25
The ALTO facility Georgi Georgiev, CSNSM, Orsay, France

Georgi Georgiev, CSNSM, Orsay, France · 2018. 11. 16. · Georgi Georgiev, CSNSM, Orsay, France . Stable beams 3928 h /y 25% light ion beams 984 h 75% heavy ion beams 1964 h RIB

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • The ALTO facility

    Georgi Georgiev,

    CSNSM, Orsay, France

  • Stable beams 3928 h /y

    25% light ion beams 984 h

    75% heavy ion beams 1964 h

    RIB 360 h /y

    The ALTO facility

    360 staff members

    250 outside users (30 countries) /y

    15 MV 50 MeV

  • Stable and radioactive installations within a unique facility

    Program Advisory Committee • R.F. Casten (Chairman) • E. Balanzat – Caen • D. Balabanski – Bucharest • S. Grévy - Bordeaux • E. Khan – Orsay • A. Maj - Krakow • P. Regan – Surrey • P. Reiter – Cologne • B. Rubio – Valencia • J.-C. Thomas – GANIL • A. Tumino – Catania • C. Trautmann - GSI

  • Split-pole

    Bacchus

    ORGAM &

    MINORCA

    Licorne

    Isol

    mass separator and

    low-energy RIB lines

    cluster,

    molecular &

    droplets beams

    Stable beam with spectrometer

    Stable beam w/o spectrometer

    Radioactive beam lines

    Isol

    production cave

    e LINAC

    Experimental areas

  • ca 1964 : mass spectrometry activities in Orsay

    beginning of the 70’s : the ISOCELE ISOL setup at the Orsay SC (now proton therapy center)

    end 70’s/beginning 80’s, upgrade of the SC ISOCELE2

    end 80’s, first online laser ion source at IPN: PILIS

    beginning 90’s PILIS activity moves to ISOLDE/CERN → COMPLIS setup

    End 90’s, beginning 2000’s ISOL activity back at IPN: PARRNe

    mid - 90’s SPIRAL project SPIRAL2 : increase the mass range introduction of the ISOL technique at GANIL d vs e- driver option

    A bit of history

  • exploratory photo-fission experiment at CERN

    arrival of the LINAC cavity from

    decommissioned LEP injector

    construction of the LINAC bunker

    RF system

    First e-beam extracted

    UCx target on line with e-beam

    – production yields measurements

    Commissioning : tests and radiation safety measurements

    TIS vault

    2000

    2001

    2002

    2003

    2004

    2005

    2006

    2007

    2008

    2009

    2010

    1999

    1998

    building of the low energy beam

    lines + laser ion source

    2011

    2012

    2013

    green light from French nuclear

    safety authorities

    BEDO commissioning

    first laser ionized RIB

    83Ga -> 83Ge b-decay

    81Zn -> 81Ga b-decay

    84Ga -> 84Ge b-decay

    initial idea of a R&D test bench for the SPIRAL2 project at the Orsay Tandem

    INAUGURATION

  • figures from

    Y. Oganessian et al., NPA 701 (2002) 87c

    20 µA 25 MeV e- + 40 g/cm2 238U

    1.5 1011 f/s

    238U(γ,f) cross section from

    J.T.Caldwell et al., PRC 21 (1980) 1215

    Photofission

    First proposed RIB facility based on photo-fission: William T. Diamond, Chalk River, 1998

  • LEP injector: 50 MeV e-

    Photofission at CERN-LPI

    F Ibrahim et al, EPJA 15 (2002)

    e-

  • electron linac

    10 µA, 50 MeV

    Parrne mass separator

    target & ion source

    1011 photofissions /s

    Photofission at Alto

  • F Ibrahim et al, International Topical Meeting on Nuclear Research

    Applications and Utilisation of Accelerators, Vienna (2009)

    Photofission at Alto

    measured mass-separated yields for 100 nA 50 MeV e-

    similar to 1 µA 26 MeV d

    therefore projected gain of 100x at 10 µA of e-

    Production pps /10 µA e-

    Stable

    104 – 105 105 – 5 105

    5 105 – 106 106 – 5 106 5 106 – 107 107 – 5 107

    5 107 – 108 108 – 5 108 5 108 – 5 109

    extrapolation from the systematic yield measurements made in June 2006 at 100 nA primary intensity

    (excursions up to 10µA was possible during the commissioning phase)

  • Fluka fission rate in 3.2 g/cm3 UCx target

    M Cheikh et al, NIM B 266 (2008)

    f/cm3/s

    further target optimisation is possible:

    standard Isolde target

    with external oven for mass marker

    ∅ = 14 mm L = 140 mm

    ρ = 3.2 g/cm3

    T ≤ 2000 °C

    Target and ion source

    e- energy

    deposit in

    first 2.65 cm

  • Physics: B(E2) through fast timing

    test case 137,139Cs B Roussière et al, EPJA 47 (2011)

    Collaboration IPN, CSNSM, INRNE-Sofia,

    Tandar-Buenos Aires

    Accelerate release of Ln and other

    chemically reactive elements through

    fluorinated molecular beams

    Higher yields by increasing

    UCx density up to 13 g/cm3

    Control porosity

    Reduce pellet thickness

    B Hy et al, NIM B 288 (2012) 34

    Ensar ActiLab: IPN, Cern, Ganil, INFN

    Target and ion source developments

  • Rialto: Resonant laser ionisation at Alto

    S. Franchoo et al.

    Mezzanine of the mass separator/RIB zone

    Nd:Yag pump laser (532 nm, 90 W)

    2 dye lasers (540-850 nm, 8W @ 30W pump,

    10 ns pulse width, 3 GHz line width)

    BBO doubling units (270-425 nm, >100 mW)

  • 2011, 2012: Gallium with two

    ionisation schemes

    2013: Zinc with frequency tripling

    2014: Off-line chamber for

    development of laser schemes

    First step

    Second step

    Collaboration IPN Orsay, Isolde,

    Univ. Manchester, Univ. Mainz

    Rialto: Resonant laser ionisation at Alto

    electron multiplier

    laser

    ohmic heating

    Zn: 4s4p 1P1 → 4s4d 1D

    2

  • Zn81

    Present limit of structure knowledge (at least few excited states are known)

    hot plasma ionization (1 µA deuteron primary beam) O. Perru PhD – def. 10th December 2004 Eur. Phys. J. A 28, 307 (2006) surface ionization (2-4 µA electron primary beam) M. Lebois PhD – def. 23th September 2008 PRC 80, 044308 (2009) B. Tastet PhD – def. 13th May 2011 PRC 87, 054307 (2013) D. Testov PhD – def. 17th January 2014 laser ionization (10 µA electron primary beam) K. Kolos PhD – def. September 2012 PRC 88, 047301 (2013)

    Ga84 Ga83 Ga82 Ga85 Ga80 Ga79

    Ge80 Ge79 Ge81 Ge85 Ge86

    As82

    hot plasma ionization (1 µA deuteron primary beam) PRC 76 (2007) 054312 laser ionization

    more than 10 years of experiments in the 78Ni region at the PARRNe mass separator (Tandem/ALTO) D. Verney et al.

    Zn82

    b-decay spectroscopy in the N=50 region

  • Bedo setup

    in gamma mode

    4 small Exogam

    clovers

    Bedo setup

    in neutron mode

    JINR neutron

    detector Tetra

    80 3He tubes ε(252Cf) = 53%

    borated polyethylene shielding

    LaBr3

    LaBr3

    fast timing

    up to 5 Ge detectors ε = 5-6%

    4π β trigger

    BGO anti-Compton

    BEDO: Beta decay at Orsay

    D. Verney et al.

  • laser-ionised 83Ga beam

    4π neutron detector

    4π β & 1 Ge detector

    D Testov et al., submitted to NIM

    Tetra: Beta-delayed neutron emission

    βγ

    βnγ

    83Ga T1/2=0.312s

    83Ge

    βn P

    n = 85(4)%

    this work N=50

    82Ge

  • Approved experiments to be scheduled

    N=50 β-γ experiments ● Etile – Verney et al. ● Astier et al

    mid-shell Ln’s β-γ fast-timing ● Roussière et al.

    n-rich Ge β-γ and β-n experiments ● Duchêne et al.

    132Sn region β-γ and β-n experiments ● Penionzhkevich et al. ● Didierjean et al. ● Lozeva et al. ● Gottardo et al. ● R. Li/M. Ramdhane et al.

    n-rich Se β-γ and β-n experiments ● Kurtukian Nieto et al.

    TAS measurements program ● A.Algora/M. Fallot/A. Porta/B.Rubio/J.L.Tain et al.

  • BEDO/TETRA (existing)

    LINO (project)

    TAS (project)

    TETRA (existing)

    Identification station

    Parrne mass separator

    POLAREX (project)

    Low-energy radioactive ion beams at Alto

    MLL Trap (project)

  • 132Sn 100Sn

    rp process r process

    • more accurate theoretical lifetimes of

    the N=82 isotones below 129Ag

    • shell quenching vs deformation

    • shell effect in radii

    b-delayed spectroscopy of laser-polarized beams ground and isomeric state properties of 110-126Ag and 128-133In

    β-decay of polarized 121-126Ag and 128-133In

    LINO: Laser-induced nuclear orientation

    D. Yordanov et al. French ANR funding scheme requested

  • polarisation by optical pumping

    µ & Q from nuclear magnetic resonance

    β-delayed spectroscopy of laser-polarized beams

    LINO: Laser-induced nuclear orientation

  • CSNSM off-line validation

    Rejuvenation of dilution cryostat

    Preparation at Alto

    Structural integration & beam-line design

    CSNSM Orsay

    LPSC Grenoble

    IPN Orsay

    INM Paris

    University of Tennessee

    University of Maryland

    University of Oxford

    University of Novi Sad

    Polarex: Nuclear Orientation On-Line

  • Proposed roadmap at Alto:

    • Phase 1: install Valencia-Surrey TAS@ALTO (12 BaF2) at existing beam line,

    for nuclei of interest that could be easily selected

    • Phase 2: more challenging cases with laser ion source for selection, in parallel

    with development of dedicated TAS beam line

    • Phase 3: synergy with Bedo and Tetra for βn emitters and more exotic

    isotopes. Common measurement campaigns with complementary beam lines?

    • in parallel, new detector developments combining higher resolution with

    efficiency such as LaBr3 or CeBr3 for Alto then Spiral-2

    IFIC, Valencia

    Subatech, Nantes

    University of Surrey, Guildford

    University of Jyväskylä

    Ciemat, Madrid

    Tas: Total Absorption Spectroscopy

  • MONSTER

    TONNERRE

    BEDO

    TAS

    BELEN TETRA

    Si-Cube

    BESTIOL

    DETRAP

    MLL Trap

    LPCTrap

    PIPERADE

    GPIB

    LUMIERE

    CRIS

    b-NMR

    Initiate the physics for Spiral-2 at Ganil:

    Desir, S3, NFS

    NFS

    REGLIS

    LINO

    RIALTO

    LICORNE

    BEDO TETRA

    LINO

  • ► Stable and Radioactive beam facility ► R&D on ISOL & RIB ► low-energy physics program based on photo-fission ► R&D and physics at ALTO pave the way to Spiral-2 at Ganil: initiate physics program, train new generation of ISOL physicists, develop instruments and methodologies