34
HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4 Prediction calculations……………………………………………………5 Angular distributions………………………………………………………6,7 b 2 vs J´ ………………….………………………………………………………..8-10 Effects of inserting beta6 into the angular distribution one-step fit function……………………………………………………11-12 Two-color exp………………………………………………………………13 Br detection…………………………………………………………………14-18 Br* detection………………………………………………………………...19-27 H detection…………………………………………………………………..28-34 Updated: 10.10.2014

HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

Embed Size (px)

Citation preview

Page 1: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

HBr,E(1), one-color, VMI

KER spectra VMI, E(1) vs J´(=J´´)………………………………………2Branching ratios……………………………………………………………..3-4Prediction calculations……………………………………………………5Angular distributions………………………………………………………6,7b2 vs J´ ………………….………………………………………………………..8-10Effects of inserting beta6 into the angular distributionone-step fit function……………………………………………………11-12

Two-color exp………………………………………………………………13Br detection…………………………………………………………………14-18Br* detection………………………………………………………………...19-27H detection…………………………………………………………………..28-34

Updated: 10.10.2014

Page 2: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

4

3

2

1

0

3.02.52.01.51.00.5

At(wave1): 0.079176At(wave1): 0.059606

At(wave1): 0.062427

At(wave3): 0.083934 At(wave3): 0.078104At(wave3): 0.10257

At(wave5): 0.083293 At(wave5): 0.088408At(wave5): 0.10734

At(wave7): 0.084214 At(wave7): 0.10082At(wave7): 0.11589

At(wave9): 0.082636 At(wave9): 0.066962At(wave9): 0.08327

At(wave11): 0.080618At(wave11): 0.054197

At(wave11): 0.055127

At(wave13): 0.08153At(wave13): 0.048329

At(wave13): 0.057892

…PXP-140918,pxp; Lay:0; Gr:1 …….XLS-140916.xlsx

KER/eV

I(H*+Br*) I(H*+Br) HBr+*/HBr+

J´=J´´=

6

5

4

3

2

1

0

Integral values

E(1)

Page 3: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

6543210

…PXP-140918,pxp; Lay:1; Gr:2

I(H*+Br*)/I(H*+Br)

Comment; Minimum is of Interesting with respectto the comparison withthe mass resolved spectraanalysis.

E(1)

Page 4: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

6543210

…PXP-140918,pxp; Lay:2; Gr:3

I(HBr+/HBr+*)/I(H*+Br)

Virtually unchanged with J´(?)

E(1)

Page 5: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

4

3

2

1

0

3.02.52.01.51.00.5

I(H*+Br*) I(H*+Br) HBr+*/HBr+

Prediction calculations

½ <- ½ 3/2 <- 3/2

12

1412

10

v+ =

v+ =

…PXP-140918a,pxp; Lay:6; Gr:1; <= ……XLS-140918.xlsx, sheet: „KER I, II“ and „KER III,IV“; NB: conversion factor for KER = 3.23228e-5*(pix)**2 = KER(eV)

KER/eV

J´= J´´=

6

5

4

3

2

1

0?

E(1)

Page 6: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

2.0

1.5

1.0

0.5

150100500

2.5

2.0

1.5

1.0

0.5

150100500

…PXP-140918a,pxp; Lay:7; Gr:11; <= ……XLS-140916.xlsx, sheet: „Angle processing“ => …PXP-140918a,pxp; Lay:8; Gr:12;

E(0), H* + Br*

J´=J´´=

6

5

4

3

2

1

0

E(0), H* + Br

J´=J´´=

6

5

4

3

2

1

0

q q

E(1)

Page 7: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

E(1)

2.5

2.0

1.5

1.0

0.5

150100500

HBr+ (top peak)

q…PXP-140918a,pxp; Lay:9; Gr:13; <= ……XLS-140916.xlsx, sheet: „Angle processing“

J´=J´´=

6

5

4

3

2

1

0

Page 8: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

Now let´s evaluate b2 by fitting

Fitting performed by Wang:H*+Br*: 140914 (files: fitting.pxp <= ….E1.pxp; system.xlsx)H*+Br:

Page 9: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

6543210 J´

b2

I(HBr+;top peak)I(H*+Br*),I(H*+Br)

E(1), VMIOne-step analysis using b2 and b4

…PXP-140918a,pxp; Lay:13; Gr:17; <= XLS-140916.pxp: sheet: „Angle fits“

E(1)

Page 10: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

Comments:

• Not a significant change in b2 with J´ for H*+Br* and H* + Br• Larger parallel character in H*+Br* than in H* + Br• Virtually purely parallel transition for HBr+ (top peak)• Slight decrease in b2 with J´ for HBr+ (top peak)

Page 11: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

1.5

1.4

1.3

1.2

1.1

1.0

6543210 J´

b2

I(H*+Br*), E(1), VMIOne-step analysis using b2 and b4

…PXP-140918a,pxp; Lay:13; Gr:17; <= XLS-140916.pxp: sheet: „Angle fits“

E(1)

Solid line obtained by fitting b2 and b4 onlyBroken line obtained by fitnning b2,b4 and b6

No significant change

Page 12: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

E(1), H*+Br* J´ start end chisq progr A DeltaA beta2 Deltab2 beta4 Delta b4 Beta6 Delta B6 Gr: IGOR file wx wy

0 3 33 0,00471685VMI1stepC 0,42233 0,00247 1,4891 0,0166 -0,34791 0,0171 0,011129 0,0215 18fittingforV7 50 21 3 33 0,00165382VMI1stepC 0,60017 0,00146 1,0987 0,00627 -0,57173 0,0072 0,062932 0,00896 19fittingforV7 56 572 3 33 0,00223607VMI1stepC 0,58209 0,00757 1,1262 0,07757 -0,47529 0,00858 0,04329 0,0107 20fittingforV7 3 633 3 33 0,0015164VMI1stepC 0,46735 0,0014 1,1968 0,0079 -0,41909 0,00878 0,064369 0,064369 21fittingforV7 4 694 3 33 0,00324096VMI1stepC 0,5534 0,00205 1,185 0,00972 -0,42848 0,0108 0,001128 0,0136 22fittingforV7 5 755 3 33 0,00268467VMI1stepC 0,51261 0,00186 1,277 0,00978 -0,38427 0,0106 0,027619 0,0134 23fittingforV8 6 816 3 33 0,00308189VMI1stepC 0,50539 0,002 1,1662 0,0103 -0,40303 0,0116 -0,005972 0,0145 24fittingforV8 7 87

J´ start end chisq progr A DeltaA beta2 Deltab2 beta4 Delta b4 Gr: IGOR file wy wx

0 3 33 0,00476353VMI1stepB 0,42226 0,00243 1,4886 0,0163 -0,34746 0,0168 18fitting 2 50 1 3 33 0,00466841VMI1stepB 0,59958 0,00241 1,0957 0,0103 -0,56938 0,0119 19fitting 57 56 2 3 33 0,00357782VMI1stepB 0,58169 0,00211 1,1241 0,00938 -0,47361 0,0107 20fitting 63 3 3 3 33 0,00342875VMI1stepB 0,46688 0,00206 1,1938 0,0116 -0,41653 0,013 21fitting 69 4 4 3 33 0,00324178VMI1stepB 0,55339 0,00201 1,1849 0,00953 -0,42843 0,0106 22fitting 75 5 5 3 33 0,00310821VMI1stepB 0,51283 0,00196 1,2782 0,0103 -0,38538 0,0112 23fitting 81 6 6 3 33 0,00310114VMI1stepB 0,50544 0,00196 1,1665 0,0102 -0,40327 0,0114 24fitting 87 7

Adding beta6 has very little effect on beta2 and beta4

….system.vhw-aka-140926-1.xlsx <= from Wang

Page 13: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

Two-color experiments:

Page 14: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

Two-color experiments Br detection:

Page 15: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

1.5

1.0

0.5

100806040200

Two color Br detection:E(1)

pix

…PXP-140918b.pxp; Lay:7, Gr:39

J´=J´´=

4

2

1

0

Page 16: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

1.5

1.0

0.5

20151050

Two color, Br detection:E(1)

KER(total)eV

…PXP-140918b.pxp; Lay:10, Gr:42

J´=J´´=

4

2

1

0

Page 17: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

2.0

1.5

1.0

0.5

150100500

Br peak=„The 1hv peak“J´=J´´=

4

2

1

0

…PXP-140918b.pxp; Lay:8, Gr:40

Two color Br detection:E(1)

q

Page 18: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

43210

b2

E(1) Br peak=„The 1hv peak“

E(1), two color, Br detectionOne-step analysis using b2 and b4

…PXP-140918b.pxp; Lay:9, Gr:41

Two color Br-detection:

Page 19: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

Two-color experiments Br* detection:

Page 20: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

J´=1 J´=2

J´=3

Page 21: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

2.0

1.5

1.0

0.5

0.0

20151050

J´=J´´=

3

2

1

Two color, Br* detection (exp: 141006):E(1)

…PXP-140918b.pxp; Lay:11, Gr:46

1hv

2hv

Page 22: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

1.6

1.4

1.2

1.0

0.8

0.6

0.4

150100500…PXP-140918b.pxp; Lay:12, Gr:48

q

1.5

1.0

0.5

150100500…PXP-140918b.pxp; Lay:13, Gr:49

Two color, Br* detection (exp: 141006):E(1)

1hv J´=J´´=

3

2

1

J´=J´´=

3

2

1

2hv

NO bgr correction

Page 23: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

-2

-1

0

1

2

3.02.52.01.51.0

Two color, Br* detection (exp: 141006):E(1)

1hv

…PXP-140918b.pxp; Lay:14, Gr:50

2hv

NO bgr correction

Too high negative valueERGO: bgr needs to be considered

Page 24: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

1.5

1.0

0.5

150100500…PXP-140918b.pxp; Lay:13, Gr:49

Two color, Br* detection (exp: 141006):E(1)

J´=J´´=

3

2

1

2hv

NO bgr correction

J´=1

J´=2

Page 25: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

1.5

1.0

0.5

150100500…PXP-140918b.pxp; Lay:13, Gr:49

Two color, Br* detection (exp: 141006):E(1)

J´=J´´=

3

2

1

2hv

NO bgr correction

J´=3

Page 26: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

1.2

1.0

0.8

0.6

0.4

0.2

150100500

1.2

1.0

0.8

0.6

0.4

0.2

150100500

Two color, Br* detection (exp: 141006):E(1)

…PXP-140918bb.pxp; Lay:13, Gr:49

1st elimination 2nd elimination

Page 27: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

-2

-1

0

1

2

3.02.52.01.51.0

1st elimination

2nd elimination

Two color, Br* detection (exp: 141006):E(1)

…PXP-140918bb.pxp; Lay:14, Gr:50

2hv

1hv

Page 28: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

Two-color experiments H detection:

Page 29: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

E(1) Two color exp. H-detection:

1.2

1.0

0.8

0.6

0.4

0.2

0.0

3.02.52.01.51.00.50.0

H detection, one color,243.161 nm (H->->H* resonance)

H detection, one color, 249.48 nm (J´´=0->->J´=0 resonance: 80166.3 cm-1)

Two-color, 1) 249.48 nm (HBr resonance excitation)2) 243.161 nm H resonance excitation,

…PXP-140918c.pxp; Lay:0, Gr:14

KER(total)eV

Page 30: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

E(1) Two color exp., H-detection:

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

3.02.52.01.51.00.50.0One color, H detection, 249.48 nm (J´´=0->->J´=0 resonance: 80166.3 cm-1)

Two-color, 1) 249.48 nm (HBr resonance excitation)2) 243.161 nm H resonance excitation,

Two color – one color

…PXP-140918c.pxp; Lay:1, Gr:15

KER(total)eV

Page 31: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

3.02.52.01.51.00.50.0

E(1) Two color exp., H-detection:

…PXP-140918c.pxp; Lay:1, Gr:15; ….XLS-140918a.xlsx; sheet: KERa,hv,Br (prediction calc.)

H detection, one color,243.161 nm (H->->H* resonance)

Two color – one color

Prediction calculations

J´=0

J´=0-6

KER(total)eV

Page 32: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

2.0

1.5

1.0

0.5

0.0

3.02.52.01.51.00.50.0

E(1) Two color exp., H-detection: subtraction attempt(?????):

Two color – one color

H detection, one color,243.161 nm (H->->H* resonance)

…PXP-140918c.pxp; Lay:3, Gr:17; ….XLS-140918a.xlsx; sheet: KERa,hv,Br (prediction calc.)

Difference spectrum after scaling the „subspectra „below.

Could the difference spectrum be a sum of two contributions?-One for dissociation of HBr*-One for dissociation of HBr+

KER(total)eV

Page 33: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

Now perform prediction calculation for KER(H) forHBr+ -> H + Br+

Page 34: HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4

2.0

1.5

1.0

0.5

0.0

3.02.52.01.51.00.50.0

E(1) Two color exp., H-detection:

Two color – one color

H detection, one color,243.161 nm (H->->H* resonance)

…PXP-140918c.pxp; Lay:3, Gr:17; ….XLS-140918b.xlsx; sheet: KER,I,II(prediction calc.)

Difference spectrum after scaling the „subspectra „below.

KER(total)eV

V+=0 1 2 3 4 5 6 7

Prediction calculation for H + Br+ formation forhv + HBr+(v+) -> H+ + Br vs. v+, J´=0