27
1 Green Chemistry: Teaching & Research Green Chemi s try & Eng i neeri ng Educati on Nati onal Academ i es Chemi cal S ci ences Roundtabl e November 7- 8, 2005 Washington, D.C. United St ates of Ame rica Te ac hi ng i s t he g r i nds t o ne o n whi c h r e s e arc h s k ill s are s harp e ne d. John Andraos ( jan draos @ yorku . ca) ht tp: // www. careerchem . co m/ COURS ES / 3070/ 3070. ht ml Department of Chemi s try, Yor k Un i vers i ty To ront o, Ontari o M3 J 1P3 Canada Outline: Par t I Green Chemi s try at Yo rk ( CHEM 3070) •Course content, teaching strate gies and resources •Sample problems and exercises •Student feedback Par t II Green Metri cs Anal ys i s •RME master equation and visual depi ction •Synthesis tree analysis •Material, energy, a nd cost optim ization

Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

1

Green Chemistry:Teaching & Research

Green Chemistry & Engineering EducationNational Academies’ Chemical Sciences Roundtable

November 7-8, 2005Washington, D.C.

United States of America

Teaching is the grindstone on which research skills are sharpened.

John Andraos(jandraos@yor ku.ca)

http://www.careerchem.com/COURSES/3070/3070.htmlDepar tment of Chemistr y, Yor k University

Toronto, Ontario M3J 1P3Canada

Outline:

Part I Gr een Chemistry at York (CHEM 3070)•Course content, teaching strategies and resources•Sample problems and exercises•Student feedback

Part II Gr een Metri cs Analysis•RME master equation and visual depiction•Synthesis tree analysis•Material, energy, and cost optimization

Page 2: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

2

CHEM 3070: Industrial and Applied Green Chemistry

VII

VI

V IV

III

II

IChemistry of

EverydayExperience

IndustrialFeedstocks

GreenChemistry

Pharma-ceuticals

Dyestuffs

Survey ofModernConcerns

Chemistry &

Society

CHEM 3070

Resources & Strategies

ResourceslResearch journal articleslSociety news magazineslPatent literature/databaseslBookslCampus colloquialCourse website

Strategiesl Inter-disciplinary problemsbased approachlDecision makinglQuantitative reasoning andevaluationlEncourage self -discovery andindependent learning

Pre-requisitesl2nd year organic chemistry with minimum C grade + brush-up quizlScience library resource workshop and quiz

EvaluationlBiweekly quizzesl4 Problem Setsl1 Written assignment + orall1 Final Exam (5th problem set)

Written AssignmentlJournalistic stylelChoice of topiclRigorous critiquing of synthesis ormanufacture of target product orprocess according to “green” criteria

Page 3: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

3

Chemistry & Society

Development ofOrganic Chemistry* chronology* genealogy* connections with world events

Development ofIndustrial Chemistry* chronology* genealogy* connections with world events* accidents* Responsible CareR

(CCPA)

Media vs.

Chemical Scientists vs.

Chemical SocietiesRelations

Business of Doing Chemistry* economic impacts* patents (Markush structures) * confidentiality Agreements

Career Development * C&EN, ACCN* CareerChem* guest speakers (alumni)

Current News* C&EN, ACCN* CBC* newspapers* television

Organic Name Reactions Timeline

0

5

10

15

20

25

30

18

28

- 1

83

7

18

38

- 1

84

7

18

48

- 1

85

7

18

58

- 1

86

7

18

68

- 1

87

7

18

78

- 1

88

7

18

88

- 1

89

7

18

98

- 1

90

7

19

08

- 1

91

7

19

18

- 1

92

7

19

28

- 1

93

7

19

38

- 1

94

7

19

48

- 1

95

7

19

58

- 1

96

7

19

68

- 1

97

7

19

78

- 1

98

7

19

88

- 1

99

7

19

98

- 2

00

7

Decade

Nu

mb

er

of

Re

actio

ns D

isco

ve

red

Number of Reactions Not NamedAfter People

Number of Reactions NamedAfter People

Page 4: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

4

Evolution of Chemistry

Schreiber,Nicolaou,Whitesides(1990s+)

Watson, Crick,Pauling (1950s)

Pasteur, Michaelis,Menten, Krebs (1880s-1930s)

Wohler, Liebig,Bunsen, Kekule,Hofmann (1860s)

Rouelle, Berard,Lavoisier (1770s)

ChemicalBiology

MolecularBiology

Biochemistry

Chemistry

Pharmacy

Medicine

Synthetic Strategies and Tactics(carbon skeleton framework,stereochemical control)

CatalystsReagents

Moleculesfor molecularrecognition

Molecules for medicine

Molecules oftheoreticalinterest

Moleculesfor biology

Moleculesfor materialsscience

Designed Molecules(rational drugdesign, combinatorialchemistry)

NaturalProducts(plants,marine andterrestrialorganisms)

Methods-orientedSynthesis

Target-orientedSynthesis

Organic Synthesis

Diversity-orientedSynthesis(combinatorialapproaches; multi-component reactions;exploration of"chemical space";computer assistedsynthesis; compoundlibraries)

Evolution of Paradigms in Organic Synthesis

Page 5: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

5

Synthesis Plan #1 Synthesis Plan #2

Concept Paradigms in (Organic) Chemistry

SynthesisPlan of Target

OptimizationMetricsAnalysis

Kinetic &Thermo-dynamicAnalysis

StructureDetermination

ReactionMechanism

+Intermediates

ChemicalReactions

Page 6: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

6

FUELS

COSMETICS

PHARMACEUTICALS

COLOURANTSFLAVOURSFRAGRANCES

PHOTORESISTS

FINE OR CUSTOMCHEMICALS

DETERGENTS

SURFACTANTS

SOAPS

AGRICHEMICALS(fertilizers, herbicides,pesticides, fungicides)

DYESTUFFS

POLYMERSPLASTICSRUBBERSSYNTHETIC FIBERS

PETROCHEMICALS

SOLVENTS COATINGS

BIOTECHNOLOGYGENOMICSBIOINFORMATICS

Interconnections Between Chemical Industry Sectors

Survey of Modern Concerns

N

O

O

NH

O

O

H

N

O

O

NH

O

O

H chemicalfunction orproperty

chirality

(S)-thalidomide (R)-thalidomide

O

O

O

O

O

NEt 2

CCl 3

ClCl

O

Cl

Cl

O Cl

Cl

O

O

O

NH

O

ClCl

Cl COOR

O

OH

Cl

Cl

Cl

Pb(OEt)4

Page 7: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

7

Costs- RMC- energy

Optimizationof Parameters

Special Cases:- isomeric products- side reactions- dynamic kineticresolution (DKR)

ConvergentSequences

Linear Sequences

Reaction Metrics*

ReactionParadigms

EmergingTechnologies

Principles &Philosophy

Green Chemistry

Gr een ChemistryFoun ded Gr ee n Chemis try Ins titu teh ttp :// www.chemi stry . o rg/greenchemistry i nstitu t e /

Jo sep h Br een Gre en Che mist r y Awar dsh ttp :// www.chemi stry . o rg/greenchemistry i nstitu t e /awards. h tml#breen

Gr een C hemis try N e two rk (Cana da)h ttp :// www.greenchem istry . ca

12 P r inc ipl e s o f Gr een C he mist r y(A nas t as, P . T.; Wa rner , J . C. Gre en Che mistr y : T heory and Pr a c tic e, Ox f ord Un iversi tyP ress : N ew Y ork , 199 8

1. Pr evention2. Atom economy3. Less hazardous chemical syntheses4. Designing safer chemicals5. Safer solvents and auxiliaries6. Design for ener gy efficiency7. Use of renewable feedstocks8. Reduce der ivatives9. Catalysis10. Design for degradation11. Real-time analysis for pollution prevention12. Inher ently safer chemistry for accident pr evention

Page 8: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

8

Gr een Chemistry Paradigms

Microstructured reactors

Grindstone chemistry

Ionic Liquids

Water

Ultrasound(Sonochemistry)

Microwave Irradiation

Supercritical CO2

Solvent Free(solid supports)

Biocatalysis using Enzymes

Organic Synthesis byMulti-component Approach

REACTION MEDIUMREACTION METHODOR STRATEGY

Renewable feedstocksas starting materials

Evolution of Depiction of �Organic ReactionsBaeyer, A. Ann. Chem. 1863, 127, 199

N3C4O4H3 + 2 H2S = N2C4O3H3(NH2) + H2O + S2

NHHN

O

O O

NOH

NHHN

O

O O

NH2H

H2S

NHHN

O

O O

NOH

NHHN

O

O O

NH2H

- H2O- S2

2 H2S

Old Paradigm•Balanced chemical equations•Functional group identifi cation tests•Structure determination by melting point derivatives, index of refraction,degradation to known compounds•Purification by distil lation, recrystallization

Modern Paradigm•Juxtaposition of substrate and productstructures only in chemical equations•Structure determination byspectroscopic methods, total synthesis•Purification by chromatographicmethods

Page 9: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

9

Evaluation of a Chemical Reaction

Economic feasibility based on raw material costs and availabili tyTechnical feasibility based on energy demandsPotential for unwanted side, runaway, and hazardous reactionsEnvironmental impact of all materials usedQuantification of reaction metrics:

• % conversion of substrate to product• % yield of product based on conversion of limi ting reagent• atom economy (Trost AE)• reaction mass efficiency (RME)• environmental impact factor (Sheldon E)• stoichiometric factor (SF)• process energy metric• solvent recovery metric

Toxicity parameters for all materials used (LD50)

O

H 2N NH2

O

H 2N NH NH2

O

N

NN

OH

OHHO

NH

NH

O

R 1

R 2

O

O

N

NN

NH2

NH2H 2N

O

OR

O

Cl

Cl

NO2

NO2

O 2N

ONO2

ONO2

ONO2

CO2

H2

CO

RnNH3-n

urea-formaldehyde resins

NH4NO3

(NH4)2SO4

(NH4)3PO4

HNO3

melamine-formaldehyde resins

Dr. John Andraos, 2003c

CH4 CH3Cl

CH2Cl 2

CHCl 3

H2

O2

N2

Air

Natural Gas

NH3

Industrial Feedstock Trees

Page 10: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

10

ClCl Cl

ClCl

O

Cl

OH

91 % 84 %94 %

93 %

76 %light, Cl2PCl3

Al2O3340 C

475 C

CaSO4

140 C980 psi

H2/Cu2Cr2O4

155 C

airCr2O3

Sample Problem #1

Two industrial routes to m-chlorostyrene from m-chloroethylbenzene are shown.(a) Account for all byproducts and identify catalysts in each step.(b) For each route writ e out a set of balanced chemical equat ions for the transformations.(c) For each route determine the overall yiel d, overal l RME, and overall mass of waste per kg ofm-chlorostyrene product. Assume each step in both routes is run under stoichiometric conditions.(d) Determine the raw materi al costs (RMC) to produce 1 kg of m-chlorostyrene from each route usingthe market values for vari ous start ing materials given in the table bel ow.(e) Identify byproducts that may pose toxicity concerns and those that pose hazards upon scale-up.(f) Identify recycling potential of waste products.(g) Identify processes that may pose equipment corrosion problems.(h) Identify reactions that are energy demanding (high temperature / high pressure).Taki ng al l factors together decide which route is better economical ly and environmentally.

The Wittig reaction produces triphenylphosphine oxide as a wastebyproduct.

Given the three recycling reactions shown below that convert O=PPh3back to PPh3, assess which option is best according to the combinedRME values for the Wittig and recycling reactions.

O

Ph PhPh Ph

Ph

80 %

- O=PPh3- HBr

+Br-[Ph3P-CH2Ph]

90 %

90 %

90 %O=PPh3 + H2O + HSiCl3 PPh3 + 3 HCl + SiO2(1)

(2) O=PPh3 + O=CCl2 + 2/3 Al PPh3 + 2/3 AlCl3 + CO2

(3) O=PPh3 + HCl + 1/4 Ti(i-OPr)4 PPh3 + H2O + O=C(CH3)2 + 1/4 TiCl4

Sample Problem #2

Page 11: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

11

Sample Problem #3Four different routes to a generalized γ-lactone are given. For eachroute provide an overall balanced chemical equation and determinevalues for AE(min) and E(max). If the RME for each route is to beabove a threshold value of α = 0.5 determine the range ofpermissible reaction yield values when AE = AE(min) and theprobability of achieving such a threshold in each case.

Note for multi-step sequences assume the reaction yield refers to thecombined steps.

O

RCOOEt

COOEt

COOEt

COOEt

HH

H

O

O

EtOOC

R

O

O

R

HO RCOOH O

O

R

R O

OH

O

O

R

RBr COOEt

O

O

R

NaOEt / EtOH _

Na+

1. HCl

2. ∆

+

(1)

(2)

(3) + + KMnO4 + Mn(O(CO)CH3)2

(4) +

Student Feedback & Comments

“This course promotes thinking on real-live practical chemical problemsrather than mindlessly memorizing facts and spilling the beans on an exam.Biweekly quizzes kept us on the ball.”

“I enjoyed the course because the instructor allowed his students to experiencethe material with a positive feeling even though the industry is quite negativeat times.”

“I liked that we were introduced to the chemical literature.”

“The course gives a good sense of the type of work you’ll be involved in as a chemist.”

“I liked reading material about current issues in chemistry. This is the only waystudents can make the transition from school to work .”

“I had a better appreciation of chemistry after learning about how the subject evolved.”

“I was motivated to learn chemistry by this course. I liked the exercise of coming up with as many synthetic routes as possible to a given compound. My negative feelingsabout the subject disappeared!”

Page 12: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

12

“Th is course provided a good insight of th e “re al world” of chemi stry . It in troduceda number of topics that are important to chemistry but never mentioned in othercourses. We were i ntroduced to chemical industries and what th ey are all about.The i nstructor encouraged us to attend public lectures to get a better sense of the chemi strythat is evolving. He got back to us the very next l ecture and answered any questions that hewas unable to answer in the last lecture. I l earned more about organic chemistry in this classthan from previous chemistry courses. I al so learned a lot more about the chemical industry.”

WRITTEN ASSIGNMENT DEMOGRAPHICS

0

5

10

15

20

25

PH

AR

MA

CE

UT

ICA

LS

FO

OD

AD

DIT

IVE

S

PE

TR

OLE

UM

CH

EM

IST

RY

AG

RIC

HE

MIC

ALS

PE

RS

ON

AL

CA

RE

-C

OS

ME

TIC

S

DY

ES

TU

FF

S

FE

ED

ST

OC

KS

DE

TE

RG

EN

TS

/

CLE

AN

ER

S

NE

W T

EC

HN

OLO

GIE

S

TOPIC CATEGORY

NU

MB

ER

OF

ST

UD

EN

TS

M

FTOTAL

Student Interests

Part II

Green Metrics Analysis

RME master equation and visual depictionSynthesis tree analysis

Material, energy, and cost optimization

Page 13: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

13

RME= ε( ) AE( ) 1SF

MRP( ) = ε( ) AE( ) 1

SF

1

1+ ε AE( ) c + s+ ω[ ]SF( ) mP( )

Reaction Mass Efficiency Master EquationAndraos, J. Org. Proc. Res. Develop. 2005, 9, 149; 404

Parameters:ε reaction yield

AE atom economySF stoichiometric factor; SF =1 implies no excess reagents

SF > 1 implies excess reagents usedMRP materials recovery parameter

Recall: Lavoisier’s law of conservation of mass for balanced chemical reaction/equation.

0

0.2

0.4

0.6

0.8

1AE

Rxn Yield

1/SFMRP

RME

The “Green” PentagonThe Pentagon

Page 14: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

14

REACTION METRICS FORM

DATE: May 31, 2005NAME OF TARGET PRODUCT:trans-Benzal acetophenone

REACTION CLASSIFICATION:Carbon-carbon bond forming

BALANCED CHEMICAL EQUATIONS:

PART 1: RAW MATERIALS USAGE(A) REACTION STAGE:(i) REAGENTS MW (g/mol) Density (g/mL)Volume (mL) Moles Mass (g) Cost ($/g) acetophenone 120 1.03 3 0.02575 3.09 0.0321benzaldehyde 106 1.046 2.5 0.0247 2.615 0.0149

TOTAL REAGENTS 226 Add lines 12 to 15 5.705

(ii) CATALYSTS MW (g/mol) Density (g/mL)Volume (mL) Moles Mass (g) Cost ($/g) 3 M NaOH (12 %) 40 1.1309 12.5 0.35340625 14.13625 0.0177

TOTAL CATALYSTS Add lines 19 to 20 14.13625

(iii) SOLVENTS Density (g/mL)Volume (mL) Mass (g) Cost ($/g) Cost ($) 95% EtOH 0.816 7.5 6.1200 0.0422 0.258

O O

H

O

Ph Ph

+ H2O+

Aldol condensation

0.0

0.2

0.4

0.6

0.8

1.0AE

Rxn Yield

1/SFRP

RME

Complete Reclaiming Partial Reclaiming

No Reclaiming Ideal

Diels-Alder

0.0

0.2

0.4

0.6

0.8

1.0AE

Rxn Yield

1/SFRP

RME

Complete Reclaiming Partial Reclaiming

No Reclaiming Ideal

Friedel-Crafts

0.0

0.2

0.4

0.6

0.8

1.0AE

Rxn Yield

1/SFRP

RME

Complete Reclaiming Partial Reclaiming

No Reclaiming Ideal

Grignard

0.0

0.2

0.4

0.6

0.8

1.0AE

Rxn Yield

1/SFRP

RME

Complete Reclaiming Partial Reclaiming

No Reclaiming Ideal

Page 15: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

15

Oxidation (Alcohol to ketone)

0.0

0.2

0.4

0.6

0.8

1.0AE

Rxn Yield

1/SFRP

RME

Complete Reclaiming Partial Reclaiming

No Reclaiming Ideal

Rearrangement (Beckmann)

0.0

0.5

1.0AE

Rxn Yield

1/SFRP

RME

Complete Reclaiming Partial Reclaiming

No Reclaiming Ideal

SN2 Reaction

0.0

0.2

0.4

0.6

0.8

1.0AE

Rxn Yield

1/SFRP

RME

Complete Reclaiming Partial Reclaiming

No Reclaiming Ideal

E1 Reaction

0.0

0.2

0.4

0.6

0.8

1.0AE

Rxn Yield

1/SFRP

RME

Complete Reclaiming Partial Reclaiming

No Reclaiming Ideal

RME=1

1+ Em

Atom Economy/Reaction Mass Efficiency - E-factor Connecting Relationships

Criteria for “green” reactions:(1) AE > 61.8 % so that AE > Emw

(2) RME > 61.8 % so that RME > Em(3) Reaction solvents and all post-reaction materials

used in work-up and purification stages must be reclaimed and/or eliminated.

AE= 11+ Emw

Page 16: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

16

PROFILE OF ORGANIC REACTIONS ABOVE GOLDEN ATOM ECONOMY (%AE > 60%)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

26

CO

ND

EN

SA

TIO

NS

72

RE

AR

RA

NG

EM

EN

TS 90

MC

R

24

NO

N C

-C F

OR

MIN

G

RX

NS

85

C-C

FO

RM

ING

RX

NS

36

SU

BS

TITU

TIO

NS

47

OX

IDA

TIO

NS

WR

T

SU

BS

TR

AT

E

28

FRA

GM

EN

TATI

ON

S

29

RE

DU

CTI

ON

S W

RT

SU

BS

TR

AT

E

REACTION CLASS

PE

RC

EN

T R

EA

CT

ION

S IN

EA

CH

CL

AS

S

CUMULATIVE GROWTH OF ORGANIC REACTIONS BELOW AND ABOVE GOLDEN ATOM ECONOMY

THRESHOLD

0

50

100

150

200

250

18

28

18

37

18

46

18

55

18

64

18

73

18

82

18

91

19

00

19

09

19

18

19

27

19

36

19

45

19

54

19

63

19

72

19

81

19

90

19

99

YEAR

CU

MU

LA

TIV

E N

UM

BE

R O

F

OR

GA

NIC

RE

AC

TIO

NS

D

ISC

OV

ER

ED

AE(MIN) > 0.62

AE(MIN) < 0.62

Page 17: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

17

Cl

ClCl

Cl

Cl

Cl

HOHO

O

Cl

Cl

Cl

O

O

Cl

Cl

Cl

O

OH

Cl

Cl

Cl

O

O

O

i*

I1*

I1

I2

I3

P

S2

S1

i

ii

iii

iv

Reaction conditions: (i) acetylchloride, AlCl 3 catalyst (94.3%);(i) * 2 Cl2 (81%); (ii) 1/2 K2CO3, CuCl catalyst, xylenes (48.3%); (iii) 62.5% H2O2, 1/2 maleic anhydride, CH2Cl2 (91.3%);(iv) M eOH, 35% HCl catalyst (94.5%).

Triclosan Synthesis

o

o o

o(69) 1/2 K2CO3

I1*(141.8) 2 Cl2

(94)

(146.9)S1

I3

I2

I1

ε1∗

ε4ε3ε2ε1

S2

CH3COCl

AlCl3

H2O2

1/2 C4H2O3

CH3OH

P

(32)

(49)(289.35)

(78.45)

(34)

(133.35)

Cl

Cl

OH

Synthesis Tree

Page 18: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

18

Kernel RME function

RME=289.35x

S

S= x32

ε4+

49+ 34

ε3ε4+

69

ε 2ε3ε4+

133.35+ 78.45+146. 9

ε1ε2ε3ε4+

94 + 141.8

ε1*ε2ε3ε4

= x32

ε 4+ 83

ε3ε4+ 69

ε 2ε3ε4+ 358.7

ε1ε 2ε3ε4+ 235.8

ε1*ε2ε3ε4

RME = 0.1517 (about 15 %),Em = 5.59

AE = 0.3717 (about 37 %), Emw = 1.69

0

0.2

0.4

0.6

0.8

1

1 2 3 4

RM

E

Reaction Stage

0

0.5

1

1.5

2

1 2 3 4

E(m

)

Reaction Stage

0

100

200

300

400

500

600

700

800

1 2 3 4

Mas

s of

was

te (

g)

Reaction Stage

B

A

C

Page 19: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

19

0

0.2

0.4

0.6

0.8

1

1 2 3 4

Cu

mu

lativ

e R

ME

Reaction Stage

0

1

2

3

4

5

6

1 2 3 4

Cum

ulat

ive

E(m

)

Reaction Stage

0

500

1000

1500

2000

1 2 3 4

Cum

ulat

ive

mas

s of

was

te (

g)

Reaction Stage

C

B

A

RMC= x32$MeOH

ε4+

49$MA + 34$H 2O2

ε3ε4+

69$K2CO3

ε2ε3ε4+

141.8$Cl2+ 94$PhOH

ε1*ε2ε3ε4

+

+133.35$AlCl 3

+ 78.45$AC +146.9$1,4−DCB

ε1ε2ε3ε4

Kernel RMC function

RMC = $ 333.61 per mole = $1.15 per gram

Page 20: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

20

Fractional RMC by Reaction Stage for Triclosan Synthesis

Stage 3

4.0%Stage 4

0.1%Stage 2

2.3%

Stage 1

93.6%

Fractional Cost Distribution for Input Reagents on a Per Mole Basis for

Triclosan Synthesis

hydrogen

peroxide30%

potassium carbonate

2%

chlorine47%

aluminum trichloride

3%

methanol2%

1,4-dichlorobenzene

(S1)2%

phenol (S2)

3%

acetylchloride5%

maleic

anhydride6%

B

A

NH2

MeO

O

N

MeO+

6-Methoxylepidine Synthesis

Method Y ield ( % ) At omEcon om y( % )

K er nelRME (% )

K er nelR M C( $/gr am)

FeCl3 , ZnCl2 52 46 24 0.62

I nCl3micr owaves

83 42 35 8.22

A

B

A: J.Am.Chem.Soc. 1945, 67, 86B: Tetrahedron Lett. 2003, 59, 813

For method B to be cost competitive with method A,price of metal halide must not exceed $ 55 per mole.

FeCl3 $ 21 ZnCl2 $ 12 InCl 3 $ 1147

Page 21: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

21

o

o o

o

θmcr θp

Pmcr

I1*

λ2

λ1

Q2

Q1

R2

R1

P

CH3OH

1/2 C4H2O3

H2O2

AlCl3

CH3COCl

S2

ε1ε2 ε3 ε4

ε1∗

I1

I 2

I 3

S1

2 Cl2

1/2 K2CO3

Synthesis Tree Parameters

(N, <y>)P (4, 6.781)N = 4M = 5I = 9δ = 0.503

β = 0.695

ρrel = 1.70

-200

-150

-100

-50

0

50

0 0 1 1 2 3 4

MW

(Pj)-

MW

(PN)

Reaction stage

PN

µ1 = - 99.54 g/mol/reaction stage

Page 22: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

22

Φ product = FTE =

RME( ) j Ψjj

M

Ψ jj

M

Φwaste=

1 − RME( ) j[ ]Ψjj

M

Ψjj

M

Fractions of Total Energy Input

Ψj = energy input for jth reaction

M = number of reactions(RME)j = reaction mass efficiency for j th reaction

N

MeO

MeOOMe

OMe

O

OHOMe

OH

OHOMe

OH

OHOMe

OMeOMe

OMeOMe

HOOC

H2 N COOH

OH

OMeOMe

OMeOMe

HOOC

O

3,4-dimethoxyphenyl-pyruvic acid

veratraldehyde(methylvanillin)

Decker-Wahl method

veratrole

Pictet-Gamsmethod

Kindler-Peschke-Pal method

vanillin

vanillin

Redel-Boutevillemethod

Deanmethod

acetovanillone

glycinehomoveratric acid

papaverine

Papaverine

Page 23: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

23

oo

o

o

o

oo

o

o

o

o

oI7

I6

ε1 ε2 ε3 ε4

P

(153.35) O=PCl3

ε8ε7ε6

ε5∗

ε5

(36) 2 H2O

(152) S1

(63) 1/2 (MeO)2SO2

(2) H2

(118.9) SOCl2

(121) PhNMe2

I1*

I2*I3

*

(65) KCN

I4*

I5*

I5

(4) 2 H2

ε4

I4

(65) KCN

I3I2

I1

(121) PhNMe2

(118.9) SOCl2

(2) H2

(63) 1/2 (MeO)2SO2

(152) S1ε3ε2ε1

Kindler-Peschke-Pal synthesis

MeO

HO

CHO

MeO

MeO

CH2 CN

MeO

MeO

CH2 CH2NH2 MeO

MeO

CH2COOH

N

OMe

OMe

MeO

MeO

P

I5*I5

I4, I4*

S1

Pictet-

Gams

Decker-

WahlbRedel-

Bouteville

Kindler-

Peschke-

Pal

Deanc

Kernel

Reaction

MetricsAE (%) 13.6 19.7 31.7 27.4 19.9

6.37 4.03 2.15 2.65 4.03

RME (%) 0.52 2.8 4.0 15.1 8.0

191.12 35.37 23.75 5.63 11.57

(%)

( )

3.8 13.8

(10.6)

12.7

(7.6)

55.0 40.0

Number of

reaction inputs,I

18 20 (13) 11 15 12 (8)

Number of

reaction steps,

M

11 12 (9) 8 13 10 (8)

Number of

reaction stages,

N

8 9 (9) 8 8 8 (8)

(g per mole

per reaction

stage)

- 163.57 - 83.10(+ 86.40)

- 54.06 - 218.9 -151.56(-151.56)

RMCa

($ CAD per

gram)

29.04 4.72 8.17 0.45 22.05

Tree

Parameters

Degree ofconvergence, δ

0.443 0.425

(0.360)

0.359 0.450 0.392

(0.308)

Relative rate of

convergence,ρrel

0.227 0.207

(0.199)

0.218 0.200 0.204

(0.186)

Asymmetry, β 0.813 0.861

(0.791)

0.746 0.604 0.630

(0.490)

E mw

E mε pseudo−overallεoverall

µ 1

Page 24: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

24

CH2 OH SiMe3

HOCH 2

SiMe3

(CH 2) 5CH3I

Cl

CH3 (CH 2)5

I

CH3(CH 2) 5

(CH 2) 5CH3

Br

I

CH2OH

Br

CH2OHSiMe3

Organ Method 2

Organ Method 1

Bupleurynol Synthesis

Organ, M.G. et al. Org. Lett. 2004, 6, 2913

o

o

o

oo

o

o o

o

P

C

ε3∗

ε6ε5ε4ε1 ε2 ε3

BA

ε1∗

ε3ε2ε1

P

P

(136.9) S4

(261) TBAF

(257.87) ZrCp2HCl

(110) S3

(232.9) S2

(136.29) ZnCl2

(64) nBuLi

(122) S1ε1

δ = 1

β = 0

ρrel = 1

δ = 0.59

β = 0.57

ρrel = 0.52

δ = 0.37

β = 0.67

ρrel = 0.28

Page 25: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

25

NH2H2N

O

O O

Et Et

OEtOEt

O O

OEtOEt

Cl COOH ClOH

NC COO- K+

Cl COO- K+

NHHN

O

O O

Et Et

ε6∗∗

ε6∗

ε7∗

ε5∗ ε5

ε7

ε6ε5

ε4

ε3

ε1

ε2

ε8

ε2∗

I 7*

S4

S5

I5

I2*

S3

S3

S2

I7I 6

I 4

I3

I2

I1S1

O2 (air)

P

HBr

2 HNO3

KOH

H2O

H2OCH2=CH2

KCN

HOCl

2 EtOH2 HCl

EtOH

Na

2 NaOEt

CH2=CH2

2 EtBr

3 H2 + N2

CO22 NH3

Veronal

o

o

oo

o

o

oo

o

o

o

o

o

oI5

* = I5**

I6*** = I1

I1

(56) 2 CH2=CH2

(161.8) 2 HBr

(46) 2 Na

(36) 2 H2O

(56) 2 CH2=CH2

(6) 3 H2

(28) N2

(128) 4 O2

(52.45) HOCl

(28) CH2=CH2

(56) KOH

(65) KCN

(70.9) 2 HCl

I2

I3

I4

I5

S1

S2

S3 I2*

S3 (56) 2 CH2=CH2

(36) 2 H2O

I6

S3

S3

I7

S2

S1

(28) N2

(6) 3 H2

(44) CO2

S4

P

I7*

I6*

I6**

I5*

I5**

I6***

ε1 ε2 ε4ε3 ε7 ε8ε6ε5

ε2∗

ε5∗

ε5∗

ε6∗∗

ε6∗

ε1

ε7∗

N = 8M = 15I = 14δ = 0.530

β = 0.591

ρrel = 0.199

µ1 = - 286

Page 26: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

26

RME( )overall =184

S

S = 44

ε 7* ε8

+ 28+ 6( ) 1

ε1ε7*ε 8

+ 3 / 2ε1ε 2...ε8

+ 161.8

ε 6* *ε7ε8

+28

ε7ε8

2

ε6** +

2

ε5* ε6

* +2

ε 5* ε 6

+1

ε 2*ε 3ε 4ε5ε 6

+ 46

ε 6*ε7ε8

+ 36

ε 5* ε7ε8

1

ε 6* + 1

ε 6

+ 70.9

ε 6ε7ε8+ 65

ε5ε 6ε 7ε8+ 56

ε4ε 5ε 6ε7ε 8+ 52.45

ε 2* ε3ε4ε5ε6ε7ε8

+168

ε2ε3ε 4ε5ε 6ε 7ε8

RME = 0.083 (about 8 %) Em = 11.09

AE = 0.1809 (about 18 %) Emw = 4.53

-800

-600

-400

-200

0

200

0 1 2 3 4 5 6 7 8

MW

(Pj)-

MW

(Pn)

Reaction Stage

PN

Page 27: Green Chemistry: Teaching & Researchcareerchem.com/CV/talk2005.pdf · combinatorial chemistry) Natural Products (plants, marine and terrestrial organisms) Methods-oriented ... 11

27

O

O

O

COOH

COO- Na+

O

O

COOH

O

O

O- Na+

OH

O

Cl

O

Cl

O

O

CH 2 CN

COO- K+

CHO

COOH

NH

O

O

O

O

N- K+

O

O

COOH

COOH

COCl

COCl

O

H

O

Br

CH 2COOH

COOH

N-CH2 CH 2 Br

O

O

P7I8I5 I4

I2

P4

P6

96 %

95 %

C6 H6AlCl3

85 %

69 %

P5

P3

P2P1

H2O

ZnO, 340oC

H2O2NaOH

H2SO4

PCl5

Zn/HCl

NH3

NaOH2 HNO3H2O

KOH

BrCH2CH2Br

S1

I1

I3

I6 I7

95 %

100 %

65 %

92 %

AlCl 3 72 %80 %

78 %

Br2

82 %

H2O

65 %

KCN

67 %

H2SO4

71 %

Phthalic Anhydride

Acknowledgements:2002Eric Ci us (biology maj or)Niki ta Goussev (chemistry major, now at Torcan Ltd.)Karen Lee (Chem. Tech. Dipl. At Seneca College; worked at BASF, Apotex, Inc.)Sibel Ok (chemistry major, worked at GSK, Mississauga, MSc. candidate, York)Subukar Paramanantham (chemistry major, now at Dalton Chemical Ltd.)

2003Ryan Bouchard (philosophy & chemistry)Dragana Djokic (chemistry major, now at Ciba, Basel, Swi tzerland)Hareem Ilyas (transfer from Seneca College)Andreas Katsiapis (bioinformatics, computer science)Jelena Loncar (chemistry major)Maija Elin a Lukkari (visiting from University of Helsinki, soil chemistry)**Adriano Maid a (Ph.D. candidate, U Toronto, biomedical sci ence)

2004Kelvin Chan (biotechnology major)Neeshma Dave (atmospheric chemistry major, MSc candidate, York, surface science)Rosa Park (chemistry major, Ph.D. candidate, UBC, chemistry)

2005Jul ia Izhakova (biotechnology major)Milos Mar kovic (chemistry major)Jordan Schwarz (biotechnology major)Murt azaali Sayed (biotechnology major)**