39
GRAVITATIONAL REDSHIFTS versus convective blueshifts, and wavelength variations across stellar disks Dainis Dravins Lund Observatory, Sweden KVA IAU Comm.30, IAU XXVIII GA Beijing, August 2012

GRAVITATIONAL REDSHIFTS

  • Upload
    yasuo

  • View
    46

  • Download
    0

Embed Size (px)

DESCRIPTION

IAU Comm.30, IAU XXVIII GA Beijing, August 2012. KVA. GRAVITATIONAL REDSHIFTS versus convective blueshifts , and wavelength variations across stellar disks Dainis Dravins – Lund Observatory , Sweden www.astro.lu.se /~ dainis. 100 years ago… . Predicted effects by gravity on light. - PowerPoint PPT Presentation

Citation preview

Page 1: GRAVITATIONAL REDSHIFTS

GRAVITATIONAL REDSHIFTS versus convective blueshifts, and

wavelength variations across stellar disks

Dainis Dravins – Lund Observatory, Swedenwww.astro.lu.se/~dainis

KVA

IAU Comm.30, IAU XXVIII GA Beijing, August 2012

Page 2: GRAVITATIONAL REDSHIFTS

100 years ago…

Page 3: GRAVITATIONAL REDSHIFTS

A.Einstein, Annalen der Physik 340, 848 (1911)

Predicted effects by gravity on light

Page 4: GRAVITATIONAL REDSHIFTS

Klaus Hentschel: Erwin Finlay Freundlich and Testing Einstein’s Theory of Relativity, Archive for History of Exact Sciences 47, 243 (1994)

Freundlich’s attempts to verify relativity theory (I)

Erwin Finlay Freundlich (1885-1964) worked to experimentally verify the predictions from Einstein’s theory of relativity and the effects of gravity on light.

Page 5: GRAVITATIONAL REDSHIFTS

Freundlich’s attempts to verify relativity theory (II)

Klaus Hentschel: Erwin Finlay Freundlich and Testing Einstein’s Theory of Relativity, Archive for History of Exact Sciences 47, 243 (1994)

Einsteinturm, Potsdam-Telegrafenberg

Page 6: GRAVITATIONAL REDSHIFTS

Gravitational redshift in white dwarfs

Page 7: GRAVITATIONAL REDSHIFTS

Gravitational redshift in “normal”

stars?

Page 8: GRAVITATIONAL REDSHIFTS

Expected gravitation

al redshifts

D. DravinsIAU Symp. 210

Page 9: GRAVITATIONAL REDSHIFTS

R.F.Griffin: Spectroscopic Binaries near the North Galactic Pole. Paper 6: BD 33° 2206, J.Astrophys.Astron. 3, 383 (1982)

Expected gravitational redshifts

Page 10: GRAVITATIONAL REDSHIFTS

Radial velocities without

spectroscopy

Page 11: GRAVITATIONAL REDSHIFTS

Astrometric radial velocities

Dravins, Lindegren & Madsen, A&A 348, 1040

Page 12: GRAVITATIONAL REDSHIFTS

Pleiades from Hipparcos Proper motions over 120,000 years

Page 13: GRAVITATIONAL REDSHIFTS

Hyades lineshifts Madsen, Dravins & Lindegren, A&A 381, 446

Page 14: GRAVITATIONAL REDSHIFTS

S.Madsen, D.Dravins, H.-G.Ludwig, L.Lindegren: Intrinsic spectral blueshifts in rapidly rotating stars?, A&A 411, 581

Apparent radial velocity vs. rotation?

Page 15: GRAVITATIONAL REDSHIFTS

Differential velocities within

open clusters

Page 16: GRAVITATIONAL REDSHIFTS

B.Nordström, J.Andersen, M.I.Andersen: Critical tests of stellar evolution in open clusters II. Membership, duplicity, and stellar and dynamical evolution in NGC 3680, Astron. Astrophys. 322, 460

Different “velocities” ─ giants vs. dwarfs?

Page 17: GRAVITATIONAL REDSHIFTS

Dean Jacobsen, astrophoto.net

M 67

Page 18: GRAVITATIONAL REDSHIFTS

L.Pasquini, C.Melo, C.Chavero, D.Dravins, H.-G.Ludwig, P.Bonifacio, R.De La Reza:Gravitational redshifts in main-sequence and giant stars, A&A 526, A127 (2011)

Searching for gravitational redshifts in M67

M67 (NGC 2682) open cluster in Cancer contains some 500 stars;

age about 2.6 Gy, distance 850 pc.

M67 color–magnitude diagram with well-developed giant branch.

Filled squares denote single stars.

Dean Jacobsen, astrophoto.net

Page 19: GRAVITATIONAL REDSHIFTS

Searching for gravitational redshifts in M67

Radial velocities in M67 with a superposed Gaussian centered on

Vr = 33.73, σ = 0.83 km s−1

Radial velocities in M67: No difference seen between giants

(red) and dwarfs (dashed)L.Pasquini, C.Melo, C.Chavero, D.Dravins, H.-G.Ludwig, P.Bonifacio, R.De La Reza:

Gravitational redshifts in main-sequence and giant stars, A&A 526, A127 (2011)

Page 20: GRAVITATIONAL REDSHIFTS

Real line formation

Page 21: GRAVITATIONAL REDSHIFTS

Solar diskJune 12, 2009GONG/Teide

AN ”IDEAL” STAR ?

Page 22: GRAVITATIONAL REDSHIFTS

Solar Optical Telescope on board HINODE (Solar-B)G-band (430nm) & Ca II H (397nm) movies

Page 23: GRAVITATIONAL REDSHIFTS

Spectral scanacross the solar surface.

Left: H-alpha line

Right: Slit-jaw image

Big Bear Solar Observatory

Page 24: GRAVITATIONAL REDSHIFTS

“Wiggly” spectral lines of stellar

granulation

(modeled)

Disk-center Fe I profiles from 3-D hydrodynamic model of the metal-poor star HD 140283 in NLTE and LTE.Top: Synthetic “wiggly-line” spectra across stellar surface. Curves show equivalent widths W along the slit.

Bottom: Spatially resolved profiles; average is red-dotted. N.G.Shchukina, J.Trujillo Bueno, M.Asplund, Astrophys.J. 618, 939 (2005)

Page 25: GRAVITATIONAL REDSHIFTS

SPECTRAL LINES FROM 3-D HYDRODYNAMIC SIMULATIONS

(Models by Hans-Günter Ludwig, Landessternwarte Heidelberg)

Spatially averagedline profiles from20 timesteps, andtemporal averages.

= 620 nm = 3 eV5 line strengths

GIANT STAR

Teff= 5000 Klog g [cgs] = 2.5(approx. K0 III)

Page 26: GRAVITATIONAL REDSHIFTS

SPECTRAL LINES FROM 3-D HYDRODYNAMIC SIMULATIONS

(Models by Hans-Günter Ludwig, Landessternwarte Heidelberg)

Spatially andtemporallyaveragedline profiles.

= 620 nm = 1, 3, 5 eV5 line strengths

GIANT STAR

Teff= 5000 Klog g [cgs] = 2.5(approx. K0 III)

Stellar disk center;µ = cos = 1.0

Page 27: GRAVITATIONAL REDSHIFTS

SPECTRAL LINES FROM 3-D HYDRODYNAMIC SIMULATIONS

(Models by Hans-Günter Ludwig, Landessternwarte Heidelberg)

Spatially andtemporallyaveragedline profiles.

= 620 nm = 1, 3, 5 eV5 line strengths

GIANT STAR

Teff= 5000 Klog g [cgs] = 2.5(approx. K0 III)

Off stellar disk center;µ = cos = 0.59

Page 28: GRAVITATIONAL REDSHIFTS

SPECTRAL LINES FROM 3-D HYDRODYNAMIC SIMULATIONS

(Models by Hans-Günter Ludwig, Landessternwarte Heidelberg)

Spatially andtemporallyaveragedline profiles.

= 620 nm = 1, 3, 5 eV5 line strengths

SOLAR MODEL

Teff= 5700 Klog g [cgs] = 4.4(G2 V)

Solar disk center;µ = cos = 1.0

Page 29: GRAVITATIONAL REDSHIFTS

SPECTRAL LINES FROM 3-D HYDRODYNAMIC SIMULATIONS

(Models by Hans-Günter Ludwig, Landessternwarte Heidelberg)

Spatially andtemporallyaveragedline profiles.

= 620 nm = 1, 3, 5 eV5 line strengths

SOLAR MODEL

Teff= 5700 Klog g [cgs] = 4.4(G2 V)

Off solar disk center;µ = cos = 0.59

Page 30: GRAVITATIONAL REDSHIFTS

Cool-star granulation

causes convective lineshifts on order

300 m/s

Page 31: GRAVITATIONAL REDSHIFTS

Bisectors of the same

spectral line in

different stars

Adapted from Dravins & Nordlund,

A&A 228, 203

From left: Procyon (F5 IV-V),Beta Hyi (G2 IV),

Alpha Cen A (G2 V),Alpha Cen B (K1 V).

Velocity [m/s]

In stars with “corrugated”

surfaces, convective blueshifts increase

towards the stellar limb

F5 G2

IV

G2

V

K1

Page 32: GRAVITATIONAL REDSHIFTS

L.Pasquini, C.Melo, C.Chavero, D.Dravins, H.-G.Ludwig, P.Bonifacio, R.De La Reza:Gravitational redshifts in main-sequence and giant stars, A&A 526, A127 (2011)

Searching for gravitational redshifts in M67

Gravitational redshift predictionsvs. mass/radius ratio (M/R) (dashed red) do not agree with observations.

Calculated convective wavelength shifts for Fe I lines in dwarf (red

crosses) and giant models (squares).

Page 33: GRAVITATIONAL REDSHIFTS

H.M.Cegla, C.A.Watson, T.R.Marsh, S.Shelyag, V.Moulds, S.Littlefair, M.Mathioudakis, D.Pollacco, X.BonfilsStellar jitter from variable gravitational redshift: Implications for radial velocity confirmation of habitable exoplanetsMNRAS 421, L54 (2012)

Variable gravitational redshift in variable stars?

Stellar radius changes required to induce a δVgrav equivalent to an Earth-twin RV signal. Circles represent (right to left) spectral types: F0, F5, G0, G2, G5, K0, K5 and

M0.Dashed curves represent stellar radius variations of 50, 100 and 300 km

Page 34: GRAVITATIONAL REDSHIFTS

Spatially resolved spectroscopy across stellar

surfaces

Page 35: GRAVITATIONAL REDSHIFTS

Exoplanet transit

Selecting a small portion of the stellar disk

(Hiva Pazira, Lund Observatory)

Page 36: GRAVITATIONAL REDSHIFTS

Spatially resolved stellar spectroscopy

Left: Integrated line profilesVrot = 2, 40, 120 km/s

Right: Line behind planetTop: Noise-freeBottom: S/N = 300, R=300,000

(Hiva Pazira, Lund Observatory)

Page 37: GRAVITATIONAL REDSHIFTS

Synthetic line profilesacross stellar disksExamples of synthetic line profiles from hydrodynamic 3-D stellar atmospheres.

Curves are profiles for different positionson the stellar disk, at some instant in time.

Black curves are at disk-center;lower intensities of other curvesreflect the limb darkening.

Top: Solar model; Fe I, 620 nm, 1 eV.Bottom: Giant model; Fe I, 620 nm, 3 eV.

Disk locations cos = µ = 1, 0.87, 0.59, 0.21.

Simulation by Hans-Günter Ludwig (Landessternwarte Heidelberg)

Spatially resolved stellar spectroscopy

Page 38: GRAVITATIONAL REDSHIFTS

Hiva Pazira (Lund Observatory)

Spatially resolved spectroscopy with ELTs

Left: Hydrodynamic simulation of the supergiant Betelgeuse (B.Freytag)Right: Betelgeuse imaged with ESO’s 8.2 m VLT (Kervella et al., A&A, 504, 115)

Top right: 40-m E-ELT diffraction limits at 550 nm & 1.04 μm..

Page 39: GRAVITATIONAL REDSHIFTS