28
IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur Gossard and Mark J. W. Rodwell ECE, University of California, Santa Barbara, CA,USA Mark A. Wistey ECE, University of Notre Dame, IN, USA Yong J. Lee Intel Corporation, Technology Manufacturing Group, Santa Clara, CA, USA

High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 1

High Doping Effects on in-situ

Ohmic Contacts to n-InAs

Ashish Baraskar, Vibhor Jain, Uttam Singisetti,

Brian Thibeault, Arthur Gossard and Mark J. W. Rodwell

ECE, University of California, Santa Barbara, CA,USA

Mark A. Wistey

ECE, University of Notre Dame, IN, USA

Yong J. Lee

Intel Corporation, Technology Manufacturing Group, Santa Clara, CA, USA

Page 2: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 2

• Motivation

– Low resistance contacts for high speed HBTs

– Approach

• Experimental details

– Contact formation

– Fabrication of Transmission Line Model structures

• Results

– InAs doping characteristics

– Effect of doping on contact resistivity

– Effect of annealing

• Conclusion

Outline

Page 3: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 3

effcbbb CR

ff

8maxRC

fin

2

1

To double device bandwidth*:

• Cut transit time 1:2

• Cut RC delay 1:2

Device Bandwidth Scaling Laws for HBT

bcWcTbT

eW

*M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001

Scale contact resistivities by 1:4

Page 4: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 4

Emitter: 512 256 128 64 32 width (nm)

16 8 4 2 1 access ρ, (m2)

Base: 300 175 120 60 30 contact width (nm)

20 10 5 2.5 1.25 contact ρ (m2)

ft: 370 520 730 1000 1400 GHz

fmax: 490 850 1300 2000 2800 GHz

- Contact resistivity serious barrier to THz technology

Less than 2 Ω-µm2 contact resistivity required for

simultaneous THz ft and fmax*

*M.J.W. Rodwell, CSICS 2008

InP Bipolar Transistor Scaling Roadmap

Page 5: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 5

Emitter Ohmics-I

Metal contact to narrow band gap material 1. Fermi level pinned in the band-gap

2. Fermi level pinned in the conduction band

Better ohmic contacts with

narrow band gap materials1,2

Narrow band gap material:

• lower Schottky barrier height

• lower m* easier tunneling

across Schottky barrier

InGaAs InP

GaAsInAs

1.Peng et. al., J. Appl. Phys., 64, 1, 429–431, (1988).

2.Shiraishi et. al., J. Appl. Phys., 76, 5099 (1994).

Page 6: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 6

Choice of material:

• In0.53Ga0.47As: lattice matched to InP

- Ef pinned 0.2 eV below conduction band[1]

• Relaxed InAs on In0.53Ga0.47As

- Ef pinned 0.2 eV above conduction band[2]

1. J. Tersoff, Phys. Rev. B 32, 6968 (1985)

2. S. Bhargava et. al., Appl. Phys. Lett., 70, 759 (1997)

Emitter Ohmics-II

Other considerations:

• Better surface preparation techniques

- For efficient removal of oxides/impurities

• Refractory metal for thermal stability

Page 7: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 7

Semi-insulating InP Substrate

150 nm In0.52Al0.48As: NID buffer

100 nm InAs: Si (n-type)

Semiconductor layer growth by Solid Source Molecular Beam

Epitaxy (SS-MBE): n-InAs/InAlAs

- Semi insulating InP (100) substrate

- Un-doped InAlAs buffer

- Electron concentration determined by Hall measurements

Thin Film Growth

Page 8: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 8

In-situ molybdenum (Mo) deposition

- E-beam chamber connected to MBE chamber

- No air exposure after film growth

Why Mo?

- Refractory metal (melting point ~ 2620 oC)

- Easy to deposit by e-beam technique

- Easy to process and integrate in HBT process flow

150 nm In0.52Al0.48As: NID buffer

100 nm InAs: Si (n-type)

20 nm Mo

Semi-insulating InP Substrate

In-situ Metal Contacts

Page 9: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 9

• E-beam deposition of Ti, Au and Ni layers

• Samples processed into TLM structures by photolithography

and liftoff

• Mo was dry etched in SF6/Ar with Ni as etch mask, isolated

by wet etch

150 nm In0.52Al0.48As: NID buffer

100 nm InAs: Si (n-type)

20 nm Mo

20 nm ex-situ Ti

50 nm ex-situ Ni

500 nm ex-situ Au

Semi-insulating InP Substrate

TLM (Transmission Line Model) Fabrication

Page 10: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 10

• Resistance measured by Agilent 4155C semiconductor parameter

analyzer

• TLM pad spacing (Lgap) varied from 0.5-26 µm; verified from

scanning electron microscope (SEM)

• TLM Width ~ 25 µm

Resistance Measurement

W

RR

ShC

C

22

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5

Gap Spacing (m)

Resi

stan

ce (

)

Page 11: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 11

• Extrapolation errors:

– 4-point probe resistance

measurements on Agilent 4155C

– Resolution error in SEM

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6

Resi

stan

ce (

)

Gap Spacing (m)

dR

dd

dRc

Error Analysis

• Processing errors:

Lgap

W

Variable gap along width (W)

1.10 µm 1.04 µm

– Variable gap spacing along

width (W)

Overlap Resistance

– Overlap resistance

Page 12: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 12

1018

1019

1020

0

1000

2000

3000

4000

5000

6000

1018

1019

1020

Active carrier

concentration

Mobility

Mo

bil

ity (

cm2/V

s)

Ele

ctro

n c

once

ntr

atio

n,

n (

cm-3

)

Si atom concentration (cm-3

)

Tsub: 380 oC

Results: Doping Characteristics

n saturates at high

dopant concentration

5 1019

1 1020

1.5 1020

380 400 420 440 460

Substrate Temperature (oC)

Ele

ctro

n c

once

ntr

atio

n, n

(cm

-3)

- Enhanced n for colder growths

- hypothesis: As-rich surface

drives Si onto group-III sites

Page 13: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 13

Metal Contact ρc (Ω-µm2) ρh (Ω-µm)

In-situ Mo 0.6 ± 0.4 2.0 ± 1.5

W

RR

ShC

C

22

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5

Gap Spacing (m)

Resi

stan

ce (

)

Lowest ρc reported to date for n-type InAs

• Electron concentration, n = 1×1020 cm-3

• Mobility, µ = 484 cm2/Vs

• Sheet resistance, Rsh = 11 ohm/

(100 nm thick film)

Results: Contact Resistivity - I

Page 14: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 14

Results: Contact Resistivity - II

• ρc measured at various n

- ρc decreases with increase in n

• Shiraishi et. al.[1] reported

ρc = 2 Ω-µm2 for ex-situ

Ti/Au/Ni contacts to n-InAs

• Singisetti et. al.[2] reported

ρc = 1.4 Ω-µm2 for in-situ

Mo/n-InAs/n-InGaAs 0

1

2

3

4

0 2 4 6 8 10 12

Electron Concentration, n (x 1019

cm-3

)

Co

nta

ct R

esis

tivit

y,

c (

m2)

Shiraishi et. al.[1]

(ρc = 2 Ω-µm2)

Singisetti et. al.[2]

(ρc = 1.4 Ω-µm2)

Present work

1Shiraishi et. al., J. Appl. Phys., 76, 5099 (1994). 2Singisetti et. al., Appl. Phys. Lett., 93, 183502 (2008).

Extreme Si doping improves contact resistance

Page 15: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 15

• Contacts annealed under N2 flow at 250 oC for 60 minutes

(replicating the thermal cycle experienced by a transistor during

fabrication)

• Observed variation in ρc less than the margin of error

Thermal Stability

Contacts are thermally stable

Results: Contact Resistivity - III

Page 16: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 16

• Optimize n-InAs/n-InGaAs interface resistance

• Mo contacts to n-InGaAs*: ρc = 1.1±0.6 Ω-µm2

n-InAs n-InGaAs

Application in transistors !

*Baraskar et. al., J. Vac. Sci. Tech. B, 27, 2036 ( 2009).

Page 17: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 17

• Extreme Si doping improves contact resistance

• ρc= 0.6±0.4 Ω-µm2 for in-situ Mo contacts to n-InAs with 1×1020 cm-3

electron concentration

• Need to optimize n-InAs/n-InGaAs interface resistance for transistor

application

Conclusions:

Page 18: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 18

Thank You !

Questions?

Acknowledgements

ONR, DARPA-TFAST, DARPA-FLARE

[email protected]

University of California, Santa Barbara, CA, USA

Page 19: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 19

Extra Slides

Page 20: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 20

1. Doping Characteristics

Results

6 1019

7 1019

8 1019

9 1019

1020

5 10 15 20 25 30

As flux (x10-7

torr)

Act

ive

carr

ier

con

cen

trat

ion

, n

(cm

-3)

Page 21: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 21

0.1

1

10

0 5 10-10

1 10-9

n-1/2

(cm-3/2

)

Co

nta

ct R

esis

tiv

ity

,

c (

m2)

Page 22: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 22

n-InAs p-InAs

– : simulation[1]

x : experimental data[2]

Results: Contact Resistivity - III

Possible reasons for decrease in contact resistivity with increase in electron concentration

• Band gap narrowing

• Strain due to heavy doping

• Variation of effective mass with doping

Page 23: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 23

Accuracy Limits

• Error Calculations

– dR = 50 m (Safe estimate)

– dW = 0.2 m

– dGap = 20 nm

• Error in c ~ 50% at 1 -m2

Page 24: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 24

Random and Offset Error in 4155C

0.6642

0.6643

0.6644

0.6645

0.6646

0.6647

0 5 10 15 20 25

Res

ista

nce

(

)

Current (mA)

• Random Error

in resistance

measurement

~ 0.5 m

• Offset Error <

5 m

*4155C datasheet

Page 25: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 25

Correction for Metal Resistance in 4-Point Test Structure

WLsheet /metalR Wcontactsheet /)( 2/1

Error term (Rmetal/x) from metal resistance

L

W

I

I

V

V

xRWLW metalsheetcontactsheet ///)( 2/1

Page 26: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 26

Overlap Resistance

Variable gap along width (W)

1.10 µm 1.04 µm

W

Page 27: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 27

• Variation of effective mass with doping

• Non-parabolicity

• Thickness dependence

• SXPS (x-ray photoemission spectroscopy)

• BEEM (ballistic electron emission microscopy)

• Band gap narrowing

• Strain due to heavy doping

Page 28: High Doping Effects on in-situ - UCSB...b W e *M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001 Scale contact resistivities by 1:4 IPRM 2010 Ashish Baraskar 4 Emitter: 512 256 128

IPRM 2010 Ashish Baraskar 28

For the same number of active carriers

(in the degenerate regime)

Ef - Ec > Ef - Ec

(narrow gap, Eg1) (wide gap, Eg2)

m*e(Eg1)< m*e(Eg2)

Metal contact to narrow band gap material

Emitter Ohmics-I