35
Hiroyasu Tajima Stanford Linear Accelerator Center Nov 3–8, 2002 VERTEX2002, Kailua-Kona, Hawaii Gamma-ray Polarimetry ~ Astrophysics Application ~

Hiroyasu Tajima Stanford Linear Accelerator Center Nov 3–8, 2002 VERTEX2002, Kailua-Kona, Hawaii Gamma-ray Polarimetry ~ Astrophysics Application ~

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Hiroyasu TajimaStanford Linear Accelerator Center

Nov 3–8, 2002VERTEX2002, Kailua-Kona, Hawaii

Gamma-ray Polarimetry~ Astrophysics Application ~

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Outline

• Introduction.• Concepts.• Key features (requirements.)• Instrument description.

Silicon Strip Detector System.• Double-sided SSD.• Low noise front-end VLSI.

• Results. Noise performance. Energy resolution.

• Conclusions and future prospects.

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Polarization in Astrophysics

• Gamma-ray is excellent probe to study particle acceleration mechanism in BHs and pulsars.

• Polarization is important parameter to understand gamma-ray production mechanism. Inverse Compton Scattering.

• Polarization depends on scattering angle.• Geometrical information.

Synchrotron Radiation.• Polarization is perpendicular to magnetic field direction.

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Soft Gamma-ray (X-ray) Imaging

Coded mask Compton telescope

X-ray mirror Well-type Phoswich

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Polarization Measurement

• Photoelectric absorption

• Compton Scattering Polarization depends on scattering angle,

photon energy.

∂σ∂Ω

∝Z 5

72

sin2 θ ⋅cos2 φ

(1− β e cosθ)4

e

E

E

E’

Polarization vector

∂σ∂Ω

∝′ E γ

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2′ E γ

+Eγ

′ E γ− 2sin2 θ ⋅cos2 φ

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Polarimetry with Micro Pattern Gas Detectors

R. Bellazzini, INFN Pisa

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Analyzing Power

5.9 keV unpolarized 5.4 keV polarized

Analyzing power = (Cmax Cmax)/(Cmax Cmax) ~ 50%

CmaxCmin

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Multiple Compton Technique

Proposed by T. Kamae et al. 1987

E1

E3

E2

1

cosθ1 =1+mec

2

E1 + E2 + E3

−mec

2

E2 + E3

2

cosθ2 =1+mec

2

E2 + E3

−mec

2

E3

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Key Features (Requirements)

• High energy resolution: ~ 1 keV (FWHM).

High angular resolution: ~ 1o (FWHM). High background rejection.

• Constraints from Compton kinematics

• Polarimetry.• Large Field-of-View: > 2 sr.• Wide energy band: 0.05–20 MeV.• Low weight.

No heavy calorimeter.

~ 120 e– (RMS)

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Angular Resolution

0

2

4

6

8

10

0 1 2 3 4 5

Energy resolution (keV)

Angular resolution

(deg)

E=0.1 MeVE=0.2 MeVE=0.5 MeV

Doppler broadening will limit ultimate angular resolution.

0

2

4

6

8

10

0 1 2 3 4 5

Energy resolution (keV)

Angular resolution

(deg)

E=0.1 MeVE=0.2 MeVE=0.5 MeV

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Source Localization

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

With 10X Better Resolution…

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Semiconductor Multiple-Compton Telescope

Single-Layer Interaction Probability

0.001

0.010

0.100

1.000

0.0 0.1 1.0 10.0 100.0

Photon Energy (MeV)

Probability

photo-absorption

ComptonScattering

pair-creation

Si Detector

CdTe Detector

Si

CdTe

Doppler broadening is much smaller in Si.

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Collaboration

Hiroyasu Tajima, T. KamaeStanford Linear Accelerator Center

T. Takahashi, K. NakazawaInstitute of Space and Astronautical Science

Y. FukazawaHiroshima University

M. NomachiOsaka University

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Performance

• Si is essential for wide energy band.

25cm

80layers

80 layers of0.5 mm thick Si and CdTe

Takahashi (ISAS)

Si

Si

Si

CdTe

CdTe

CdTe

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Compton Kinematics

• Background suppression

-10 -8 -6 -4 -20

20

40

60

80

100

120

140

160

180

200

220

Ecal − Emeas

80 2 4 6 10

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 10

50

100

150

200

250

300

350

400

450

coscal

EGS4.4 MC

cosθcal =1+mec

2

E1 + E2

−mec

2

E2

Ecal =1

1 E2 + (cosθ −1) mec2

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

-150 -100 -50 05 0 100 1500

5

10

15

20

25

30

35

40

45

φ (deg)

Polarization Sensitivity

EGS4.4 MC

100% polarized, 100 keV|cos| < 0.6

Analyzing power ~ 75%

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Recent Development of CdTe Detector

• Tremendous amount of progress has been made. Highly uniform, fully active sensors can be

produced.

122 keVFWHM1.35 keV

5 oCBias 800V (16 kV/cm)

57Co

No Tail

Takahashi et al. 1999 NIM A 436(see e.g. Takahashi et al. IEEE 2002, June andreview by Takahashi & Watanabe IEEE 2001,48,4)

-25℃

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

CdTe Gamma-ray Imager

5cm Pixel 1.2x1.2mm2 1024 pixels

Pixel 0.2x0.2mm2 1024 pixels

CdTe

Pixel 0.67x0.67mm2 400 pixels

2dim ASIC (100pixel)

2mm

bump bonding

ISAS/MHI Patent Applying

Takahashi (ISAS)

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Si Strip Detector System

• Why Double-sided Si Strip Detector? No self-trigger for CCD. Hybrid-pixel detector increases non-active

material. Monolithic-pixel detector cannot be produced in

large volume.

• System configuration.

V

Double-sidedSi Strip Detector

Front-end VLSIVA32TA

RC chipR

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Double-sided Si Strip Detector

• 2.56cm x 2.56 cm ~1/2 length of full size sensor.

• 300 µm thick, 400 µm pitch, 100 µm gap.• Strip capacitance: ~ 5.5 pF (measured.)

Junction side Ohmic side

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

VA32TA: Low Noise Front-end VLSI

• Low noise Front-end MOSFET geometry optimized for small

capacitance load in 1.2 µm process.

• Internal DAC (4-bit trim DAC, bias).• Fabricated in AMS 0.35 µm process

Radiation hard to 20 MRad.

• SEU (single event upset) tolerant.

Level-sensitive

Discriminator

Semigaussian“fast” shaper

Monostable(fixed width)

Semigaussian“slow” shaper

ChargeIntegrator(preamp.)

S/H

Vss

Vdd

TriggerOut

TAVA

Multiplexer

analog out

0.37 + 0.16 × C( ) τ [keV]

45 +19 × C( ) τ [e−] (RMS)

Ideas ASA

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Prototype System

• AC configuration

• DC configuration

VA32TA

Singled-sided SSD

RC chip

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Noise Analysis

• Amplifier noise: capacitance load.• Shot noise: leakage current.• Thermal noise: detector bias resistance.

AC configuration, 20 oC

0

0.5

1

1.5

2

0 1 2 3 4Peaking time (µs)

Noise (keV)

Amplifier noiseShot noiseThermal noiseTotal noiseMeasured noise

AC configuration, 0 oC

0

0.5

1

1.5

2

0 1 2 3 4Peaking time (µs)

Noise (keV)

Amplifier noiseShot noiseThermal noiseTotal noiseMeasured noise

DC configuration, 0 oC

0

0.5

1

1.5

2

0 1 2 3 4Peaking time (µs)

Noise (keV)

Amplifier noiseShot noiseThermal noiseTotal noiseMeasured noise

120 e–

(RMS)

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Noise Performance Summary

Config. Temp. peak

Noise (FWHM)

Measured Expected

AC

20 oC2 µs 1.7 keV 1.6 keV

4 µs 1.7 keV 1.6 keV

0 oC2 µs 1.6 keV 1.4 keV

4 µs 1.4 keV 1.1 keV

DC 0 oC2 µs 1.2 keV 1.1 keV

4 µs 1.0 keV 0.9 keV

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

0

200

400

600

800

1000

12002

x10

241Am

59.5 keV

Energy [keV]

13.9 keV

17.6 keV

21.0 keV

26.3 keV

0 10 20 30 40 50 60 70

241Am Spectrum

DC configuration, 0 oC

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

241Am Fit

56 58 60 62 640

500

1000

1500

2000

2500

3000

3500

241Am59.5 keVFWHM 1.3 keV(2.1%)

Energy [keV]

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

57Co Spectrum

100 120 140 1600

500

1000

1500

2000

2500

57Co122.1 keV

Energy [keV]

136.5 keV

0 20 40 60 80

Compton edge

DC configuration, 0 oC

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

57Co Fit

116 118 120 122 124 126 1280

200

400

600

800

1000

1200

57Co122.1 keVFWHM 1.3 keV(1.1%)

Energy [keV]

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Energy Resolution Summary

Config. Temp. peak

Resolution (FWHM)

60 keV 122 keV

AC

20 oC2 µs 1.9 keV 2.1 keV

4 µs 2.1 keV 2.3 keV

0 oC2 µs 1.8 keV 1.9 keV

4 µs 1.7 keV 1.8 keV

DC 0 oC2 µs 1.6 keV 1.6 keV

4 µs 1.3 keV 1.3 keV

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Conclusions and Future Prospects

• Energy resolution measured using prototypes. 1.3 keV @0 oC for 60 and 122 keV X-rays. Noise sources are well understood.

• Imaging test with stacked DSSD prototypes. Polarization measurements.

• Further improvements are required for larger full-sized sensors. Optimization of front-end MOSFET in 0.35 µm process. Reduction of detector capacitance.

• Sensor thickness: 300 µm 400 µm. Pitch adapter.

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

1E-8

1E-6

1E-4

1E-2

1E-2 1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5

Energy (MeV)

Sensitivity Gap…

Sen

siti

vity

(M

eV/c

m2/s

)• No approved mission to cover 0.1–20 MeV

energy band. Sensitivity is mostly limited by BG.

COMPTEL

EGRET

1E-8

1E-6

1E-4

1E-2

1E-2 1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5

Energy (MeV)

Astro-E2

GLAST

INTEGRAL

EXIST

OSSE

Next generationCompton telescope

1E-8

1E-6

1E-4

1E-2

1E-2 1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5

Energy (MeV)

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Liquid Xenon TPC

LXeGRIT collaboration

88Y-Multiple site event

0 1 2 3Energy (MeV)

0

200

400

600

800

898keV

1836keV

88Y Multiple-site events

0 1 2 3Energy (MeV)

0

50

100

150

200

250

300

898keV

1836keV

88 -Y Single site events

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002

Germanium Compton Telescope

Gamma-ray Polarimetry, H. Tajima, Vertex 2002, Kailua-Kona, Hawaii, Nov. 8, 2002