999

9999

9999

9

9999

9999

9

αz3Gzzzzzzz

zzzzzzz

zzzzzzz

β_%9

γhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

h*>hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhαγ

γ_%9

Peiff... n

α

SÂ3

β

k+? ... n+1

.

αβ(

n)

Page 23: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Generating confluences : pear necklaces

• An infinite homotopy base :

γ

QÁ2

δ

m,@γδ

δQÁ2

γ

m,@δγ

β _%9

γ

@)@@

@@@@

@@

@@@@

@@@@

@@@@

@@@@

αy2Fyyyyyyyy

yyyyyyyy

yyyyyyyy

γ_%9

αγ

α _%9

δ

@)@@

@@@@

@@

@@@@

@@@@

@@@@

@@@@

βy2Fyyyyyyyy

yyyyyyyy

yyyyyyyy

δ_%9

βδ

... n

α

SÂ3

β

k+? ... n+1

.

αβ(

n)

• The 3-polygraph is finite and convergent but does not have finite derivation type

Page 24: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Generating confluences : Mac Lane’s coherence theorem

• Let Σ be the finite 3-polygraph(∗, ., . , ., . , ., .

).

Lemma. Σ terminates and is locally confluent, with the following five generating confluences:

.

._%9

..

B¹*BB

BBBB

B

BBBB

BBB

BBBB

BBB

.

. |4H|||||||

|||||||

|||||||

._%9

. ._%9

.ÄÂ

.

.

.

9µ&99

9999

99

9999

9999

9999

9999

.

. £6J£££££££

£££££££

£££££££

._%9 .

.ÄÂ

.

.

6%

.

©9M.

ÄÂ

.

.

<¶'<<

<<<<

<<<

<<<<

<<<<

<

<<<<

<<<<

<

.

. ~5I~~~~~~~

~~~~~~~

~~~~~~~

._%9 .

ÄÂ

..

<¶'<<

<<<<

<<

<<<<

<<<<

<<<<

<<<<

.

. ~5I~~~~~~~

~~~~~~~

~~~~~~~

._%9 .

ÄÂ

Theorem. The cellular extension{

. , .}

is a homotopy basis of Σ>.

Corollary (Mac Lane’s coherence theorem). "In a monoidal category (C,⊗, I,α,λ,ρ), all the diagrams

built from C, ⊗, I, α, λ and ρ are commutative."

Page 25: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Part IV. Identities among relations

Page 26: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Defining identities among relations

The contexts of an n-category C are the partial maps C : Cn → Cn generated by:

x 7→ f ?i x and x 7→ x ?i f

The category of contexts of C is the category CC with:

– Objects: n-cells of C.

– Morphisms from f to g: contexts C of C such that C[f] = g.

The natural system of identities among relations of an n-polygraph Σ is the functor Π(Σ) : CΣ → Abdefined as follows:

• If u is an (n−1)-cell of Σ, then Π(Σ)u is the quotient of

Z{bfc

∣∣ v fbb in Σ>, v = u}

by (with ? denoting ?n−1):

– bf?gc = bfc+ bgc for every vf""

gbb with v = u.

– bf?gc = bg? fc for every vf &&

wg

ee with v = w = u.

• If C is a context of Σ from u to v, then Cbfc= bB[f]c, with B = C.

Page 27: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

Generating identities among relations

A generating set of Π(Σ) is a part X⊆ Π(Σ) such that, for every bfc:

bfc =

k∑

i=1

±Ci[xi], with xi ∈ X, Ci ∈ CΣ.

Proposition. Let Σ and Υ be finite Tietze-equivalent n-polygraphs. Then

Π(Σ) is finitely generated iff Π(Υ) is finitely generated.

Proposition. Let Γ be a homotopy basis of Σ> and Γ ={

γ = f?g−∣∣γ : f → g in Γ

}.

Then⌊Γ⌋

is a generating set for Π(Σ).

Page 28: Homotopical methods in polygraphic rewriting Yves …ljk.imag.fr/membres/Dominique.Duval/CCS09/CCS09-Malbos.pdfHomotopical methods in polygraphic rewriting ... DD”+ DDD DDD D DDD

3.2. Generating identities among relations

Theorem. If a n-polygraph Σ has FDT, then Π(Σ) is finitely generated.

Proposition. If Σ is a convergent n-polygraph, then Π(Σ) is generated by the generating confluences of Σ.

Example. Let Σ be the 2-polygraph(∗, ., .

).

It is a finite convergent presentation of the monoid {1,a} with aa = a.

It has one generating confluence:

..

_%9.

Hence the following element generates Π(Σ):

⌊.

⌋=

⌊. ?1

(.

)−⌋

=

.

=⌊

.⌋

=⌊

. .⌋