of 22 /22
HIGH ACCURACY METHOD FOR MAGNETOHYDRODYNAMICS SYSTEM IN ELS ¨ ASSER VARIABLES NICHOLAS WILSON * , ALEXANDER LABOVSKY , CATALIN TRENCHEA Key words. Magnetohydrodynamics, partitioned methods, defect correction, Els¨ asser variables. Abstract. The MHD ﬂows are governed by the Navier-Stokes equations coupled with the Maxwell equations through coupling terms. We prove the unconditional stability of a partitioned method for the evolutionary full MHD equations, at high magnetic Reynolds number, in the Els¨asser variables. The method we propose is a defect correction second order scheme, and entails the implicit discretization of the subproblem terms and the explicit discretization of coupling terms. 1. Introduction. The equations of magnetohydrodynamics (MHD) describe the motion of electrically conducting, incompressible ﬂows in the presence of a magnetic ﬁeld. When an electrically conducting ﬂuid moves in a magnetic ﬁeld, the magnetic ﬁeld exerts forces which may substantially modify the ﬂow. Conversely, the ﬂow itself gives rise to a second, induced ﬁeld and thus modiﬁes the magnetic ﬁeld. Initiated by Alfv` en in 1942 , MHD is widely exploited in numerous branches of science including astrophysics and geophysics [24, 35, 16, 12, 11, 3, 6, 15], as well as engineering, e.g., liquid metal cooling of nuclear reactors [2, 22, 38], process metallurgy , sea water propulsion . The MHD ﬂows entails two distinct physical processes: the motion of ﬂuid is governed by hydrodynamics equations and the magnetic ﬁeld is governed by Maxwell equations. One approach to solve the coupled problem is by monolithic methods, or implicit (fully coupled) algorithms, that are robust and stable, but quite demanding in computational time and resources. In these methods, the globally coupled problem is assembled at each time step and then solved iteratively. Partitioned methods, which solve the coupled problem by successively solving the sub-physics problems , are another attractive and promising approach for solving MHD system. Most terrestrial applications, in particular most industrial and laboratory ﬂows, involve small magnetic Reynolds number. In this cases, while the magnetic ﬁeld considerably alters the ﬂuid motion, the induced ﬁeld is usually found to be negligible by comparison with the imposed ﬁeld [28, 36, 8]. Neglecting the induced magnetic ﬁeld one can reduce the MHD systems to the signiﬁcantly simpler Reduced MHD (RMHD), for which several implicit-explicit (IMEX) schemes were studied in . In this report we aim to improve the accuracy of the ﬁrst order method introduced in . The method that we aim to develop for the evolutionary full MHD equations, at high magnetic Reynolds number in the Els¨ asser variables, also needs to be stable and allow for explicit-implicit implementations with diﬀerent time scales. To that end, we employ the spectral deferred correction (SDC) method, pro- posed for stiﬀ ODEs by Dutt et al., , and further developed by Minion et al.; see [33, 34, 7] and the references therein. SDC methods were studied and compared to intrinsically high-order methods such as additive Runge-Kutta methods and linear * Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA, Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA, Department of Mathematics, 301 Thackeray Hall, University of Pittsburgh, Pittsburgh, PA 15260, [email protected]. Partially supported by Air Force grant FA9550-12-1-0191. 1

# HIGH ACCURACY METHOD FOR MAGNETOHYDRODYNAMICS … · liquid metal cooling of nuclear reactors [2,22,38], process metallurgy , sea water propulsion . The MHD ows entails two

others

• View
4

0

Embed Size (px)

### Text of HIGH ACCURACY METHOD FOR MAGNETOHYDRODYNAMICS … · liquid metal cooling of nuclear reactors... HIGH ACCURACY METHOD FOR MAGNETOHYDRODYNAMICSSYSTEM IN ELSASSER VARIABLES

NICHOLAS WILSON∗, ALEXANDER LABOVSKY†, CATALIN TRENCHEA‡

Key words. Magnetohydrodynamics, partitioned methods, defect correction, Elsasser variables.

Abstract. The MHD flows are governed by the Navier-Stokes equations coupled with theMaxwell equations through coupling terms. We prove the unconditional stability of a partitionedmethod for the evolutionary full MHD equations, at high magnetic Reynolds number, in the Elsasservariables. The method we propose is a defect correction second order scheme, and entails the implicitdiscretization of the subproblem terms and the explicit discretization of coupling terms.

1. Introduction. The equations of magnetohydrodynamics (MHD) describe themotion of electrically conducting, incompressible flows in the presence of a magneticfield. When an electrically conducting fluid moves in a magnetic field, the magneticfield exerts forces which may substantially modify the flow. Conversely, the flow itselfgives rise to a second, induced field and thus modifies the magnetic field. Initiated byAlfven in 1942 , MHD is widely exploited in numerous branches of science includingastrophysics and geophysics [24, 35, 16, 12, 11, 3, 6, 15], as well as engineering, e.g.,liquid metal cooling of nuclear reactors [2, 22, 38], process metallurgy , sea waterpropulsion .

The MHD flows entails two distinct physical processes: the motion of fluid isgoverned by hydrodynamics equations and the magnetic field is governed by Maxwellequations. One approach to solve the coupled problem is by monolithic methods, orimplicit (fully coupled) algorithms, that are robust and stable, but quite demanding incomputational time and resources. In these methods, the globally coupled problem isassembled at each time step and then solved iteratively. Partitioned methods, whichsolve the coupled problem by successively solving the sub-physics problems , areanother attractive and promising approach for solving MHD system.

Most terrestrial applications, in particular most industrial and laboratory flows,involve small magnetic Reynolds number. In this cases, while the magnetic fieldconsiderably alters the fluid motion, the induced field is usually found to be negligibleby comparison with the imposed field [28, 36, 8]. Neglecting the induced magneticfield one can reduce the MHD systems to the significantly simpler Reduced MHD(RMHD), for which several implicit-explicit (IMEX) schemes were studied in .

In this report we aim to improve the accuracy of the first order method introducedin . The method that we aim to develop for the evolutionary full MHD equations,at high magnetic Reynolds number in the Elsasser variables, also needs to be stableand allow for explicit-implicit implementations with different time scales.

To that end, we employ the spectral deferred correction (SDC) method, pro-posed for stiff ODEs by Dutt et al., , and further developed by Minion et al.; see[33, 34, 7] and the references therein. SDC methods were studied and compared tointrinsically high-order methods such as additive Runge-Kutta methods and linear

∗Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931,USA, [email protected]†Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931,

USA, [email protected]‡Department of Mathematics, 301 Thackeray Hall, University of Pittsburgh, Pittsburgh, PA

15260, [email protected]. Partially supported by Air Force grant FA9550-12-1-0191.

1 multistep methods based on BDFs, with the conclusion that the SDC methods are atleast comparable to the latter. In addition, achieving high accuracy for the turbulentNSE using Runge-Kutta-based methods is very expensive, and the BDF-based meth-ods typically do not perform well in problems where relevant time scales associatedwith different terms in the equation are widely different; see, e.g.,  for an exampleof an advection-diffusion-reaction problem for which the SDC is the best choice forhigh-accuracy temporal discretization.

The equations of magnetohydrodynamics describing the motion of an incompress-ible fluid flow in presence of a magnetic field are the following (see, e.g. [28, 4, 5])

∂u

∂t+ (u · ∇)u− (B · ∇)B − ν∆u +∇p = f , ∇ · u = 0,

∂B

∂t+ (u · ∇)B − (B · ∇)u− νm∆B = ∇× g, ∇ ·B = 0,

in Ω× (0, T ), where Ω is the fluid domain, u = (u1(x, t), u2(x, t), u3(x, t)) is the fluidvelocity, p(x, t) is the pressure, B = (B1(x, t), B2(x, t), B3(x, t)) is the magnetic field,f and ∇× g are external forces, ν is the kinematic viscosity and νm is the magneticresistivity. The total magnetic field can be split in two parts B = B + b (mean andfluctuations). We prescribe homogeneous Dirichlet boundary conditions for u, andB = B on the boundary (see  for typical magnetic boundary conditions).

Then the Elsasser fields 

z+ = u + b, z− = u− b, (1.1)

merging the physical properties of the Navier-Stokes and Maxwell equations, suggeststable time-splitting schemes for the full MHD equations. The momentum equations,in the Elsasser variables, are

∂z±

∂t∓(B ·∇)z±+(z∓ ·∇)z±− ν+νm

2∆z±− ν−νm

2∆z∓+∇p = f±, (1.2)

while the continuity equations are ∇ · z± = 0. We note that the nonlinear in-teractions occur between the Alfvenic fluctuations z±. The mean magnetic fieldplays an important role in MHD turbulence, for example it can make the turbu-lence anisotropic; suppress the turbulence by decreasing energy cascade, etc. In thepresence of a strong mean magnetic field, z+ and z− wavepackets travel in oppositedirections with the phase velocity of B, and interact weakly. For Kolmogorov’s andIroshnikov/Kraichnan’s phenomenological theories of MHD isotropic and anisotropicturbulence, see [25, 27, 9, 32, 42, 37, 17, 20, 43].

In a “classical” understanding, the deferred correction approach to solving ODEsis based on replacing the original ODE (in our case, the system of ODEs obtained fromthe original PDEs by the Method of Lines) with the corresponding Picard integralequation, discretizing the time interval, solving the integral equation approximatelyand then correcting the solution by solving a sequence of error equations on the samegrid with the same scheme; see  and  for the detailed mathematical presentationof SDC. In particular, the two-step Deferred Correction method introduced in thispaper, performs as follows. The first approximation to the sought quantities (in thiscase, the Elsasser variables z+, z−) is obtained by the stable and computationallyattractive first order accurate IMEX method of . Then the second order accurateapproximation is computed, which improves the accuracy without sacrificing stability.

2 Note that the second step utilizes the same IMEX time discretization as in the firststep; only the right-hand side is modified by a known quantity, i.e, a known solutionfrom the first step. This results in the computational attractiveness of the method:computing two low-order accurate approximations is much less costly (especially forvery stiff problems) than computing a single higher-order approximation.

2. Notation and Preliminaries. We consider a domain Ω ⊂ Rd (d=2 or 3)to be a convex polygon or polyhedra. We denote the familiar Lesbegue measurespaces by Lp(Ω), and denote the L2(Ω) inner product and induced norm by (·, ·) and‖ · ‖ respectively. Additionally, we denote the L∞(Ω) norm by ‖ · ‖∞, and the normassociated with the Sobolev spaces W 2,k(Ω) ≡ Hk(Ω) by ‖ · ‖k. All other norms willbe clearly labeled.

Throughout the article, we will make use of the inequalities presented in thefollowing lemma. In Lemma 2.1 and subsequent analysis we denote constants thatare independent of ν and νm by C. The generic constant varies throughout this work.

Lemma 2.1. If u,v,w ∈ H1(Ω), and ∇ · u = 0 then

((u · ∇)v,w) = −((u · ∇)w,v),

((u · ∇)v,v) = 0,

((u · ∇)v,w) ≤ C‖u‖‖∇v‖∞‖w‖ (provided ∇v ∈ L∞),

((u · ∇)v,w) ≤ C‖u‖∞‖∇v‖‖w‖ (provided u ∈ L∞),

((u · ∇)v,w) ≤ C‖u‖ 12 ‖∇u‖ 1

2 ‖∇v‖‖∇w‖, and

((u · ∇)v,w) ≤ C‖u‖ 14 ‖∇u‖ 3

4 ‖∇v‖‖w‖ 14 ‖∇w‖ 3

4 .

These are classical results used in the study of Navier-Stokes equations and magne-tohydrodynamics (see for example [39, 40, 10]). In addition to the above results wewill also employ the discrete Gronwall’s lemma .

3. The implicit-explicit partitioned schemes. The heart of any partitionedmethod, aiming at decoupling the two physically interconnected subproblems, is itstreatment of the coupling terms. The method we study herein has the coupling termslagged or extrapolated in a careful way that preserves stability.

3.1. First order unconditionally stable IMEX partitioned scheme. Themethod proposed and analyzed in  has the coupling terms lagged, thus the systemuncouples into two subproblem solves. It approximates the momentum equations(1.2) and continuity equations in the Elsasser variables by the following first-orderIMEX scheme (backward-Euler forward-Euler)

0z±n+1 −0 z

±n

∆t∓ (B · ∇)0z

±n+1 + (0z

∓n · ∇)0z

±n+1 (3.1)

− ν + νm2

∆0z±n+1 −

ν − νm2

∆0z∓n +∇0p

±n+1 = f±(tn+1),

∇ · z±n+1 = 0. (3.2)

The scheme (3.1)-(3.2) is modular, i.e., the variables 0z+ and 0z

− are decoupled, andis unconditionally absolute-stable. We note that the pre-subscript occurring on thevariables 0z

±n is used to denote the first order IMEX approximation to the Elsasser

variables z(tn)± respectively.

3 As mentioned before the unconditional stability of the IMEX method is provenin . Thus, we restrict our attention to showing the method is first order accuratein time. We note the term ηn occurs regularly in the analysis below. The value of ηnis between the timesteps tn and tn+1 the arises from our use of Taylor series. So, itis unknown and varies in each occurrence.

Lemma 3.1. Given a final time T > 0 and timestep ∆t > 0 let tn = n ×∆t forn = 0, 1, ..., N . Let 0z

±n denote the IMEX approximation of z±(tn), and let 0e

±n :=

z±(tn)−0 z±n . Then provided the true solution satisfies the regularity assumptions

∇z± ∈ L2((0, T );L∞(Ω)), ∂tz± ∈ L2((0, T );L2(Ω)),

∂ttz± ∈ L2((0, T );L2(Ω)), ∇∂tz± ∈ L2((0, T );L2(Ω)),

the following error estimate holds

‖0e+N‖

2 + ‖0e−N‖2 + ∆t

ννm2(ν + νm)

N∑n=0

(‖∇0e+n ‖2 + ‖∇0e

−n ‖2)

≤ ∆t2Cν + νmννm

exp

(∆t

N−1∑n=0

(‖∇z−(tn)‖2 + ‖∇z+(tn)‖2)×

×∆t

N∑n=0

(‖∂ttz+(ηn)‖2 + ‖∂tz−(ηn)‖2‖∇z+(tn)‖2∞

+ (νm − ν)2(‖∇∂tz−(ηn)‖2 + ‖∇∂tz+(ηn)‖2)

+ ‖∂ttz−(ηn)‖2 + ‖∂tz+(ηn)‖2‖∇z−(tn)‖2∞).

Proof. We begin by rewriting the first continuous momentum equation as

1

∆t(z+(tn+1)− z+(tn)) + (z−(tn) · ∇)z+(tn+1)− (B · ∇)z+(tn+1) (3.3)

− ν + νm2

∆z+(tn+1)− ν − νm2

∆z−(tn) +∇p(tn+1)

=1

∆t(z+(tn+1)−z+(tn))−∂tz+(tn+1)+

ν−νm2

∆z−(tn+1)− ν−νm2

∆z−(tn)

+ (z−(tn) · ∇)z+(tn+1)− (z−(tn+1) · ∇)z+(tn+1) + f+(tn+1).

The first momentum equation for the IMEX method is

1

∆t(0z

+n+1 −0 z

+n ) + (0z

−n · ∇)0z

+n+1 − (B · ∇)0z

+n+1 −

ν + νm2

∆0z+n+1 (3.4)

− ν − νm2

∆0z−n +∇0p

+n+1 = f+(tn+1).

The second continuous momentum equation may be expressed as

1

∆t(z−(tn+1)− z−(tn)) + (z+(tn) · ∇)z−(tn+1) + (B · ∇)z−(tn+1) (3.5)

− ν + νm2

∆z−(tn+1)− ν − νm2

∆z+(tn)

=1

∆t(z−(tn+1)− z−(tn))− ∂tz−(tn+1)−∇p(tn+1) + (z+(tn) · ∇)z−(tn+1)

4 − (z+(tn+1) · ∇)z−(tn+1) +ν−νm

2∆z−(tn+1)− ν−νm

2∆z+(tn) + f−(tn+1).

The second momentum equation for the IMEX method satisfies

1

∆t(0z−n+1 −0 z

−n ) + (0z

+n · ∇)0z

−n+1 + (B · ∇)0z

−n+1 (3.6)

− ν + νm2

∆0z−n+1 −

ν − νm2

∆0z+n +∇0p

−n+1 = f−(tn+1).

Subtracting (3.4) from (3.3) and multiplying by 0e+n+1, subtracting (3.6) from (3.5)

and multiplying by 0e−n+1, adding the resulting equations and reducing gives

1

2∆t(‖0e+

n+1‖2 − ‖0e+n ‖2) +

1

2∆t(‖0e−n+1‖2 − ‖0e−n ‖2) (3.7)

+(ν − νm)2

4(ν + νm)(‖∇0e

+n+1‖2 − ‖∇0e

+n ‖2 + ‖∇0e

−n+1‖2 − ‖∇0e

−n ‖2)

+ννmν + νm

(‖∇0e+n+1‖2 + ‖∇0e

−n+1‖2)

≤ ((0z−n · ∇)0z

+n+1, 0e

+n+1)− ((z−(tn) · ∇)z+(tn+1), 0e

+n+1)

+ ((z+(tn) · ∇)z−(tn+1), 0e−n+1)− ((z+(tn+1) · ∇)z−(tn+1), 0e

−n+1)

+ ((0z+n · ∇)0z

−n+1, 0e

−n+1)− ((z+(tn) · ∇)z−(tn+1), 0e

−n+1)

+ ((z−(tn) · ∇)z+(tn+1), 0e+n+1)− ((z−(tn+1) · ∇)z+(tn+1), 0e

+n+1)

+ (z−(tn+1)− z−(tn)

∆t− ∂tz+(tn+1), 0e

−n+1)

+ (z+(tn+1)− z+(tn)

∆t− ∂tz+(tn+1), 0e

+n+1)

+νm − ν

2

(∇(z−(tn+1)− z−(tn)),∇0e

+n+1

)+νm − ν

2

(∇(z+(tn+1)− z+(tn)),∇0e

−n+1

).

The proof continues by bounding the terms occurring on the RHS of (3.7)

((0z−n · ∇)0z

+n+1, 0e

+n+1)− ((z−(tn) · ∇)z+(tn+1), 0e

+n+1) (3.8)

= ((0e+n )·∇)z+(tn+1), 0e

+n+1) ≤ Cγ−1‖0e+

n ‖2‖∇z+(tn+1)‖2∞ + γ‖∇0e+n+1‖2,

((z+(tn) · ∇)z−(tn+1), 0e−n+1)− ((z+(tn+1) · ∇)z−(tn+1), 0e

−n+1) (3.9)

= |(((z+(tn)− z+(tn+1)) · ∇)z−(tn+1), 0e

−n+1

)|

≤ C∆t2γ−1‖∂tz+(ηn)‖2‖∇z−(tn+1)‖2∞ + γ‖∇0e−n+1‖2,

((0z+n · ∇)0z

−n+1, 0e

−n+1)− ((z+(tn) · ∇)z−(tn+1), 0e

−n+1) (3.10)

= ((0e+n · ∇)z−(tn+1), 0e

−n+1) ≤ Cγ−1‖0e+

n ‖2‖∇z−(tn+1)‖2∞ + γ‖∇0e−n+1‖2,

((z−(tn) · ∇)z+(tn+1), 0e+n+1)− ((z−(tn+1) · ∇)z+(tn+1), 0e

+n+1) (3.11)

=(((z−(tn)− z−(tn+1)) · ∇)z+(tn+1), 0e

+n+1

)≤ Cγ−1∆t2‖∂tz−(ηn)‖2‖∇z+(tn)‖2∞ + γ‖∇0e

+n+1‖2,

(z−(tn+1)− z−(tn)

∆t− ∂tz+(tn+1), 0e

−n+1) (3.12)

≤ C∆t2γ−1‖∂ttz−(ηn)‖2 + γ‖∇0e−n+1‖2,

5 (z+(tn+1)− z+(tn)

∆t− ∂tz+(tn+1), 0e

+n+1) (3.13)

≤ C∆t2γ−1‖∂ttz+(ηn)‖2 + γ‖∇0e+n+1‖2,

νm − ν2

(∇(z−(tn+1)− z−(tn)),∇0e

+n+1

)(3.14)

≤ C∆t2(νm − ν)2γ−1‖∇∂tz−(ηn)‖2 + γ‖∇0e+n+1‖2,

νm − ν2

(∇(z+(tn+1)− z+(tn)),∇0e

−n+1

)(3.15)

≤ C∆t2(νm − ν)2γ−1‖∇∂tz+(ηn)‖2 + γ‖∇0e−n+1‖2.

Specifying γ = ννm8(ν+νm) , substituting (3.8)-(3.15) into (3.7), and rearranging gives

1

2∆t(‖0e+

n+1‖2 − ‖0e+n ‖2) +

1

2∆t(‖0e−n+1‖2 − ‖0e−n ‖2) (3.16)

+(ν − νm)2

4(ν + νm)(‖∇0e

+n+1‖2 − ‖∇0e

+n ‖2 + ‖∇0e

−n+1‖2 − ‖∇0e

−n ‖2)

+ννm

2(ν + νm)(‖∇0e

+n+1‖2 + ‖∇0e

−n+1‖2)

≤ C ν + νmννm

∆t2(‖∂tz+(ηn)‖2‖∇z−(tn+1)‖2∞ + ‖∂tz−(ηn)‖2‖∇z+(tn)‖2∞

+ ‖∂ttz−(ηn)‖2 + ‖∂ttz+(ηn)‖2 + (νm − ν)2‖∇∂tz−(ηn)‖2

+ (νm − ν)2‖∇∂tz+(ηn)‖2)

+ Cν + νmννm

(‖0e+

n ‖2 + ‖0e+n ‖2

)(‖∇z+(tn+1)‖2∞ + ‖∇z−(tn+1)‖2∞

).

The proof is finished by multiplying (3.16) by 2∆t, summing from n = 0 to N − 1,dropping nonnegative LHS terms, and applying Gronwall’s inequality.

3.2. Second order unconditionally stable SISDC partitioned scheme.Having shown the IMEX method is linear, unconditionally stable, modular and firstorder accurate in time we seek to develop a more accurate method that retains the‘good’ qualities of the IMEX method. To this end we employ the spectral deferredcorrection technique (for further details of this technique see [13, 33, 21]).

The second order semi-implicit spectral deferred correction method is as follows:after computing first order approximations, (0z

±n ,0 p

±n ) and (0z

±n+1,0 p

±n+1) (using for

example the IMEX method above) of (1.2) at time tn and tn+1 respectively we seekto compute (1z

±n+1,1 p

±n+1) satisfying

1

∆t(1z±n+1 −1 z

±n )− ν + νm

2∆1z

±n+1 −

ν − νm2

∆1z±n ∓ (B ·∇)1z

±n+1

+ (1z∓n ·∇)1z

±n+1 +∇1p

±n+1 = ∓(B ·∇)0z

±n+1 −

ν+νm2

∆0z±n+1 −

ν−νm2

∆0z∓n

± 1

2(B · ∇)0z

±n+1 ±

1

2(B · ∇)0z

±n +

ν + νm4

∆0z±n+1 +

ν + νm4

∆0z±n

+ν − νm

4∆0z

±n+1 +

ν − νm4

∆0z±n −

1

2(0z∓n+1 · ∇)0z

±n+1 −

1

2(0z∓n+1 · ∇)0z

±n

−∇0p±n+1 +

1

2∇(0p

±n+1 + 0p

±n ) +

1

2f(tn+1)± +

1

2f(tn)±,

∇ · z±n+1 = 0.

6 Lemma 3.2. Given a final time T > 0 and timestep ∆t > 0, let 0z±n denote the

IMEX solution at time tn = n × ∆t for n = 1, 2, ..., N . Then the solutions to theSISDC method are unconditionally stable and satisfy

‖1z+N‖

2 + ‖1z−N‖2 + ∆t

N∑k=1

ννm(ν + νm)

(‖∇1z+k ‖

2 + ‖∇1z−k ‖

2)

+ ∆t(ν − νm)2

2(ν + νm)

(‖∇1z

+N‖

2 + ‖∇1z−N‖

2)

≤ C∆tν + νmννm

N−1∑k=0

((‖B‖∞ + (ν + νm)2 + (ν − νm)2)(‖∇0z

+k+1‖

2 + ‖∇0z+k ‖

2

+ ‖∇0z−k+1‖

2 + ‖∇0z−k ‖

2) + (‖∇0z+k+1‖

2 + ‖∇0z+k ‖

2)(‖∇0z−k+1‖

2 + ‖∇0z−k ‖

2)

+ ‖f+(tk+1)‖2 + ‖f+(tk)‖2 + ‖f−(tk+1)‖2 + ‖f−(tk)‖2)

+ ‖z(t0)+‖2 + ‖z(t0)−‖2 +∆t

2

(ν − νm)2

ν + νm(‖∇z(t0)+‖2 + ‖∇z(t0)−‖2).

Proof. Multiplying the SISDC momentum equations by 1z+n+1 and 1z

−n+1 re-

spectively, applying continuity equations and polarization identity, and adding therelations gives

‖z+n+1‖2−‖z+

n ‖2+‖z+n+1−z+

n ‖2

2∆t+ν+νm

2‖∇z+

n+1‖2+ν−νm

2(∇z−n,∇z+

n+1) (3.17)

+‖z−n+1‖2−‖z−n ‖2+‖z−n+1−z−n ‖2

2∆t+ν+νm

2‖∇z−n+1‖2+

ν−νm2

(∇z+n ,∇z−n+1)

=−((B ·∇)0z+n+1, 1z

+n+1)+

ν+νm4

(∇0z+n+1,∇1z

+n+1)+

ν−νm4

(∇0z−n ,∇1z

+n+1)

+1

2((B ·∇)0z

+n+1,1z

+n+1)+

1

2((B ·∇)0z

+n ,1z

+n+1)− νm+ν

4(∇0z

−n ,∇1z

+n+1)

− ν − νm4

(∇0z−n+1,∇1z

+n+1) + ((0z

−n · ∇)0z

+n+1), 1z

+n+1)

− 1

2((0z

−n+1 ·∇)0z

+n+1,1z

+n+1)− 1

2((0z

−n ·∇)0z

+n ,1z

+n+1)+

1

2(f+(tn+1),1z

+n+1)

+1

2(f+(tn), 1z

+n+1)

+((B ·∇)0z−n+1,1z

−n+1)+

ν+νm4

(∇0z−n+1,∇1z

−n+1)+

ν−νm4

(∇0z+n ,∇1z

−n+1)

− 1

2((B ·∇)0z

−n+1,1z

−n+1)− 1

2((B ·∇)0z

−n ,1z

−n+1)− νm+ν

4(∇0z

−n ,∇1z

−n+1)

− ν − νm4

(∇0z−n+1,∇1z

−n+1) + ((0z

+n · ∇)0z

−n+1), 1z

−n+1)

− 1

2((0z

+n+1 ·∇)0z

−n+1,1z

−n+1)− 1

2((0z

+n ·∇)0z

−n ,1z

−n+1)+

1

2(f−(tn+1),1z

+n+1)

+1

2(f−(tn), 1z

+n+1).

Lower bounding dissipation terms on the LHS of (3.17) using the Cauchy-Schwarzinequality and polarization identity (for further details see ) and dropping non-

7 negative terms gives

1

2∆t

(‖1z−n+1‖2 − ‖1z+

n ‖2)

+1

2∆t

(‖1z−n+1‖2 − ‖1z−n ‖2

)(3.18)

+ννm

2(ν + νm)(‖∇1z

+n+1‖2 + ‖∇1z

−n+1‖2) +

(ν − νm)2

4(ν + νm)

(‖∇1z

+n+1‖2 − ‖∇1z

+n ‖2

+ ‖∇1z−n+1‖2 − ‖∇1z

−n ‖2

)≤−((B ·∇)0z

+n+1,1z

+n+1)+

ν+νm4

(∇0z+n+1,∇1z

+n+1)+

ν−νm4

(∇0z−n ,∇1z

+n+1)

+1

2((B ·∇)0z

+n+1,1z

+n+1)+

1

2((B ·∇)0z

+n ,1z

+n+1)− νm+ν

4(∇0z

−n ,∇1z

+n+1)

− ν − νm4

(∇0z−n+1,∇1z

+n+1) + ((0z

−n · ∇)0z

+n+1), 1z

+n+1)

− 1

2((0z

−n+1 ·∇)0z

+n+1,1z

+n+1)− 1

2((0z

−n ·∇)0z

+n ,1z

+n+1)+

1

2(f+(tn+1),1z

+n+1)

+1

2(f+(tn), 1z

+n+1)

+((B ·∇)0z−n+1,1z

−n+1)+

ν+νm4

(∇0z−n+1,∇1z

−n+1)+

ν−νm4

(∇0z+n , |!∇1z

−n+1)

− 1

2((B ·∇)0z

−n+1,1z

−n+1)− 1

2((B ·∇)0z

−n ,1z

−n+1)− νm+ν

4(∇0z

−n,∇1z

−n+1)

− ν − νm4

(∇0z−n+1,∇1z

−n+1) + ((0z

+n · ∇)0z

−n+1), 1z

−n+1)

− 1

2((0z

+n+1 ·∇)0z

−n+1,1z

−n+1)− 1

2((0z

+n ·∇)0z

−n ,1z

−n+1)+

1

2(f−(tn+1),1z

+n+1)

+1

2(f−(tn), 1z

+n+1).

Majorizing the RHS terms of (3.18) with standard inequalities gives

1

2∆t

(‖1z−n+1‖2 − ‖1z+

n ‖2)

+1

2∆t

(‖1z−n+1‖2 − ‖1z−n ‖2

)+

ννm2(ν+νm)

(‖∇1z+n+1‖2+‖∇1z

−n+1‖2)+

(ν−νm)2

4(ν+νm)

(‖∇1z

+n+1‖2−‖∇1z

+n ‖2

+ ‖∇1z−n+1‖2 − ‖∇1z

−n ‖2

)≤ C ν + νm

(ν − νm)2

((‖B‖∞ + (ν + νm)2 + (ν − νm)2)(‖∇0z

+n+1‖2 + ‖∇0z

+n ‖2

+‖∇0z−n+1‖2+‖∇0z

−n ‖2)+(‖∇0z

+n+1‖2+‖∇0z

+n ‖2)(‖∇0z

−n+1‖2+‖∇0z

−n ‖2)

+ ‖f+n+1‖2 + ‖f+

n ‖2 + ‖f−n+1‖2 + ‖f−n ‖2).

Multiplying by 2∆t and summing over timesteps yields the desired result.

The purpose of adding the correction step is to develop a more accurate numericalmethod and so we seek to show that the SISDC solutions are in fact second orderaccurate. To this end we state and prove the following lemma, which is necessary forthe proof of the accuracy of the SISDC method.

Lemma 3.3. Given a final time T > 0 and timestep ∆t > 0 let 0z±n be the IMEX

approximation to z(n∆t)± for n = 1, 2, ..., N . Let 0e±n = z(tn)± − 0z

±n Provided the

8 true solution satisfies the additional regularity assumptions

∂tttz±∈L2((0, T );L2(Ω)), ∂tz

±∈L2((0, T );L∞(Ω)),∇∂tz±∈L2((0, T );L∞(Ω))

the discrete time derivative of the IMEX is first order accurate in time and satisfies

‖ 0e+N − 0e

+N−1

∆t‖2 + ‖ 0e

−N − 0e

−N−1

∆t‖2

+ ∆tννmν + νm

N−1∑n=0

(∥∥∥∇(0e+N − 0e

+N−1)

∆t

∥∥∥2

+∥∥∥∇(0e

−N − 0e

−N−1)

∆t

∥∥∥2)≤ C ν + νm

ννmexp

(∆t

N−1∑n=0

(‖∇z+(tn)‖2∞ + ‖∇z−(tn+1)‖2∞))×

×∆t

N−1∑n=0

(∆t2‖∂tttz+(ηn)‖2 + ∆t2‖∂tttz−(ηn)‖2 + ∆t2‖∇∂tz+(ηn)‖2∞

+ ∆t2‖∇∂tz−(ηn)‖2‖∇∂tz+(ηn)‖2 + ∆t2‖∇∂ttz−(ηn)‖2‖∇z+(tn)‖2

+ ∆t2‖∇∂ttz+(ηn)‖2‖∇∂tz−(tn)‖2 + ‖∂tz−(ηn)‖2∞‖∇0e+n+1‖2

+ ‖∇∂tz+(ηn)‖2‖∇0e−n ‖2 + ‖∂tz+(ηn)‖2∞‖∇0e

−n+1‖2

+ ‖∇∂tz−(ηn)‖2‖∇0e+n ‖2 + ‖∇0e

+n ‖2 + ‖∇0e

−n ‖2

).

Proof. For ease of notation we begin by defining sn+1± := 1∆t (0e

±n+1 − 0e

±n ).

Next consider (3.3) and (3.4) at timesteps n+ 1 and n. Subtracting (3.4) from (3.3)at timestep n+ 1 gives an equation involving 0e

+n+1, and subtracting (3.4) from (3.3)

at timestep n gives an equation involving 0e+n . We then subtract the new equations

involving the IMEX errors to get an equation that involves s+n+1. We similarly derive

an equation involving s−n+1. Multiplying the respective equations by 1∆ts

+n+1 and

1∆ts

−n+1, adding the equations, and reducing gives

12∆t (‖s

+n+1‖2−‖s+

n ‖2) + 12∆t (‖s

−n+1‖2−‖s−n ‖2) + ν+νm

2 (‖∇s+n+1‖2+‖∇s−n+1‖2)

+ (ν−νm)2

4(ν+νm)

(‖∇s+

n+1‖2−‖∇s+n ‖2+‖∇s−n+1‖2−‖∇s−n ‖2

)(3.19)

=( 1

∆t((0z

−n · ∇)0z

+n+1, s

+n+1)− 1

∆t((z−(tn) · ∇)z+(tn+1), s+

n+1)

+1

∆t((z−(tn−1) · ∇)z+(tn), s+

n+1)− 1

∆t((0z

−n−1 · ∇)0z

+n , s

+n+1)

)+( 1

∆t((0z

+n · ∇)0z

−n+1, s

−n+1)− 1

∆t((z+(tn) · ∇)z−(tn+1), s−n+1)

+1

∆t((z+(tn−1) · ∇)z−(tn), s−n+1)− 1

∆t((0z

+n−1 · ∇)0z

−n , s

−n+1)

)+( 1

∆t((z−(tn) · ∇)z+(tn+1), s+

n+1)− 1

∆t((z−(tn+1) · ∇)z+(tn+1), s+

n+1)

+1

∆t((z−(tn) · ∇)z+(tn), s+

n+1)− 1

∆t((z−(tn−1) · ∇)z+(tn), s+

n+1))

+( 1

∆t((z+(tn) · ∇)z−(tn+1), s−n+1)− 1

∆t((z+(tn+1) · ∇)z−(tn+1), s−n+1)

+1

∆t((z+(tn) · ∇)z−(tn), s−n+1)− 1

∆t((z+(tn−1) · ∇)z−(tn), s−n+1)

)9 +1

∆t

(z+(tn+1)− z+(tn)

∆t− ∂tz+(tn+1), s+

n+1

)− 1

∆t

(z+(tn)− z+(tn−1)

∆t− ∂tz+(tn), s+

n+1

)+

1

∆t

(z−(tn+1)−z−(tn)

∆t−∂tz−(tn+1), s−n+1

)− 1

∆t

(z−(tn)−z−(tn−1)

∆t−∂tz−(tn), s−n+1

).

After bounding the nonlinear terms of (3.19) (see A.1) applying Taylor series to theremaining linear terms of (3.19) yields

1

∆t

∣∣∣(z+(tn+1)− z+(tn)

∆t− ∂tz+(tn+1), s+

n+1

)(3.20)

−(z+(tn)− z+(tn−1)

∆t− ∂tz+(tn), s+

n+1

)∣∣∣≤ Cγ−1∆t2‖∂tttz+(ηn)‖2 + γ‖∇s+

n+1‖2,1

∆t

∣∣∣(z−(tn+1)− z−(tn)

∆t− ∂tz−(tn+1), s−n+1

)(3.21)

−(z−(tn)− z−(tn−1)

∆t− ∂tz−(tn), s−n+1

)∣∣∣≤ Cγ−1∆t2‖∂tttz−(ηn)‖2 + γ‖∇s−n+1‖2.

Having bounded all RHS terms of (3.19) we continue by choosing γ = ννm14(ν+νm) , sub-

stituting (A.7), (A.8), (A.9), (A.10), (3.20), and (3.21) into (3.19), and rearranging.Multiplying the resulting equation by 2∆t gives

(‖s+n+1‖2−‖s+

n ‖2) + (‖s−n+1‖2−‖s−n ‖2) + ∆tννm

(ν+νm)(‖∇s+

n+1‖2+‖∇s−n+1‖2)

+ ∆tννm

2(ν + νm)(‖∇s+

n+1‖2 − ‖∇s+n ‖2 + ‖∇s−n+1‖2 − ‖∇s−n ‖2) (3.22)

≤ C∆tν + νmννm

(‖s+n ‖2 + ‖s−n ‖2

)(‖∇z+(tn+1)‖2∞ + ‖∇z−(tn+1)‖2∞

)+ C∆t

ν + νmννm

(‖∂tz−(ηn)‖2∞‖∇0e

+n+1‖2 + ‖0e−n−1‖2‖∇∂tz+(ηn)‖2∞

+ ‖∂tz+(ηn)‖2∞‖∇0e−n+1‖2 + ‖0e+

n−1‖2‖∇∂tz−(ηn)‖2∞+ ∆t2‖∇∂tz−(ηn)‖2‖∇∂tz+(ηn)‖2 + ∆t2‖∇∂ttz−(ηn)‖2‖∇z+(tn)‖2

+ ∆t2‖∇∂tz+(ηn)‖2‖∇∂tz−(ηn)‖2 + ∆t2‖∇∂ttz+(ηn)‖2‖∇z−(tn)‖2

+ ∆t2‖∂tttz+(ηn)‖2 + ∆t2‖∂tttz−(ηn)‖2)

+ Cν + νmννm

∆t‖∇s+n ‖2‖∇0e

−n+1‖4 + C

ν + νmννm

∆t‖∇s−n ‖2‖∇0e+n+1‖4.

To finish deriving the error bound requires an application of Gronwall’s inequality.However, there are two subtleties that prevent us from doing this immediately. Thefirst complication is the last two terms of (3.22) involve ∇s±n , and so they requirefurther treatment. Recall that 0e

±n denotes the error in the IMEX solution, and so

we have the following

∆t‖∇0e+n+1‖4 =

(∆t‖∇0e±n+1‖2)2

∆t≤ C∆t3. (3.23)

10 Using (3.23) we derive bounds for the last two terms of (3.22) as follows

∆t‖∇s±n ‖2‖∇0e∓n+1‖4 ≤ C∆t3‖∇s±n ‖2 ≤ C∆t‖∇e±n ‖2 + C∆t‖∇e±n−1‖2. (3.24)

The other subtlety that requires our attention is it is only possible to sum from (3.22)n = 1 to N − 1, because s±0 = 1

∆t (0e0± − 0e−1

±) is not defined, and this leavesnonpositive terms on the LHS that must be dealt with. After we sum (3.22) fromn = 1 to N −1 we are left with the terms −‖s+

1 ‖2, −‖∇s+1 ‖2, −‖s−1 ‖2, and −‖∇s−1 ‖2

on the LHS. To apply Gronwall’s inequality requires moving these terms to the RHS,and to yield the desired result we need these bounded by a multiple of ∆t2. Recallthat the IMEX method is a first order accurate method, which implies the local error(0e±1 ) in the method is second order accurate. Thus, we have the following bound

‖s+1 ‖2 = ‖ 1

∆t(0e

+1 − 0e

+0 )‖2 = ‖ 1

∆t0e

+1 ‖2 ≤ C∆t2. (3.25)

Bounds for ‖∇s+1 ‖2, ‖s−1 ‖2, and ‖∇s−1 ‖2 can be derived similarly.

Substituting (3.24) in to (3.22), summing from n = 1 to N − 1, rearranging andapplying the discrete Gronwall lemma finishes the proof.

We now state and prove the main result, that solutions found with the SISDCmethod are second order accurate.

Theorem 3.4. Given final time T > 0 and timestep ∆t > 0 let 0z±n and 1z

±n

respectively denote the IMEX and SISDC approximations to z± at time tn = n∆t forn = 1, 2, ..., N , and let 1e

±n := z±(tn)− 1z

±n . Additionally, we let s±n+1 = 1

∆t (0e±n+1−

0e±n ) for n = 1, 2, ..., N−1. Provided the true solution satisfies the additional regularity

∇z± ∈ L2((0, T );L2), ∂tt(z∓ · ∇)z± ∈ L2((0, T );L2),

∂tt∇z± ∈ L2((0, T );L2), and ∂ttf+, ∂ttf

− ∈ L2((0, T );L2),

then the SISDC approximation is second order accurate in time and satisfies

‖1e+N‖

2 + ‖1e−N‖2 + ∆t

ννmν + νm

N∑n=0

(‖∇1e+n ‖2 + ‖∇1e

−n ‖2)

≤ C ν + νmννm

exp(

∆t

N−1∑n=0

‖∇z+(tn)‖2∞ + ‖∇z−(tn)‖2∞)×

×(

∆t

N−1∑n=0

Cν + νmννm

∆t2‖∇B‖2‖∇s+n+1‖2 + ∆t2‖∇B‖2‖∇s−n+1‖2

+∆t2‖∇z−(tn)‖2‖∇s+n+1‖2+∆t2‖∇0e

−n ‖2‖∇s+

n+1‖2+∆t2‖∇0z−n ‖2‖∇s+

n+1‖2

+∆t2‖∇s−n+1‖2‖∇0e+n+1‖2+∆t2‖∇∂tz−(ηn)‖2‖∇0e

+n+1‖2

+∆t2‖∇s−n+1‖2‖∇z+(tn+1)‖2+∆t2‖∇0e−n+1‖2‖∇∂tz+(ηn)‖2

+∆t2‖∇s−n+1‖2‖∇z+(tn)‖2+∆t2‖∇z+(tn)‖2‖∇s−n+1‖2

+∆t2‖∇0e+n ‖2‖∇s−n+1‖2+∆t2‖∇0z

+n ‖2‖∇s−n+1‖2+∆t2‖∇s+

n+1‖2‖∇0e−n+1‖2

+ ∆t2‖∇∂tz+(ηn)‖2‖∇0e−n+1‖2 + ∆t2‖∇s+

n+1‖2‖∇z−(tn+1)‖2

+ ∆t2‖∇0e+n+1‖2‖∇∂tz−(ηn)‖2 + ∆t2‖∇s+

n+1‖2‖∇z−(tn)‖2

+∆t2(ν+νm)2‖∇s+n+1‖2+∆t2(ν−νm)2‖∇s−n+1‖2+∆t2(ν+νm)2‖∇s−n+1‖2

+∆t2(ν−νm)2‖∇s+n+1‖2+∆t4‖∂ttF (ηn)‖2+∆t4‖∂ttF (ηn)‖2

).

11 Proof. We begin the proof by defining F+ and F− as follows

F+ := (B ·∇)z+−(z− ·∇)z++ν+νm

2∆z++

ν−νm2

∆z−+f+−∇p, (3.26)

F− :=−(B · ∇)z+−(z− ·∇)z++ν+νm

2∆z++

ν−νm2

∆z−+f−−∇p. (3.27)

We may express the first continuous momentum equation as

1

∆t(z+(tn+1)− z+(tn)) =

1

∆t

∫ tn+1

tn

F+dτ.

Applying the trapezoid rule to the integral gives

1

∆t(z+(tn+1)− z+(tn))− ν + νm

2∆z+(tn+1)− ν − νm

2∆z−(tn) (3.28)

=1

2(B · ∇)z+(tn+1) +

1

2(B · ∇)z+(tn)− 1

2(z−(tn+1) · ∇)z+(tn+1)

− 1

2(z−(tn) · ∇)z+(tn)− ν + νm

4∆z+(tn+1) +

ν + νm4

∆z+(tn)

+ν − νm

4∆z−(tn+1)− ν − νm

4∆z−(tn) +

1

2f+(tn+1) +

1

2f+(tn)

− 1

2∇p(tn+1)− 1

2∇p(tn) + C∆t2∂ttF

+(ηn).

The first momentum equation for the SISDC method is

1

∆t(1z

+n+1 − 1z

+n )− ν + νm

2∆1z

+n+1 −

ν − νm2

∆1z+n (3.29)

= (B · ∇)1z+n+1 − (B · ∇)0z

+n+1 −

ν + νm2

∆0z+n+1 −

ν − νm2

∆0z−n

+1

2(B · ∇)0z

+n+1 +

1

2(B · ∇)0z

+n +

ν + νm4

∆0z+n+1 +

ν + νm4

∆0z+n

+ν − νm

4∆0z

−n+1 +

ν − νm4

∆0z−n − (1z

−n · ∇)1z

+n+1 + (0z

−n · ∇)0z

+n+1

− 1

2(0z−n+1 · ∇)0z

+n+1 −

1

2(0z−n · ∇)0z

+n +

1

2f+(tn+1) +

1

2f+(tn).

We may similarly express the second momentum equation as

1

∆t(z−(tn+1)− z−(tn)) =

1

∆t

∫ tn+1

tn

F−dτ.

Applying the trapezoid rule to the integral gives

1

∆t(z−(tn+1)− z−(tn))− ν + νm

2∆z−(tn+1)− ν − νm

2∆z+(tn) (3.30)

= −1

2(B · ∇)z+(tn+1)− 1

2(B · ∇)z+(tn)− 1

2(z+(tn+1) · ∇)z−(tn+1)

− 1

2(z+(tn) · ∇)z−(tn)− ν + νm

4∆z−(tn+1) +

ν + νm4

∆z−(tn)

+ν − νm

4∆z+(tn+1)− ν − νm

4∆z+(tn) +

1

2f−(tn+1)

12 +1

2f−(tn)− 1

2∇p(tn+1)− 1

2∇p(tn) + C∆t2∂ttF

−(ηn).

The second momentum equation for the SISDC method is

1

∆t(1z−n+1 − 1z

−n )− ν + νm

2∆1z

−n+1 −

ν − νm2

∆1z−n (3.31)

= −(B · ∇)1z+n+1 + (B · ∇)0z

+n+1 −

ν + νm2

∆0z+n+1 −

ν − νm2

∆0z−n

− 1

2(B · ∇)0z

+n+1 −

1

2(B · ∇)0z

+n +

ν + νm4

∆0z+n+1 +

ν + νm4

∆0z+n

+ν − νm

4∆0z

−n+1 +

ν − νm4

∆0z−n − (1z

+n · ∇)1z

−n+1 + (0z

+n · ∇)0z

−n+1

− 1

2(0z

+n+1 · ∇)0z

−n+1 −

1

2(0z

+n · ∇)0z

−n +

1

2f−(tn+1) +

1

2f−(tn).

Subtracting (3.29) from (3.28) and multiplying the result by 1e+n+1 gives an equation

in terms of 1e+n+1. Similarly, subtracting (3.31) from (3.30) and multiplying the result

by 1e−n+1 gives an equation in terms of 1e

−n+1. Adding these relations, reducing, and

lower bounding dissipation terms gives

1

2∆t(‖1e+

n+1‖2 − ‖1e+n ‖2) +

1

2∆t(‖1e−n+1‖2 − ‖1e−n ‖2) (3.32)

+ννmν + νm

(‖∇1e+n+1‖2 + ‖∇1e

−n+1‖2)

+(ν − νm)2

4(ν + νm)(‖∇1e

+n+1‖2 − ‖∇1e

+n ‖2 + ‖∇1e

−n+1‖2 − ‖∇1e

−n ‖2)

≤∣∣∣(1

2((B · ∇)z+(tn+1), 1e

+n+1) +

1

2((B · ∇)z+(tn), 1e

+n+1)

−((B ·∇)1z+n+1, 1e

+n+1)+

1

2((B ·∇)0z

+n+1, 1e

+n+1)− 1

2((B ·∇)0z

+n , 1e

+n+1)

)+(− 1

2((B ·∇)z−(tn+1), 1e

−n+1)− 1

2((B · ∇)z−(tn), 1e

−n+1)

+ ((B · ∇)1z−n+1, 1e

−n+1)− 1

2((B · ∇)0z

−n+1, 1e

−n+1)

+(− 1

2((z−(tn+1) · ∇)z+(tn+1), 1e

+n+1)− 1

2((z−(tn) · ∇)z+(tn), 1e

+n+1)

+ ((1z−n · ∇)1z

+n+1, 1e

+n+1)− ((0z

−n · ∇)0z

+n+1, 1e

+n+1)

+1

2((0z

−n+1 · ∇)0z

+n+1, 1e

+n+1) +

1

2((0z

−n · ∇)0z

+n , 1e

+n+1)

)+(− 1

2((z+(tn+1) · ∇)z−(tn+1), 1e

−n+1)− 1

2((z+(tn) · ∇)z−(tn), 1e

−n+1)

+ ((1z+n · ∇)1z

−n+1, 1e

−n+1)− ((0z

+n · ∇)0z

−n+1, 1e

−n+1)

+1

2((0z

+n+1 · ∇)0z

−n+1, 1e

−n+1) +

1

2((0z

+n · ∇)0z

−n , 1e

−n+1)

)+(ν + νm

4(∇z+(tn+1),∇, 1e+

n+1)− ν + νm4

(∇z+(tn),∇, 1e+n+1)

+ν − νm

4(∇z−(tn),∇, 1e+

n+1)− ν − νm4

(∇z−(tn+1),∇, 1e+n+1)

− ν + νm4

(∇0z+n+1,∇, 1e

+n+1)− ν − νm

4(∇0z

−n ,∇, 1e+

n+1)

13 +ν − νm

4(∇0z

−n+1,∇, 1e

+n+1) +

ν + νm4

(∇0z−n ,∇, 1e+

n+1))

+(ν + νm

4(∇z−(tn+1),∇, 1e−n+1)− ν + νm

4(∇z−(tn),∇, 1e−n+1)

− ν − νm4

(∇z+(tn+1),∇, 1e−n+1) +ν − νm

4(∇z+(tn),∇, 1e−n+1)

− ν + νm4

(∇0z−n+1,∇, 1e

−n+1)− ν − νm

4(∇0z

+n ,∇, 1e−n+1)

+ν + νm

4(∇0z

−n ,∇, 1e−n+1) +

ν − νm4

(∇0z−n+1,∇, 1e

−n+1)

)+(C∆t2(∂ttF

+, 1e+n+1) + C∆t2(∂ttF

−, 1e−n+1)

)∣∣∣.The RHS terms of (3.32) are separated into seven groups. To derive the bound forthe first group we add and subtract 1

2 ((B · ∇)z+(tn+1), 1e+n+1) to see

|12

((B · ∇)z+(tn+1), 1e+n+1) +

1

2((B · ∇)z+(tn), 1e

+n+1) (3.33)

−((B ·∇)1z+n+1, 1e

+n+1)+

1

2((B ·∇)0z

+n+1, 1e

+n+1)− 1

2((B ·∇)0z

+n , 1e

+n+1)|

=1

2((B · ∇)(0e

+n+1 − 0e

+n ), 1e

+n+1)

≤ Cγ−1∆t2‖∇B‖2‖∇s+n+1‖2 + γ‖∇1e

+n+1‖2.

The second group of terms in bounded as follows

| − 1

2((B · ∇)z−(tn+1), 1e

−n+1)− 1

2((B · ∇)z−(tn), 1e

−n+1) (3.34)

+((B ·∇)1z−n+1, 1e

−n+1)− 1

2((B ·∇)0z

−n+1, 1e

−n+1) +

1

2((B ·∇)0z

−n , 1e

−n+1)|

≤ Cγ−1∆t2‖∇B‖2‖∇s−n+1‖2 + γ‖∇1e−n+1‖2.

The remaining grouped terms are bounded similarly and details are provided below(see A.2). Specifying γ = ννm

26(ν+νm) , substituting the bounds (3.33), (3.34), (A.17),

(A.18), (A.19), (A.20), (A.21), and (A.22) in to (3.32) and rearranging gives

1

2∆t(‖1e+

n+1‖2 − ‖1e+n ‖2) +

1

2∆t(‖1e−n+1‖2 − ‖1e−n ‖2) (3.35)

+ννm

2(ν + νm)(‖∇1e

+n+1‖2 + ‖∇1e

−n+1‖2)

+(ν − νm)2

4(ν + νm)(‖∇1e

+n+1‖2 − ‖∇1e

+n ‖2 + ‖∇1e

−n+1‖2 + ‖∇1e

−n ‖2)

≤ C ν + νmννm

(∆t2‖∇B‖2‖∇s+

n+1‖2 + ∆t2‖∇B‖2‖∇s−n+1‖2

+∆t2‖∇z−(tn)‖2‖∇s+n+1‖2+∆t2‖∇0e

−n ‖2‖∇s+

n+1‖2+∆t2‖∇0z−n ‖2‖∇s+

n+1‖2

+ ∆t2‖∇s−n+1‖2‖∇0e+n+1‖2 + ∆t2‖∇∂tz−(ηn)‖2‖∇0e

+n+1‖2

+ ∆t2‖∇s−n+1‖2‖∇z+(tn+1)‖2 + ∆t2‖∇0e−n+1‖2‖∇∂tz+(ηn)‖2

+ ∆t2‖∇s−n+1‖2‖∇z+(tn)‖2 + ∆t2‖∇z+(tn)‖2‖∇s−n+1‖2

+∆t2‖∇0e+n ‖2‖∇s−n+1‖2+∆t2‖∇0z

+n ‖2‖∇s−n+1‖2+∆t2‖∇s+

n+1‖2‖∇0e−n+1‖2

14 + ∆t2‖∇∂tz+(ηn)‖2‖∇0e−n+1‖2 + ∆t2‖∇s+

n+1‖2‖∇z−(tn+1)‖2

+ ∆t2‖∇0e+n+1‖2‖∇∂tz−(ηn)‖2 + ∆t2‖∇s+

n+1‖2‖∇z−(tn)‖2

+∆t2(ν+νm)2‖∇s+n+1‖2+∆t2(ν−νm)2‖∇s−n+1‖2+∆t2(ν+νm)2‖∇s−n+1‖2

+ ∆t2(ν − νm)2‖∇s+n+1‖2 + ∆t4‖∂ttF+(ηn)‖2 + ∆t4‖∂ttF−(ηn)‖2

)+ C

ν + νmννm

(‖1e−n ‖2 + ‖1e+n ‖2)(‖∇z+(tn+1)‖2∞ + ‖∇z−(tn+1)‖2∞).

Multiplying (3.35) by 2∆t, summing from n = 0 to N − 1, and applying Gronwall’sinequality finishes the proof.

4. Computational results. Consider a well-known test problem for the 2-DNSE: two-dimensional wave propagation (considered on a square [0.5, 1.5]× [0.5, 1.5]).This example is chosen because the solutions are varying smoothly in space so that itis easier to track the error due to the temporal discretization; for more details on thetraveling wave test problem see, e.g., [34, 26, 19] and the references therein. Let theflow be electrically conducting, and introduce the time-varying magnetic field so thatthe true solution (in Elsasser variables z+, z−) is

z+=

(0.75 + 0.25 cos(2π(x−t)) sin(2π(y−t))e−8π2tRe−1

+ 0.1(y+1)3etRe−1m

−0.25 sin(2π(x−t)) cos(2π(y−t))e−8π2tRe−1

+ 0.1(x+1)3etRe−1m

),

z−=

(0.75 + 0.25 cos(2π(x−t)) sin(2π(y−t))e−8π2tRe−1 − 0.1(y+1)3etRe−1

m

−0.25 sin(2π(x−t)) cos(2π(y−t))e−8π2tRe−1 − 0.1(x+1)3etRe−1m

),

p=− 1

64(cos(4π(x− t)) + cos(4π(y − t)))e−16π2tRe−1

.

We test the case of a laminar flow, and we also want Re 6= Rem to avoid unnec-essary cancelation of terms, therefore we choose Re = 1, Rem = 10. Galerkin finiteelement method is employed, using the Taylor-Hood elements (piecewise quadraticpolynomials for z+ and z− and piecewise linear polynomials for p). The resultspresented were obtained by using the software package FreeFEM + +.

We compare the true solution to a solution obtained by our two-step deferredcorrection method. It follows from the theoretical results that an error of the orderO(k+h2) is to be expected when approximating the true solution (z+, z−) by the first-step variables (w, z) (this is the IMEX method). Then, the correction-step variables(cw, cz) should approximate the true solution (z+, z−) with O(k2 + h2).

We set the time step equal to the mesh size, k = h, to verify the claimed second-order accuracy of the method. The tables below demonstrate the first-order accuracyof the IMEX approximation (w, z) and the second-order accuracy of the correctionstep approximation (cw, cz). The error is measured in the spatial norm L2([0.5, 1.5]2)at the final time level T = 1, N = T

∆t = 1h .

The convergence rates in Tables 4.1, 4.2 were computed using the step sizes h =1/4, 1/16, 1/64, and the correction step approximation is clearly of the second order; ifthe IMEX approximations for z+(T ) and z−(T ) are computed with h = 1/64 and h =1/128, then the corresponding IMEX convergence rates are 1.07 and 1.09, respectively.Hence, the computational results are consistent with the claimed accuracy of themethod.

15 Table 4.1: First-order approximation, IMEX, Re = 1, Rem = 10, T = 1.

h ‖z+(T )− wN‖L2(Ω) rate ‖z−(T )− zN‖L2(Ω) rate1/4 0.0260319 0.02407261/16 0.0026907 1.64 0.00276714 1.561/64 0.000416796 1.35 0.000423207 1.35

Table 4.2: Correction step approximation (second order), Re = 1, Rem = 10, T = 1.

h ‖z+(T )− cwN‖L2(Ω) rate ‖z−(T )− czN‖L2(Ω) rate1/4 0.0444342 0.04669171/16 0.00234416 2.12 0.00221543 2.21/64 0.000123658 2.12 0.00012288 2.09

5. Conclusions. When solving full evolutionary MHD systems, it is usuallymore computationally cheap to employ partitioned (rather than monolithic) methods.These methods aim at decoupling the MHD system by successively solving the twosub-physics problems. Not only this approach is computationally attractive (for largeN it is much cheaper to solve the N ×N subsystem twice, than the full (2N)× (2N)one time), but it also allows for parallelization and the use of legacy codes for thephysical subproblems. An unconditionally stable (although only first-order accurate)IMEX method was proposed in , which decouples the full MHD system usingthe explicit discretization of the coupling terms. In this paper, we have introducedand thoroughly studied the higher-order accurate method, which utilizes the deferredcorrection approach, built on the fore-mentioned IMEX scheme. The choice of thedeferred correction (as opposed to other high order methods like Adaptive Runge-Kutta or the BDFs) is based on the fact that different terms in the MHD systemscan evolve on different time scales - and the deferred correction is known to be welltailored for such problems. We proved the unconditional stability of our method and(for the case of the two-step method) its second order accuracy. The claimed accuracywas then numerically verified on a test problem of the wave traveling in the presence ofthe magnetic field. This test problem was chosen because the error is affected mainlyby its temporal component, and not the spatial component (the study of possiblydifferent spatial discretizations is outside of the scope of this paper). As a result, weobtained a method for solving full evolutionary MHD systems in Elsasser variables,which is fast, unconditionally stable and second order accurate, and allows for theusage of different sizes of time steps for different terms of the MHD system.

REFERENCES

 H. Alfven. Existence of electromagnetic-hydrodynamic waves. Nature, 150:405, 1942. 1 L. Barleon, V. Casal, and L. Lenhart. MHD flow in liquid-metal-cooled blankets. Fusion

Engineering and Design, 14(3-4):401 – 412, 1991. 1 John D. Barrow, Roy Maartens, and Christos G. Tsagas. Cosmology with inhomogeneous

magnetic fields. Phys. Rep., 449(6):131–171, 2007. 1 D. Biskamp. Magnetohydrodynamic turbulence. Cambridge: Cambridge University Press, 2003.

2 Dieter Biskamp. Nonlinear magnetohydrodynamics, volume 1 of Cambridge Monographs on

Plasma Physics. Cambridge University Press, Cambridge, 1993. 2

16 Peter Bodenheimer, Gregory P. Laughlin, Micha l Rozyczka, and Harold. W Yorke. Numericalmethods in astrophysics. Series in Astronomy and Astrophysics. Taylor & Francis, NewYork, 2007. 1

 Anne Bourlioux, Anita T. Layton, and Michael L. Minion. High-order multi-implicit spectraldeferred correction methods for problems of reactive flow. J. Comput. Phys., 189(2):651–675, 2003. 1, 2

 P. A. Davidson. An introduction to magnetohydrodynamics. Cambridge Texts in AppliedMathematics. Cambridge University Press, Cambridge, 2001. 1

 M. Dobrowolny, A. Mangeney, and P. Veltri. Fully developed anisotropic hydromagnetic tur-bulence in interplanetary space. Phys. Rev. Lett., 45:144–147, 1980. 2

 Charles R. Doering and J. D. Gibbon. Applied analysis of the Navier-Stokes equations. Cam-bridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1995. 3

 Emmanuel Dormy and Manuel Nunez. Introduction [Special issue: Magnetohydrodynamics inastrophysics and geophysics]. Geophys. Astrophys. Fluid Dyn., 101(3-4):169, 2007. 1

 Emmanuel Dormy and Andrew M. Soward, editors. Mathematical aspects of natural dynamos,volume 13 of Fluid Mechanics of Astrophysics and Geophysics. Grenoble Sciences. Uni-versite Joseph Fourier, Grenoble, 2007. 1

 Alok Dutt, Leslie Greengard, and Vladimir Rokhlin. Spectral deferred correction methods forordinary differential equations. BIT, 40(2):241–266, 2000. 1, 2, 6

 W.M. Elsasser. The hydromagnetic equations. Phys. Rev., II. Ser., 79:183, 1950. 2 Angel Fierros Palacios. The Hamilton-type principle in fluid dynamics. Springer, Vienna,

2006. Fundamentals and applications to magnetohydrodynamics, thermodynamics, andastrophysics. 1

 J. A. Font. General relativistic hydrodynamics and magnetohydrodynamics: hyperbolic systemsin relativistic astrophysics. In Hyperbolic problems: theory, numerics, applications, pages3–17. Springer, Berlin, 2008. 1

 S. Galtier, S. V. Nazarenko, A. C. Newell, and A. Pouquet. A weak turbulence theory forincompressible MHD, 2000. 2

 Jean-Frederic Gerbeau, Claude Le Bris, and Tony Lelievre. Mathematical methods for the mag-netohydrodynamics of liquid metals. Numerical Mathematics and Scientific Computation.Oxford University Press, Oxford, 2006. 2

 J. F. Gibson, J. Halcrow, and P. Cvitanovic. Equilibrium and travelling-wave solutions of planeCouette flow. Journal of Fluid Mechanics, 638:243–266, 2009. 15

 P. Goldreich and S. Sridhar. Toward a theory of interstellar turbulence. 2: Strong alfvenicturbulence. Astrophysical Journal, 438:763–775, 1995. 2

 M. Gunzburger and A. Labovsky. High accuracy method for turbulent flow problems. M3AS:Mathematical Models and Methods in Applied Sciences, 22(6):1250005, 2012. 6

 Hidetoshi Hashizume. Numerical and experimental research to solve MHD problem in liquidblanket system. Fusion Engineering and Design, 81(8-14):1431–1438, 2006. 1

 John G. Heywood and Rolf Rannacher. Finite-element approximation of the nonstationaryNavier-Stokes problem. IV. Error analysis for second-order time discretization. SIAM J.Numer. Anal., 27(2):353–384, 1990. 3

 W. Hillebrandt and F. Kupka, editors. Interdisciplinary aspects of turbulence, volume 756 ofLecture Notes in Physics. Springer-Verlag, Berlin, 2009. 1

 P. S. Iroshnikov. Turbulence of a conducting fluid in a strong magnetic field. Soviet Astronom.AJ, 7:566–571, 1964. 2

 Samet Y. Kadioglu, Rupert Klein, and Michael L. Minion. A fourth-order auxiliary variableprojection method for zero-Mach number gas dynamics. J. Comput. Phys., 227(3):2012–2043, 2008. 15

 R. Kraichnan. Inertial-range spectrum of hydromagnetic turbulence. Physics of Fluids, 8:1385,1965. 2

 L. D. Landau and E. M. Lifshitz. Electrodynamics of continuous media. Course of TheoreticalPhysics, Vol. 8. Translated from the Russian by J. B. Sykes and J. S. Bell. Pergamon Press,Oxford, 1960. 1, 2

 W. Layton, H. Tran, and C. Trenchea. Stability of partitioned methods for magnetohydrody-namics flows at small magnetic Reynolds number. In Recent advances in scientific com-puting and applications, 231-238, volume 586. Contemporary Mathematics, Amer. Math.Soc., Providence, RI, 2013. 1

 W. Layton and C. Trenchea. Stability of two IMEX methods, CNLF and BDF2-AB2, foruncoupling systems of evolution equations. Applied Numerical Mathematics, 62(2):112–120, 2012. 1

 T.F. Lin, J.B. Gilbert, R. Kossowsky, and Pennsylvania State Univ State College. Sea-Water

17 Magnetohydrodynamic Propulsion for Next-Generation Undersea Vehicles. Defense Tech-nical Information Center, 1990. 1

 E. Marsch. Turbulence in the solar wind. In G. Klare, editor, Reviews in Modern Astronomy,page 43. Springer, Berlin, 1990. 2

 Michael L. Minion. Semi-implicit spectral deferred correction methods for ordinary differentialequations. Commun. Math. Sci., 1(3):471–500, 2003. 1, 2, 6

 Michael L. Minion. Semi-implicit projection methods for incompressible flow based on spectraldeferred corrections. Appl. Numer. Math., 48(3-4):369–387, 2004. Workshop on InnovativeTime Integrators for PDEs. 1, 15

 Brian Punsly. Black hole gravitohydromagnetics, volume 355 of Astrophysics and Space ScienceLibrary. Springer-Verlag, Berlin, second edition, 2008. 1

 P. H. Roberts. An introduction to magnetohydrodynamics. Elsevier, 1967. 1 John V. Shebalin, William H. Matthaeus, and David Montgomery. Anisotropy in MHD tur-

bulence due to a mean magnetic field. Journal of Plasma Physics, 29(03):525–547, 1983.2

 Sergey Smolentsev, Rene Moreau, Leo Buhler, and Chiara Mistrangelo. MHD thermofluidissues of liquid-metal blankets: Phenomena and advances. Fusion Engineering and Design,85(7-9):1196–1205, 2010. 1

 R. Temam. Navier-Stokes Equations. Theory and Numerical Analysis. North-Holland, Ams-terdam, 1979. 3

 R. Temam. Navier-Stokes Equations and Nonlinear Functional Analysis. CBMS-NSF RegionalConference Series in Applied Mathematics. Society for Industrial and Applied Mathematics,Philadelphia, 1995. 3

 Catalin Trenchea. Unconditional stability of a partitioned IMEX method for magnetohydro-dynamic flows. Appl. Math. Lett., 27:97–100, 2014. 1, 2, 3, 4, 7, 16

 Mahendra K. Verma. Statistical theory of magnetohydrodynamic turbulence: Recent results.Physics Reports, 401:229, 2004. 2

 Igor Veselovsky. Turbulence and waves in the solar wind formation region and the heliosphere.Astrophys. Space Sci., 277(1-2):219–224, 2001. 2

Appendix A. Appendix.

A.1. Details of proof of Lemma 3.3. The nonlinear terms of (3.19) havebeen separated into four groups. Treatment of the first group of nonlinear begins byapplying the identityab− cd = a(b− d) + (a− c)d twice which yields

1

∆t((0z

−n · ∇)0z

+n+1, s

+n+1)− 1

∆t((z−(tn) · ∇)z+(tn+1), s+

n+1) (A.1)

+1

∆t((z−(tn−1) · ∇)z+(tn), s+

n+1)− 1

∆t((0z

−n−1 · ∇)0z

+n , s

+n+1)

= − 1

∆t((0z

−n · ∇)0e

+n+1, s

+n+1)− 1

∆t((0e

−n · ∇)z+(tn+1), s+

n+1)

+1

∆t((z−(tn−1) · ∇)0e

+n , s

+n+1) +

1

∆t((0e

−n−1 · ∇)0z

+n , s

+n+1).

Adding two zero terms to(A.1) regrouping and applying the same identity gives

1

∆t((0z

−n · ∇)0z

+n+1, s

+n+1)− 1

∆t((z−(tn) · ∇)z+(tn+1), s+

n+1) (A.2)

+1

∆t((z−(tn−1) · ∇)z+(tn), s+

n+1)− 1

∆t((0z

−n−1 · ∇)0z

+n , s

+n+1)

=1

∆t((z−(tn−1) · ∇)0e

+n+1, s

+n+1)− 1

∆t((0z

−n ) · ∇)0e

+n+1, s

+n+1)

± 1

∆t((z(tn)− · ∇)0e

+n+1, s

+n+1)

+1

∆t((0e

−n−1 · ∇)0z

+n , s

+n+1)− 1

∆t((0e

−n−1 · ∇)z+(tn+1), s+

n+1)

18 ± 1

∆t((0e

−n−1 · ∇)z+(tn), s+

n+1)

=1

∆t(((z−(tn−1)− z−(tn)) · ∇)0e

+n+1, s

+n+1) + ((0s

−n ) · ∇)0e

+n+1, s

+n+1)

+1

∆t((0e

−n−1 · ∇)(z+(tn)− z+(tn+1)), s+

n+1)− ((s−n · ∇)z+(tn+1), s+n+1).

We now bound the terms in (A.2) with standard inequalities as follows

1

∆t|(((z−(tn−1 − z−(tn)) · ∇)0e

+n+1, s

+n+1)| (A.3)

≤ C‖∂tz−(ηn)‖∞‖∇0e+n+1‖‖∇s

+n+1‖

≤ Cγ−1‖∂tz−(ηn)‖2∞‖∇0e+n+1‖2 + γ‖∇s+

n+1‖2,

|((0s−n ) · ∇)0e

+n+1, s

+n+1)| ≤ C‖0s−n ‖

12 ‖∇0s

−n ‖

12 ‖∇0e

+n+1‖‖∇s

+n+1‖ (A.4)

≤ Cγ−1C‖0s−n ‖‖∇0s−n ‖‖∇0e

+n+1‖2 + γ‖∇s+

n+1‖2

≤ Cγ−1‖0s−n ‖2 + Cγ−1‖∇0s−n ‖2‖∇0e

+n+1‖4 + γ‖∇s+

n+1‖2,1

∆t|((0e

−n−1 · ∇)(z+(tn)− z+(tn+1)), s+

n+1)| (A.5)

≤ C‖0e−n−1‖‖∇∂tz+(ηn)‖∞‖∇s+n+1‖

≤ Cγ−1‖0e−n−1‖2‖∇∂tz+(ηn)‖2∞ + γ‖∇s+n+1‖2,

|((s−n · ∇)z+(tn+1), s+n+1)| (A.6)

≤ ‖s−n ‖‖∇z+(tn+1)‖∞‖∇s+n+1‖ ≤ Cγ−1‖s−n ‖2‖∇z+(tn+1)‖2∞ + γ‖∇s+

n+1‖2.

Combining (A.3)-(A.6) gives the following bound for the first group of nonlinear terms∣∣∣ 1

∆t|((0z

−n · ∇)0z

+n+1, s

+n+1)− 1

∆t((z−(tn) · ∇)z+(tn+1), s+

n+1) (A.7)

+1

∆t((z−(tn−1) · ∇)z+(tn), s+

n+1)− 1

∆t((0z

−n−1 · ∇)0z

+n , s

+n+1)

∣∣∣≤ Cγ−1

(‖∂tz−(ηn)‖2∞‖∇0e

+n+1‖2 + ‖0s−n ‖2 + ‖∇s−n ‖2‖∇0e

+n+1‖4

‖0e−n−1‖2‖∇∂tz+(ηn)‖2∞ + ‖s−n ‖2‖∇z+(tn+1)‖2∞)

+ 4γ‖∇s+n+1‖2.

Similar treatment of the second group of nonlinear terms yields the following bound∣∣∣ 1

∆t((0z

+n · ∇)0z

−n+1, s

−n+1)− 1

∆t((z+(tn) · ∇)z−(tn+1), s−n+1) (A.8)

+1

∆t((z+(tn−1) · ∇)z−(tn), s−n+1)− 1

∆t((0z

+n−1 · ∇)0z

−n , s

−n+1)

∣∣∣≤ Cγ−1

(‖∂tz+(ηn)‖2∞‖∇0e

−n+1‖2 + ‖0s+

n ‖2 + ‖∇s+n ‖2‖∇0e

−n+1‖4

+ ‖0e+n−1‖2‖∇∂tz−(ηn)‖2∞ + ‖s+

n ‖2‖∇z−(tn+1)‖2∞)

+ 4γ‖∇s−n+1‖2.

We now derive bounds for the third group of nonlinear terms. Grouping the termslinearly, applying the identity ab-cd = a(b-d)+(a-c)d, and standard bounds on thenonlinearity gives∣∣∣ 1

∆t((z−(tn) · ∇)z+(tn+1), s+

n+1)− 1

∆t((z−(tn+1) · ∇)z+(tn+1), s+

n+1) (A.9)

19 +1

∆t((z−(tn) · ∇)z+(tn), s+

n+1)− 1

∆t((z−(tn−1) · ∇)z+(tn), s+

n+1)∣∣∣

≤ Cγ−1∆t2‖∇∂tz−(ηn)‖2‖∇∂tz+(ηn)‖2

+ Cγ−1∆t2‖∇∂ttz−(ηn)‖2‖∇z+(tn)‖2 + 2γ‖∇s+n+1‖2.

Similar treatment of the fourth group of nonlinear terms gives∣∣∣ 1

∆t((z+(tn) · ∇)z−(tn+1), s−n+1)− 1

∆t((z+(tn+1) · ∇)z−(tn+1), s−n+1) (A.10)

+1

∆t((z+(tn) · ∇)z−(tn), s−n+1)− 1

∆t((z+(tn−1) · ∇)z−(tn), s−n+1)

∣∣∣≤ Cγ−1∆t2‖∇∂tz+(ηn)‖2‖∇∂tz−(ηn)‖2

+ Cγ−1∆t2‖∇∂ttz+(ηn)‖2‖∇z−(tn)‖2 + 2γ‖∇s−n+1‖2.

A.2. Details of Proof for Theorem 3.4. To bound the third group of termsin (3.32) we add and subtract the term((z−(tn) · ∇)z+(tn+1), 1e

+n+1) to get

((1z−n · ∇)1z

+n+1, 1e

+n+1)− ((z−(tn) · ∇)z+(tn+1), 1e

+n+1) (A.11)

+((z−(tn) · ∇)z+(tn+1), 1e+n+1)− ((0z

−n · ∇)0z

+n+1, 1e

+n+1)

+1

2((0z

−n+1 · ∇)0z

+n+1, 1e

+n+1)− 1

2((z−(tn+1) · ∇)z+(tn+1), 1e

+n+1)

+1

2((0z

−n · ∇)0z

+n , 1e

+n+1)− 1

2((z−(tn) · ∇)z+(tn), 1e

+n+1).

Using the identity ab− cd = a(b− d) + (a− c)d on the terms of (A.11) gives

0− ((1e−n · ∇)z+(tn+1), 1e

+n+1) (A.12)

+((z−(tn) · ∇)0e+n+1, 1e

+n+1) + ((0e

−n · ∇)0z

+n+1, 1e

+n+1)

−1

2((0z

−n+1 · ∇)0e

+n+1, 1e

+n+1)− 1

2((0e

−n+1 · ∇)z+(tn+1), 1e

+n+1)

−1

2((0z

−n · ∇)0e

+n , 1e

+n+1)− 1

2((0e

−n · ∇)z+(tn), 1e

+n+1).

We continue to derive the bound for the third group of nonlinear terms by focussingon the third through eighth terms in (A.12). Combining the third, fifth, and seventhterms in (A.12) and adding and subtracting 1

2 ((0z−n · ∇)0e

+n , 1e

+n+1) gives

((z−(tn) · ∇)0e+n+1, 1e

+n+1)− ((0z

−n · ∇)0e

+n , 1e

+n+1) (A.13)

+1

2((0z

−n · ∇)0e

+n , 1e

+n+1)− 1

2((0z

−n+1 · ∇)0e

+n+1, 1e

+n+1)

= ((z−(tn) · ∇)(0e+n+1 − 0e

+n ), 1e

+n+1) + ((0e

−n · ∇)0e

+n , 1e

+n+1)

+1

2((0z

−n · ∇)(0e

+n − 0e

+n+1), 1e

+n+1) +

1

2(((0z

−n − 0z

−n+1) · ∇)0e

+n+1, 1e

+n+1).

The last term in (A.13) requires further attention

1

2(((0z

−n −0z

−n+1)·∇)0e

+n , 1e

+n+1)± 1

2(((z−(tn)−z−(tn+1))·∇, 0e+

n+1, 1e+n+1)

=1

2(((0e

−n+1 − 0e

−n ) · ∇)0e

+n+1, 1e

+n+1) (A.14)

20 +1

2(((z−(tn)− z−(tn+1)) · ∇), 0e

+n+1, 1e

+n+1).

Next, combining the fourth, sixth, and eighth terms in (A.12) and adding and sub-tracting 1

2 ((0e−n+1 · ∇)0z

+(tn+1), 1e+n+1) gives

((0e−n · ∇)0z

+n+1, 1e

+n+1)− ((0e

−n+1 · ∇)z+(tn+1), 1e

+n+1) (A.15)

+1

2((0e

−n+1 · ∇)0z

+(tn+1), 1e+n+1)− 1

2((0e

−n · ∇)0z

+(tn), 1e+n+1)

= −((0e−n · ∇)0e

+n+1, 1e

+n+1) + (((0e

−n − 0e

−n+1) · ∇)z+(tn+1), 1e

+n+1)

+1

2((0e

−n+1 ·∇)(z+(tn+1)−z+(tn)), 1e

+n+1)

+1

2(((0e

−n+1−0e

−n )·∇)z+(tn), 1e

+n+1).

Substituting, (A.13)-(A.15) gives the following equality

− 1

2((z−(tn+1) · ∇)z+(tn+1), 1e

+n+1)− 1

2((z−(tn) · ∇)z+(tn), 1e

+n+1) (A.16)

+ ((1z−n · ∇)1z

+n+1, 1e

+n+1)− ((0z

−n · ∇)0z

+n+1, 1e

+n+1)

+1

2((0z

−n+1 · ∇)0z

+n+1, 1e

+n+1) +

1

2((0z

−n · ∇)0z

+n , 1e

+n+1)

= ((1e−n · ∇)z+(tn+1), 1e

+n+1) + ((z−(tn) · ∇)(0e

+n+1 − 0e

+n ), 1e

+n+1)

+ ((0e−n · ∇)(0e

+n − 0e

+n+1), 1e

+n+1) +

1

2((0z

−n · ∇)(0e

+n − 0e

+n+1), 1e

+n+1)

+1

2(((0e

−n+1−0e

−n )·∇)0e

+n+1, 1e

+n+1)+

1

2(((0e

−n+1−0e

−n )·∇)z+(tn), 1e

+n+1)

+ (((0e−n − 0e

−n+1) · ∇)z+(tn+1), 1e

+n+1)

+1

2((0e

−n+1 · ∇)(z+(tn+1)− z+(tn)), 1e

+n+1)

+1

2(((z−(tn)− z−(tn+1)) · ∇), 0e

+n+1, 1e

+n+1).

Applying standard inequalities gives the following upperbound for the third group ofnonlinear terms in (3.32)∣∣∣∣− 1

2((z−(tn+1) · ∇)z+(tn+1), 1e

+n+1)− 1

2((z−(tn) · ∇)z+(tn), 1e

+n+1) (A.17)

+ ((1z−n · ∇)1z

+n+1, 1e

+n+1)− ((0z

−n · ∇)0z

+n+1, 1e

+n+1)

+1

2((0z

−n+1 · ∇)0z

+n+1, 1e

+n+1) +

1

2((0z

−n · ∇)0z

+n , 1e

+n+1)

∣∣∣∣≤ Cγ−1‖1e−n ‖2‖∇z+(tn+1)‖2∞ + Cγ−1∆t2

(‖∇z−(tn)‖2‖∇s+

n+1‖2

+ ‖∇0e−n ‖2‖∇s+

n+1‖2 + ‖∇0z−n ‖2‖∇s+

n+1‖2 + ‖∇s−n+1‖2‖∇0e+n+1‖2

+ ‖∇∂tz−(ηn)‖2‖∇0e+n+1‖2 + ‖∇s−n+1‖2‖∇z+(tn+1)‖2

+ ‖∇0e−n+1‖2‖∇∂tz+(ηn)‖2 + ‖∇s−n+1‖2‖∇z+(tn)‖2

)+ 9γ‖∇1e

+n+1‖2.

21 The bound for the fourth group of terms in (3.32) is derived in a similar way. Thebound is∣∣∣− 1

2((z+(tn+1) · ∇)z−(tn+1), 1e

−n+1)− 1

2((z+(tn) · ∇)z−(tn), 1e

−n+1) (A.18)

+ ((1z+n · ∇)1z

−n+1, 1e

−n+1)− ((0z

+n · ∇)0z

−n+1, 1e

−n+1)

+1

2((0z

+n+1 · ∇)0z

−n+1, 1e

−n+1) +

1

2((0z

+n · ∇)0z

−n , 1e

−n+1)

∣∣∣≤ Cγ−1‖1e+

n ‖2‖∇z−(tn+1)‖2∞ + Cγ−1∆t2(‖∇z+(tn)‖2‖∇s−n+1‖2

+ ‖∇0e+n ‖2‖∇s−n+1‖2 + ‖∇0z

+n ‖2‖∇s−n+1‖2 + ‖∇s+

n+1‖2‖∇0e−n+1‖2

+ ‖∇∂tz+(ηn)‖2‖∇0e−n+1‖2 + ‖∇s+

n+1‖2‖∇z−(tn+1)‖2

+ ‖∇0e+n+1‖2‖∇∂tz−(ηn)‖2 + ‖∇s+

n+1‖2‖∇z−(tn)‖2)

+ 9γ‖∇1e−n+1‖2.

Combing the terms in the fifth group of terms in (3.32) and applying standard in-equalities gives∣∣∣ν + νm

4(∇z+(tn+1),∇, 1e+

n+1)− ν + νm4

(∇0z+n+1,∇, 1e

+n+1) (A.19)

+ν − νm

4(∇z−(tn),∇, 1e+

n+1)− ν − νm4

(∇0z−n ,∇, 1e+

n+1)

+ν + νm

4(∇0z

−n ,∇, 1e+

n+1)− ν + νm4

(∇z+(tn),∇, 1e+n+1)

+ν − νm

4(∇0z

−n+1,∇, 1e

+n+1)− ν − νm

4(∇z−(tn+1),∇, 1e+

n+1)∣∣∣

≤C∆t2γ−1(ν+νm)2‖∇s+n+1‖2+C∆t2γ−1(ν−νm)2‖∇s−n+1‖2+2γ‖1e+

n+1‖2.

The sixth group of terms in (3.32) are bounded similarly∣∣∣ν + νm4

(∇z−(tn+1),∇, 1e−n+1)− ν + νm4

(∇0z−n+1,∇, 1e

−n+1) (A.20)

+ν + νm

4(∇0z

−n ,∇, 1e−n+1)− ν + νm

4(∇z−(tn),∇, 1e−n+1)

+ν − νm

4(∇0z

+n+1,∇, 1e

−n+1)− ν − νm

4(∇z+(tn+1),∇, 1e−n+1)

+ν − νm

4(∇z+(tn),∇, 1e−n+1)− ν − νm

4(∇0z

+n ,∇, 1e−n+1)

∣∣∣≤ C∆t2γ−1(ν+νm)2‖∇s−n+1‖2+C∆t2γ−1(ν−νm)2‖∇s+

n+1‖2+2γ‖1e−n+1‖2.

The remaining two terms in (3.32) are bounded as follows

∆t2|(∂ttF+, 1e+n+1)| ≤ C∆t4γ−1‖∂ttF+(ηn)‖2 + γ‖∇1e

+n+1‖2, (A.21)

∆t2|(∂ttF−, 1e−n+1)| ≤ C∆t4γ−1‖∂ttF−(ηn)‖2 + γ‖∇1e−n+1‖2. (A.22)

22 ##### Introduction to Magnetohydrodynamics - …namurphy/Presentations/Introduction... · Introduction to Magnetohydrodynamics ... I Plasma kinetic theory ... I There are three types of
Documents ##### Ideal Magnetohydrodynamics (MHD) -  · 2016-06-03 · Ideal Magnetohydrodynamics (MHD) Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February
Documents ##### Introduction to MagnetoHydroDynamics (MHD)Introduction to MagnetoHydroDynamics (MHD) Antoine Cerfon, Courant Institute, New York University Email: [email protected] SULI Introductory
Documents ##### folk.uio.nofolk.uio.no/matsc/school-07/keppens/slides_Keppens.pdf · Numerical Magnetohydrodynamics Oslo07-2 Numerical Magnetohydrodynamics ☞ Overview for day 1 • Numerical MHD
Documents ##### Stratified Magnetohydrodynamics Accelerated Using GPUs:SMAUG
Documents ##### Introduction to MagnetoHydroDynamics (MHD) · 2015-06-08 · Introduction to MagnetoHydroDynamics (MHD) Antoine Cerfon, Courant Institute, New York University Email: [email protected]
Documents ##### BA73Air-d...MS-DOS™, Wind ows 95™, Wind ows 98™, Wind ows NT™, Wind ows CE™, Wind ows 2000™ und Wind ows XP™sind ein ge tra ge ne Wa ren zei chen der Mi - cro soft Cor
Documents ##### mini-course: Numerical Magnetohydrodynamics with ...hdesterc/websiteW/Data/presentations/pre… · this mini-course “Numerical Magnetohydrodynamics with Application to Space Physics
Documents ##### Self-gravitational adaptive mesh magnetohydrodynamics with ... · PDF fileSelf-gravitational adaptive mesh magnetohydrodynamics with ... of ideal hydrodynamics are of ... Self-gravitational
Documents Documents