heat transfer fluid mechanics

Embed Size (px)

Citation preview

  • 7/24/2019 heat transfer fluid mechanics

    1/12

    School of Mechanical and Manufacturing Engineering

    Dublin City University

    Assignment B: Forced Convective Cooling of Flat Plate

    ieran !eo"

    ##$%&&&%

    1

  • 7/24/2019 heat transfer fluid mechanics

    2/12

    Table of ContentsAnalysis based on empirical correlations ............................................................... 3

    Computational Fluid Dynamics Analysis ................................................................ 5

    Figure 1: initial conditions ................................................................................... 7

    Figure2: convergence occurring ......................................................................... 7Figure 3: convergence sho n at 3 separate time steps ...................................... !

    Figure ": #eat trans$er coe%cient $or the hole plate ........................................ !

    Figure 5: s&in $riction coe%cient $or the hole plate .......................................... '

    Figure (: )alues obtained $rom computational results $or s&in $riction coe%cient ........................................................................................................................... '

    Figure 7: values obtained $rom computational results $or heat trans$ercoe%cient ........................................................................................................... '

    2

  • 7/24/2019 heat transfer fluid mechanics

    3/12

    Analysis based on empirical correlations*roperties o$ air:

    + 22.,2 - 10 6 2 / Air at + 1

    + ,.,3,! / + 0 T T s 2 + 3(,

    + ,.('!/ u +1,,m s

    + ,.''5 3 / R ecr +5 105

    + 1.,,' 4 / T s+15, C+"23.156

    aterial + 5.2 4 / T +25 C+2'!.156

    + 32, 4 area7,,+,.7m

    + 23,, 3 area75,+,.75m

    a. 8he 9rst step to 9nding the average coe%cient o$ heat

    trans$er is to 9nd the eynolds number $or 7,,mm and 75,

    mm using R e l =u L

    v

    R e 700 = 100 0.7 .00002202 +3.1! 10

    6

    R e 750 = 100 0.75.00002202 +3." 10

    6

    8he ne;t step is to calculate here the

  • 7/24/2019 heat transfer fluid mechanics

    4/12

    ; cr +. 00002202

    100(510 5 ) +.,11,1 m

    6no ing the transition o$

  • 7/24/2019 heat transfer fluid mechanics

    5/12

    Finally the last step to 9nd the average coe%cient o$ heat trans$er $or the

    module is to rearrange q L= h L A l (T s T ) to get h on one side leavingq l

    ( A l (T s T ))

    here this time h L is the average heat coe%cient o$ heat trans$er $or the

    module and using q L as 11"1.23 and Al as .,50area o$ the module .

    1141.23.05(423.15 298.15 ) +1!2.5'('1'">

    8o get the average coe%cient $or the hole plate the same procedure is $ollo ed

    e;cept using as 1m instead o$ 7,,mm or 75,mm and also the area is also 1 " 2 .

    8he calculations are easier as its over the hole plate not Bust a section/

    there$ore not needing to 9nd the average o$ each part. 8he $ollo ing values erecalculated li&e above to get the average coe%cient o$ heat trans$er $or the holeplate.

    R e1000 +".5" 106 / N u1000 +(17(.,11 h1000 +1',.2211

    > m 246

    q1000 +23777.(">

    b. 8he 9rst step to calculating po er generation per unit volume o$

    the element/ " 3 E is to 9nd the volume0 l # h ) here

    +.,5m ( l e ! l700 / +1m and h+.,1m

    )olume+.,5 1 .,1+.,,,5 " 3

    8he 9nal step to 9nding po er generation is dividing qav e $rom ?uestion 1 by

    the volume

    *o er+ 1141.230746

    0.0005 +22!2"(1."'3 " 3

    c. 8o 9nd the average coe%cient o$ s&in $riction $$ / eynolds

    number must be $ound 9rst using R e l =u L

    v at the mid point o$

    the module so l+725mm

    R e 725 = u Lv

    5

  • 7/24/2019 heat transfer fluid mechanics

    6/12

    R e 725 =100 0.725. 00002202 +3.2' 10

    6

    =o the average coe%cient o$ s&in $riction $or the module can be $ound using$ % &l= 0.0592 Re

    l15

    $ % &725= 0.0592 (( 3.29 106 )

    15 ) +.,,2'"31!5

    8o calculate the average coe%cient o$ s&in $riction $or the hole plate so l+1muse mi;ed average as its both laminar and turbulent.

    $ % & L= 0.074 Re L

    15

    1742Re L 1

    $ % & 1= 0.074 ( (4.54 106 )

    15 ) 1742 (( 4.54 10 6 ) 1 ) +,.,,3,((222

    d. 8o calculate the boundary layer thic&ness at the midpoint o$ the

    module and the hole plate use the $ormula ' = 0.37 ( Re

    ( 15 here

    ; is 725mm and 1m respectively.

    ' 725 = 0.37 ( 0.725 ) ( 3.29 106

    )

    15

    +.,1333(3,7m

    ' 1= 0.37 ( 1 ) ( 4.54 106 )

    15 +,.,172"',5m

    Computational Fluid Dynamics Analysis1.

    a. 8he

  • 7/24/2019 heat transfer fluid mechanics

    7/12

    b. 8he velocity inlet boundary condition de9nes an in

  • 7/24/2019 heat transfer fluid mechanics

    8/12

    As this is 1 natural convection can be neglected. Iravity may also beneglected as the relative simple geometry o$ the shape doesnJt have any dips

    hich gravity ould aGect.

    e.

    Figure 1: initial conditions

    8he initial conditions are sho n above in 9gure 1 the temperature aGects theconvergence along ith the turbulent &inetic energy and turbulent dissipationrate hich must be either both 1 or ,. 8he reason hy the ; velocity is , isbecause hen the empirical value is calculated you assume it starts at , and not1,,.i$ you used 1,, it ill not converge as it should. #o ever any value $rom ,@'! it ill converge

    2.

    !

  • 7/24/2019 heat transfer fluid mechanics

    9/12

    Figure2: convergence occurringFrom the picture above the convergence can clearly be seen. 8he straight linesho s convergence and this occurs roughly a$ter 1",, hen Koomed in on thegraph. An initial 1,, as used then 1,,, and $or both a straight line could not beseen so a higher time step o$ 2,,, as used to clearly display the convergence0straight line .

    8a&ing time step o$ 1!,,/ 1',, and 2,,, as sho n belo they all converge

    Figure 3: convergence shown at 3 separate time steps3.

    '

  • 7/24/2019 heat transfer fluid mechanics

    10/12

    Figure : !eat transfer coe"cient for the whole plate

    Figure #: s$in friction coe"cient for the whole plate3.

    1,

  • 7/24/2019 heat transfer fluid mechanics

    11/12

    Figure %: &alues obtained from computational results for s$in frictioncoe"cient

    a. 8he average coe%cient $or s&in $riction $or the hole plate $rom

  • 7/24/2019 heat transfer fluid mechanics

    12/12

    used at .725m 0average o$ the module because it as a more accurate resultthan over the hole plate.

    For the s&in $riction coe%cient $or the hole plate the ans er $rom thecomputational results is ,.,,37,,(("3 and the results $rom the correlations

    ere ,.,,3,((222 hich gives a L diGerence o$ 1,.'L. 8his as $or the holeplate because it as a more accurate result than over the average module $ors&in $riction.

    12