71
Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC RESEARCH & DEVELOPMENT SERIES 281 Published by Science & Technical Publishing Department of Conservation PO Box 10420, The Terrace Wellington 6143, New Zealand

Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

Geodiversity of geothermal fields in the Taupo Volcanic Zone

Ashley D. Cody

DOC ReseaRCh & DevelOpment seRies 281

Published by

Science & Technical Publishing

Department of Conservation

PO Box 10420, The Terrace

Wellington 6143, New Zealand

Page 2: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

DOC Research & Development Series is a published record of scientific research carried out, or advice

given, by Department of Conservation staff or external contractors funded by DOC. It comprises reports

and short communications that are peer-reviewed.

Individual contributions to the series are first released on the departmental website in pdf form.

Hardcopy is printed, bound, and distributed at regular intervals. Titles are also listed in our catalogue on

the website, refer www.doc.govt.nz under Publications, then Science & technical.

© Copyright October 2007, New Zealand Department of Conservation

ISSN 1176–8886 (hardcopy)

ISSN 1177–9306 (web PDF)

ISBN 978–0–478–14285–3 (hardcopy)

ISBN 978–0–478–14286–0 (web PDF)

This is a client report commissioned by Tongariro/Taupo and Rotorua Conservancies and funded from

the Science Advice Fund. It was prepared for publication by Science & Technical Publishing; editing and

layout by Lynette Clelland. Publication was approved by the Chief Scientist (Research, Development &

Improvement Division), Department of Conservation, Wellington, New Zealand.

In the interest of forest conservation, we support paperless electronic publishing. When printing,

recycled paper is used wherever possible.

Page 3: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

CONTeNTS

Abstract 5

1. Introduction 6

1.1 Geothermal geodiversity 6

1.2 The range of geothermal features found in the TVZ 8

2. Work requested 9

3. Details of spreadsheet preparation, including description and

qualification of terms used 11

3.1 Type and size of feature 12

3.2 Main features and groups of features 12

3.3 Status and quality 12

3.4 Representation 12

3.5 Hydrological and gaseous character 13

3.6 Bulk chemistry 13

3.7 Physical character 13

3.8 Sinter deposition 14

3.9 Landform types 14

3.10 Significance 14

4. Using the information collated to rank geothermal fields and

features according to their geodiversity 15

4.1 How does geodiversity influence biodiversity in geothermal

fields? 16

5. Which geothermal fields exhibit the greatest geodiversity? 19

5.1 Fields with extensive geothermal sequences 20

5.2 Geothermal fields with individual features of outstanding

importance 21

6. Geothermal features most vulnerable to effects of geothermal

energy utilisation 22

7. Significance of Te Kopia geothermal field 23

8. Summary 24

8.1 Assessment of reliability of geodiversity scores obtained by this

process 25

9. Acknowledgements 25

10. References 26

Page 4: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

Appendix 1

Geothermal Fields Inventory 27

Appendix 2

Individual Geothermal Features Inventory 40

Appendix 3

Geothermal Fields Ranking 61

Page 5: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

�DOC Research & Development Series 281

Geodiversity of geothermal fields in the Taupo Volcanic Zone

Ashley D. Cody

Geothermal consultant, Rotorua

A B S T R A C T

High-temperature geothermal fields and the surface features they produce are

some of the rarest geological features on earth. The geothermal fields of the

Taupo Volcanic Zone (TVZ), North Island, New Zealand, exhibit a wide range of

geothermal phenomena including hot and boiling springs and streams, geysers,

silica sinter deposits, mudpools, fumaroles, hot and steaming ground, altered

ground and hydrothermal eruption craters. A number of these fields have been

developed for heating, industrial and electricity generation purposes, so that

many of their associated geothermal features have been damaged or destroyed.

Flooding by hydroelectric lakes, and activities such as farming and forestry have

also led to damage or loss of features. The remaining geothermal features have

been assessed and ranked on the basis of their variety and naturalness to provide

a systematic comparison across the fields in an objective and transparent manner.

This work involved the collation of detailed information on each geothermal field

(including the range of geothermal features present, their physical and chemical

characteristics and conditions, and extent of modification); the collation of details

on the variety of geothermal features present in each field; and the ranking of

each field based upon the features present and their qualities. These data were

collated into three spreadsheets. As the pressure to develop geothermal fields is

continuing, the ranking can be used to help assess the fields’ geodiversity, and

inform decisions on what should be conserved and what development should

be allowed.

Keywords: geothermal fields, geothermal features, geodiversity, conservation,

development, Taupo Volcanic Zone, New Zealand

© October 2007, New Zealand Department of Conservation. This paper may be cited as:

Cody, A.D. 2007: Geodiversity of geothermal fields in the Taupo Volcanic Zone. DOC

Research & Development Series 281. Department of Conservation, Wellington. 70 p.

Page 6: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

� Cody—Geodiversity of geothermal fields

1. Introduction

Geodiversity is the natural diversity of geological, mineral, landform and soil

features, and the processes that have formed them. Geomorphological and

geological conservation—increasingly referred to as ‘geoconservation’—is

concerned with the protection, active management or interpretation of

geodiversity for its intrinsic, ecological and geoheritage values.

Geoconservation is complementary to biological conservation, as it seeks to

conserve the non-living aspects of the natural environment as well as directly

conserving habitats. The geoconservation values of significant phenomena can

be degraded by human activities that either change the significant and valuable

features of a site, or change the natural processes controlling the existence or

continuing development of the feature.

1 . 1 G e O T H e R M A L G e O D I V e R S I T y

Some of the rarest geological features on earth are high-temperature geothermal

fields and the surface features they produce. High-temperature geothermal fields

occur in places where magma (molten rock) is able to move close to the earth’s

surface. Deep faults, rock fractures and pores allow groundwater to to percolate

down from the earth’s surface towards the heat source, where it becomes

heated to high temperatures (> 300°C). Because hot water is less dense than

cold water, it tends to rise back towards the surface, where it may form natural

features such as boiling springs, geysers, mudpools, etc. The hot water may also

form underground reservoirs that can be drilled to provide hot water and steam

for electricity generation (e.g. Wairakei Power Station, which has now been

operating for almost 50 years) or other industrial and heating applications. The

geothermal fields of the Taupo Volcanic Zone (TVZ) are shown in Fig. 1.

The natural features associated with high-temperature geothermal fields include

hot and boiling springs and streams, geysers, silica sinter deposits, mudpools,

fumaroles, hot and steaming ground, hydrothermal eruption craters, and altered

ground. These features are very susceptible to damage from activities associated

with all forms of land modification, but particularly farming, forestry and

mining (e.g. for sulphur). They can also be damaged or destroyed by extraction

(through wells) of water and steam from the underground reservoir. Another

threat in the TVZ has been flooding by lakes formed behind dams constructed

for hydroelectricity generation.

At present, a number of geothermal fields in the TVZ are being used for heating,

industrial and electricity generation purposes; many of the natural features

associated with these have been damaged or destroyed (e.g. the former Geyser

Valley at Wairakei). Other fields have some degree of protection from development

(e.g. Waiotapu), and some have not been developed and are not protected. There

is an increasing demand for geothermal energy development in the TVZ and a

corresponding need to identify those geothermal fields and features that need

to be protected to ensure that a representative array of geothermal geodiversity

is preserved.

Page 7: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

�DOC Research & Development Series 281

0 10 20 30 km

35°S

40°S

LakeTaupo

TVZ

Tokaanu

Moutohora(Whale Island)

Horohoro

LakeRotorua

Mokai

Lake Okataina

Reporoa

Rotoiti

LakeRotoma

Tauhara(Hill)

KEY

Tikitere

Whakaari(White Island)

Sources: Environment Waikato Regional CouncilMap by L. Cotterall

Geothermal system

Lake

Volcanic centre

Volcano

LakeRotoiti

Mt. Tarawera

Lake Tarawera

Kawerau

Waiotapu

Broadlands\Ohaaki

Orakei-korako

Rotokawa

LakeTaupo

AtiamuriWaimangu

Wairakei

Taup

oVo

lcan

icZo

ne

OVCRoVC

MgVC

WVC

RoVC = Rotorua Volcanic CentreOVC = Okataina Volcanic CentreKVC = Kapenga Volcanic CentreRVC = Reporoa Volcanic CentreMgVC = Mangakino Volcanic CentreMVC = Maroa Volcanic CentreWVC = Whakamaru Volcanic CentreTaVC = Taupo Volcanic CentreToVC =Tongariro Volcanic Centre

KVC

RVC

TaVC

ToVC

R

38°30'S

176°

15'E

175°

E

RotokawauRotoma

WaikiteValley

Mangakino

Waikato

Whangairorohea

MVC

LakeRotoaira

KetetahiSprings

Crater Lake

Mt. Tongariro

Mt. Ngauruhoe

Mt. Ruapehu

Taheke-Tikitere

Rotorua

Te Kopia

GoldenSprings

Horomatangi Reef

Ngatamariki

Ongaroto

Humphrey’s Bay

Figure 1. Map of Taupo Volcanic Zone showing location of geothermal fields. Source: environment Waikato Regional Council. Map by L. Cotterall.

Page 8: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

� Cody—Geodiversity of geothermal fields

1 . 2 T H e R A N G e O F G e O T H e R M A L F e A T U R e S F O U N D I N T H e T V Z

In a geothermal field, what appears at the surface reflects both the surface

topography and the processes occurring underground. A quick summary of the

processes and their associated features is provided here, so that readers can follow

the assessment process described later in this report. More detailed information,

including some very helpful diagrams, is available at www.nzgeothermal.org.nz

and www.nzic.org.nz/ChemProcesses/water/13A.pdf.

The very hottest fluids from the deepest parts of a geothermal system are typically

of near neutral pH chloride composition. These hot fluids cause significant

alteration to rocks that they pass through, and minerals such as silica become

dissolved in them. As these hot fluids reach the upper parts of the system, pressure

reduces and the water may boil. This separates dissolved gases, particularly

carbon dioxide (CO2) and hydrogen sulphide (H2S) into a vapour phase with

steam, which then moves independently towards the surface where it may form

fumaroles and steaming ground. Where the steam phase meets cold, near-surface

groundwater, it condenses, forming steam-heated waters. If the accompanying

H2S becomes oxidised, acid-suphate waters form. These highly acidic waters

cause extensive alteration to rocks. Where CO2 becomes dissolved in condensate

waters, CO2-rich steam-heated or bicarbonate waters form. These steam-heated

waters are low in chloride. Some of the remaining deep chloride waters may

reach the surface, forming features such as boiling alkaline springs and geysers,

usually associated with silica sinter deposition. They may also become cooled and

diluted, forming dilute chloride waters. The upflowing waters may be deflected

horizontally by groundwater movement, so that chloride springs may discharge

at some distance from steam-related features such as fumaroles. This effect may

be most marked where the ground surface of the field has a varied topography or

spans a wide altitudinal range (e.g. on the side of a hill or mountain).

Geothermal fields vary considerably in the extent and variety of geothermal surface

features they exhibit. Some have a full range or sequence of the generalised

features described above, whereas others only have some. In addition, geothermal

fields vary in their biodiversity. The natural vegetation in and around geothermal

fields in the TVZ has, like much of the rest of New Zealand, been modified

to a greater or lesser extent by activities such as land clearance, farming and

forestry, and associated impacts such as fire and weeds. Geothermal areas also

contain organisms that have evolved to withstand high temperatures, which are

generally unique to these areas.

Page 9: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

�DOC Research & Development Series 281

2. Work requested

This study was commissioned by the Tongariro/Taupo and Rotorua Conservancies

of the Department of Conservation (DOC). It involved the production of

three spreadsheets. The first two summarise physical and chemical aspects of

geothermal fields in the TVZ and individual features within those fields. Data

in the spreadsheets have largely been compiled from existing published or

unpublished sources, with additional information from the author based on

personal familiarity with sites and observations made during site visits associated

with other fieldwork. Following the compilation of the first two spreadsheets, a

third spreadsheet was developed, which incorporates a scoring system to rank

various attributes of the geothermal fields. To augment these spreadsheets, a

separate Geothermal Bibliography was compiled. Copies of this have been lodged

with both the Tongariro/Taupo and Rotorua Conservancies.

Only high-temperature geothermal fields in the TVZ were included in this study. It

omitted some minor, localised warm-water occurrences in the TVZ, e.g. Awakeri

springs, Motuoapa springs and Maketu. The excluded features are mostly small

scale with minor surface expression, and are not directly related to volcanic

activity. The author believes that they would have achieved very low scores in

this exercise and therefore their omission does not constitute a gross oversight

in the establishment of a hierarchy of high-temperature geothermal sites in the

TVZ based on their geodiversity values.

This work on geothermal geodiversity was guided by a set of required outputs

and prepared questions to be answered. These are listed below, together with

brief comments about where each is addressed in the report.

A. Compile a list of types of features (geodiversity) in geothermal areas,

from the rarest to most common, including physical thermal features

(e.g. geysers, fumaroles, hot springs, hot seeps, active silica terraces,

active silica sinter deposits, mud volcanoes, mud pools and pots, hot

lakes, hot ponds and pools, steaming ground, inactive but intact silica

terraces, extinct silica deposits, explosion craters, collapse craters); and

chemical characteristics of geothermal water (e.g. alkaline, neutral,

bicarbonate or acid waters). Use temperature characteristics where

practical.

This information has been presented in the spreadsheet ‘Geothermal

Fields Inventory’, which is Appendix 1 of this report. It enables ready

comparisons between the range of features and characteristics present in

each geothermal system studied.

B. Prepare a spreadsheet showing representation of each geothermal

feature type in each geothermal area, including extant and extinct

or destroyed examples. Indicate approximate numbers and area of

features (absolute, indicative or relative scales) where possible.

This is presented in the spreadsheet ‘Individual Geothermal Features

Inventory’, which is Appendix 2 of this report.

Page 10: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

10 Cody—Geodiversity of geothermal fields

C. Summarise the data compiled in spreadsheets 1 and 2 and then rank

the geothermal fields according to the natural features they contain,

and their degree of modification.

This summary and ranking is presented in ‘Geothermal Field Rankings’,

which is Appendix 3 of this report.

The preparation of these spreadsheets was guided and informed by the following

questions:

1. What criteria should/could be used to rank the relative quality of extant

examples of each feature type for conservation purposes (e.g. intactness,

size, recent natural or induced change of temperature of surrounding

vegetation, degree of existing impact, proximity to sources of direct

or indirect disturbance, proximity to extant ecological sequences, and

indigenous vegetation)?

The answer to this question is addressed in the range of headings

and criteria used in the spreadsheets summarising geothermal fields

(Appendices 1 and 2), and in section 3. The physical, chemical and

geographical features all contribute to the ranking of the relative qualities

of geothermal areas, and are parameters that can also be robustly assessed

and audited by independent people.

2. Can it be demonstrated that there are extensive geothermal sequences

showing geophysical integrity or coherence which, if protected from

development, would encapsulate significant systems or proportions of

geothermal diversity?

The data in the three spreadsheets illustrate how it is practical to

objectively compile summaries that show extensive geothermal sequences

within contiguous areas. Waiotapu, Waihi-Hipaua and Te Kopia all score

highly as sites of uncommon continuity and diversity. See sections 5.1

and 8.

3. Are there particular features outside these sequences that are important

contributors to New Zealand’s remaining geothermal geodiversity

(e.g. that are unique, of significant scientific value or one of only a

few such features in the TVZ)?

There are features that are presently outside formally protected geothermal

areas, which also represent outstanding geothermal attributes. Notable in

this regard are the Red Hills and Waipapa Valley of Orakeikorako; the

hydrothermal eruption craters of southern Ngatamariki and Horohoro; and

the sinter-depositing springs of Reporoa. See section 5.2.

4. What relationships between geodiversity and biodiversity are known

or suspected in geothermal systems (e.g. macroscopic algae and water

temperature, thermal ferns, and water chemistry)?

These relationships are discussed later in the text, but geothermal

biodiversity is generally greatest in and around hot water features, as

hot water tends to be more benign than steam. This is because steam

features usually result from boiling, which also separates acidic gases that

are more aggressive to life forms. See section 4.1.

Page 11: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

11DOC Research & Development Series 281

5. What types of geodiversity have proven to be or are likely to be most

vulnerable to the effects of geothermal energy utilisation?

Geodiversity types that are dependent solely or largely upon upflows and

surface outflows of deep geothermal fluids are most critically vulnerable

to loss resulting from energy utilisation. Boiling springs, silica sinter

deposition and geysers are particularly at threat. The loss of geysers,

alkaline hot springs and actively depositing sinter from Wairakei, Taupo

and Ohaaki soon after electricity generation started all illustrate this. See

section 6.

6. Given the analysis based on the required outputs A, B and C (above)

and questions 1–5, what is the significance of Te Kopia geothermal

area (i.e. not only the reserve) and the potential loss resulting from

energy utilisation in the context of geodiversity in the TVZ?

Te Kopia has a very diverse topography and the most unmodified natural

vegetation of all the TVZ geothermal areas. The area has a wide variety

of geothermal phenomena that remain in largely natural conditions.

Geological investigation indicates that flows of hot alkaline springs at Te

Kopia were once much greater, depositing silica over large areas. energy

utilisation could dramatically degrade the geodiversity and biodiversity at

Te Kopia. See section 7.

3. Details of spreadsheet preparation, including description and qualification of terms used

The spreadsheets (Appendices 1, 2 and 3) use the geothermal field names that

are most commonly used, and self-explanatory terms and measurements as much

as possible. However, some of the terminology is subjective, and the range of

conditions or sizes that each adjective describes is discussed in more detail below.

Single-word adjectives are used instead of actual measurements to provide groups

or classes of features that can be easily understood at a glance.

Selection of terms used was the result of considerable discussion between the

author and Dr Harry Keys (DOC, Tongariro/Taupo Conservancy), and other DOC

staff.

These terms are described below. The term ‘feature’ is commonly used in

geothermal science, because it can encompass the entire range of geothermally

produced surface structures and phenomena.

Page 12: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

12 Cody—Geodiversity of geothermal fields

3 . 1 T y P e A N D S I Z e O F F e A T U R e

The type of feature is based upon the nature of the fluid, steam or gas upflow that

supports its existence. Neutral pH or alkaline chloride waters occur deep in the

geothermal field where there is very little or no input of other fluids, steam or gas.

Dilute chloride water is deep geothermal fluid diluted with groundwater. Acid

sulphate and bicarbonate waters form when the gases H2S and CO2, respectively,

dissolve in surface waters. Mixed waters may have varying amounts of these fluid

types and groundwater.

Following identification of their chemical type, features are then described by

size. A large-sized geothermal spring is > 5 m diameter (dia.), moderate size is

1–5 m dia. and small is < 1 m dia. Water bodies are termed lakes when > 20 m dia.,

pools when 5–20 m dia. and small pools when < 5 m dia.

Mud cones occur where mud ejecta builds up conical structures. Mud lakes are

> 20 m dia., mud pools are 5–20 m dia. and mud pots < 5 m dia.

Steam-heated ground includes fumaroles, solfatara (where heated surficial liquids

may be present in minor amounts), steaming ground, barren ground and altered

ground.

3 . 2 M A I N F e A T U R e S A N D G R O U P S O F F e A T U R e S

Main features are listed by their name and/or catalogue or mapping reference

number (if they have one). Important features or those that are good examples

of their types in each geothermal field are presented either as separate entries

(e.g. Champagne Pool, Ohaaki Pool, Te Kopia and Hipaua fumaroles) or as

cumulative groups for features of the same type (e.g. three springs of same

general chemistry and flow types; five mud pools of same general chemistry,

colour and nature).

3 . 3 S T A T U S A N D q U A L I T y

Status is given as: A = active at present in geothermal field; Hn = historically

active but now inactive or lost due to natural causes; Hh = historically active

but now inactive due to human causes; P = prehistorically active; and N = never

present.

quality is described as follows: O = outstanding example in its natural state;

G = good example in natural state; M = modified; and D = severely degraded.

3 . 4 R e P R e S e N T A T I O N

This is given as an indication of how important the feature is in representing

its type, including how rare it is in New Zealand and elsewhere. That is:

I = internationally important, if it is the only one of its kind or the best in

New Zealand; R = regionally important, if it is one of the best examples in the

TVZ; and L = locally important, if it is one of the best examples in its geothermal

field.

Page 13: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

13DOC Research & Development Series 281

3 . 5 H y D R O L O G I C A L A N D G A S e O U S C H A R A C T e R

This description involves surface flow rate and type of activity, together with

a term to describe the state of any ebullition (i.e. bubbling activity, whether

boiling or not).

Strong flow is > 3 litres per second (L/s), moderate is 1–3 L/s, weak is < 1 L/s and

nonflowing means that there is no surface flow. Note, however, that a nonflowing

clear spring with a neutral or alkaline pH will probably have a subsurface outflow

into the surrounding ground or groundwaters, otherwise a static nonflowing

body of such water will rapidly oxidise and become turbid and acidic.

Flow types are: periodic = geyser or cyclical flow; irregular = varying and aperiodic;

steady = essentially nonvariable; and intermittent = sometimes inactive.

Gaseous ebullition is described as being either strong, moderate, weak or absent

(i.e. mud or water is calm), with a mean height estimate for ejected mud or

water. It is a relatively common phenomenon for pools and springs to have a

bubbling surface that superficially appears to be boiling, although no steam is

freely generated and the surface temperatures can be well below true boiling

point.

3 . 6 B U L K C H e M I S T R y

This summarises the chemistry of the water, gas or solids. Odours may also be

recorded.

Water type is described as: chloride, bicarbonate, chloride-sulphate, acid sulphate,

sulphate, or other (see sections 1 and 3.1).

Where known, pH has been included. Otherwise, it has been categorised as:

neutral to alkaline = pH > 6.6; weakly acidic = pH 6.6–4.5; moderately acidic =

pH 4.5–3.0; and strongly acidic = pH < 3.0.

3 . 7 P H y S I C A L C H A R A C T e R

This summarises known details of normal temperature, heatflow (megawatts,

MW), clarity (clear or turbid) and colour, including any suspended sediment

evident. Temperature may be described as: superheated = > 100oC; boiling =

97–100oC; hot = 61–97oC; warm = 35–61oC; tepid = 25–35oC; and cold = < 25oC.

Note that boiling point varies a few degrees within the TVZ according to altitude

and also the quantity of dissolved solids and/or gases.

Fumarolic energy output may be described as: strong = > 2 MW; moderate =

2–0.5 MW; and weak = < 0.5 MW.

Page 14: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

14 Cody—Geodiversity of geothermal fields

3 . 8 S I N T e R D e P O S I T I O N

This classifies various characteristics including:

The amount of deposition: active, minor or nil.

The type of sinter: amorphous silica, calcite, calcite-silica intergrowths,

and other.

The form of deposition: dense, laminated, algal or residue.

The structure of deposition: terraces, aprons, cascades, rims, sheets, mats,

films, crusts and rinds.

3 . 9 L A N D F O R M T y P e S

These include hydrothermal eruption craters (Hes), breccia deposits, dissolution

craters or dolines, wetlands, hillslopes, terraces, gullies, ridges and flats.

3 . 1 0 S I G N I F I C A N C e

This score ranks the overall importance of a geothermal field in terms of its

geodiversity. This is based upon the number of different types of individual

geothermal features, the total number of features, their quality (including extent of

naturalness/intactness/degradation as given in section 3.3 above), representation

(i.e. rarity, etc.) and the range of characteristics likely to be important for

biodiversity (including factors such as flow, chemistry, pH, temperature, colour,

sinter deposition, altitude range and landform diversity).

It is notable that geothermal features related to steam and gas upflows tend to be

the most common features recorded in geothermal fields, and these features tend

not to have well-defined structures (e.g. hot ground, solfatara, warm ground).

The smaller in size these features are, the more commonly they are recorded and

thus the less significant they become. Hence, they generally have a low score in

terms of geodiversity.

Page 15: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

1�DOC Research & Development Series 281

4. Using the information collated to rank geothermal fields and features according to their geodiversity

To compare geothermal fields based on their geodiversity, a ranking system was

required to give scores for feature types, rarity, intactness or lack of modification,

and representation of geothermal features within each field. The Geothermal

Field Rankings spreadsheet (Appendix 3) uses a scoring system that gives

1–10 points to each type of geothermal feature present according to its intactness

(i.e. natural, modified or degraded) and rarity.

Additional weighting has been given to all types of geysers (by doubling their

ranking score), because of their exceptional rarity compared with all other

types of geothermal features in particular and geological features in general

(< 1000 worldwide; see, for example, www.teara.govt.nz/earthSeaAndSky/

HotSpringsAndGeothermalenergy/HotSpringsMudPoolsAndGeysers for more

detail).

To score altitudinal range in each geothermal field, the total altitudinal range (in

metres) was divided by 100, to provide a value that was in proportion to scores

for other features by preventing the large variations in altitude that occurred in

some fields from dominating these fields’ total scores.

The ranking scheme for individual geothermal features is provided in Table 1.

RANK DeSCRIPTION

0 Not present in this particular geothermal field or, if ever present, it has now

been irretrievably lost.

1 Very poor example of geothermal feature but is the only or best remaining

example in the geothermal field. Severely degraded by human activity.

2 Poor or only local example of its type but degraded by human activity.

3 Good local example in modified condition.

4 Good local example in natural condition.

5 Good regional example in modified condition.

6 Good regional example in natural condition.

7 Good national example in modified condition.

8 Good national example in natural condition.

9 Outstanding national example in natural condition.

10 Outstanding international example of its type in natural condition.

TABLe 1. RANKING SCHeMe FOR INDIVIDUAL GeOTHeRMAL FeATUReS IN THe

TAUPO VOLCANIC ZONe.

Page 16: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

1� Cody—Geodiversity of geothermal fields

In each geothermal field, a score was given for intactness of vegetation,

landscape and geothermal features (Table 2). These three scores were then

averaged to produce a multiplier that was applied to the sum of geodiversity

types scored above. Land-use activities were distinguished from fluid-extraction

effects because the latter are generally more destructive and more likely to be

irreversible, especially at the rates required for power generation. Note that

land-use or geothermal field changes considered to result from entirely natural

processes have not been included.

RANK DeSCRIPTION

1.0 Intact, natural and unmodified geothermal field (incl. vegetation).

0.9 Largely intact and only slightly modified by land use effects (incl. vegetation).

0.8 Some feature types degraded by land use effects.

0.7 Some feature types now destroyed by land use effects.

0.6 Some feature types slightly modified by fluid extraction effects.

0.5 Some feature types degraded by fluid extraction effects.

0.4 Some feature types destroyed by fluid extraction effects.

0.3 Features, vegetation and landscape highly modified by land use effects.

0.2 Features, vegetation and landscape highly degraded by human activities

including extraction of fluids as well as land use effects.

0.1 Features, vegetation and landscape destroyed by human activities including

extraction of fluids as well as land use effects.

TABLe 2. RANKING SCHeMe FOR LANDSCAPe AND LAND USe FeATUReS OF

GeOTHeRMAL FIeLDS IN THe TAUPO VOLCANIC ZONe.

4 . 1 H O W D O e S G e O D I V e R S I T y I N F L U e N C e B I O D I V e R S I T y I N G e O T H e R M A L F I e L D S ?

Appendix 3 presents geodiversity information for each geothermal field. It

also includes a general score for vegetation intactness around the geothermal

fields surveyed. It does not, however, include a detailed ranking of botanical or

biological features or aspects. This component will require further work from

specialist scientists and is a key aspect intended for eventual inclusion in this

ranking system.

Geothermal fields and features exhibit extreme variations of temperature, acidity

and other environmental factors that would seem to make them unlikely places

for plants, animals and microorganisms to exist. However, many species do

survive these conditions, and some very rare and specialised species are found

in geothermal areas. Table 3 shows the temperature ranges at which particular

life forms can survive, providing an example of how geodiversity (in this case

temperature) can influence biodiversity in geothermal fields.

The amount and extent of oxidation of H2S gas is thought to have a highly

significant influence on the abundance and diversity of biota in geothermal fields

and may explain some of the differences in biota that occur between fields.

It appears that thermophilic (heat-loving) plants and animals, some of which

are of tropical origin (e.g. clubmoss Lycopodium cernuum), require very stable

Page 17: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

1�DOC Research & Development Series 281

conditions of warmth with high humidity (but low acidity). This is most likely

to be attained where warm or hot springs are reliably present, as these have a

greater intensity of concentrated heatflow than steam without the evolution of

acid gases. For example, Waikite Valley, which contains mainly hot alkaline-

chloride-bicarbonate springs, has abundant thermophilic ferns and native snail

populations.

Similarly, the hot alkaline-neutral springs of Te Kopia host tropical ferns and

snails, although little silica is presently being deposited there. Recent studies

indicate that silica deposition is of little importance to biota other than for

providing suitable anchor points on which to grow (Handley et al. 2003). The

presence of thermophilic plants is probably related to the consistently warm

conditions, however they are achieved, without excessive acidity.

Several factors operate to produce unique biotic environments in geothermal

fields. Diversity in gas chemistry and fluid dynamics, acidity, alkalinity, oxygen or

sulphur availability, light, temperature, moisture, substrate, altitude and landform

can lead to high biodiversity.

Wherever boiling conditions exist in a geothermal field, evolved gases play a

major role in the creation and maintenance of the surface thermal environment.

If boiling is occurring at shallow depths (< 200 m) and gas upflows are rapid

without any interaction with oxygenated groundwaters or entrained air, there

may be insufficient residence time in which sulphides may oxidise. The extent

to which oxidation occurs and what oxidation state is achieved also depends

upon the abundance of an oxygen supply, e.g. does the H2S oxidise to sulphur,

sulphur dioxide or sulphate?

LIFe FORMS TeMPeRATURe LIMIT (°C)

Eukaryotes

Animals

Fish 38

Insects 45–50

Ostracods (crustaceans) 49–50

Plants

Vascular plants 45

Mosses 50

Eukaryotic microorganisms

Protozoa 56

Algae 55–60

Fungi 60–62

Prokaryotes

Bacteria

Cyanobacteria (blue-green algae) (oxygen-producing photosynthetic bacteria) 70–73

Other photosynthetic bacteria 70–73

Heterotrophic algae 90

Archaea

Methane-producing bacteria 110

Sulphur-dependent bacteria 115

TABLe 3. UPPeR TeMPeRATURe LIMITS FOR LIFe (ADAPTeD FROM BROCK 1994).

Page 18: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

1� Cody—Geodiversity of geothermal fields

The extent or absence of this oxidation process in a geothermal field has vital

repercussions for biota, as it influences both the nature and abundance of airborne

emissions and condensates. The resulting inertness or chemical aggressiveness

of moisture and air then plays a key role in determining the variety and extent

of thermophilic biota that may be hosted by a field. Where sulphur formation

occurs at the ground surface, condensates and air at the surface are generally

highly acidic, imposing severe constraints on what life forms can exist in these

areas.

Strong acids also dissolve ground materials to produce turbid waters, muddy

waters and muds. The resulting suspended solids block penetration of strong

sunlight, so that no UV light is available for photosynthesis, meaning that algae

are also excluded.

The abundance of water plays a significant role in the determination of biotic

diversity and abundance. Water dilutes acid condensates and hence reduces

acidity, so that fluids become more benign to biota.

Temperature limits what photosynthesis can occur, and higher temperatures

lead to a reduction or absence of soil microorganisms, so that processes such

as symbiotic root nitrogen fixing and enzyme production cannot take place.

This severely restricts the number of species of vascular plants that can exist

in thermally heated ground. However, some microorganisms can thrive in

temperatures up to 115°C

Despite, or in some cases because of, the extreme conditions, some very

specialised microorganisms have been found in high-temperature geothermal

fields. In recent years, these have been studied by scientists because of the

insights they provide to the earliest life on earth and possible life forms on

other planets. One microorganism (recovered from yellowstone National Park

in the USA) is now a vital component of DNA analysis. Others, including some

obtained from geothermal areas in the TVZ, are being used or investigated

for use in a variety of industrial applications. For more information on this

aspect of geothermal areas (especially microorganisms), see Brock (1994;

www.bact.wisc.edu/Bact303/b1). The environment Waikato website

(www.ew.govt.nz/enviroinfo/geothermal/geobiodiversity.htm) also provides

useful information.

The life forms that live in and around geothermal areas require the same degree of

consideration in protection efforts as the geothermal features that host them.

Page 19: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

1�DOC Research & Development Series 281

5. Which geothermal fields exhibit the greatest geodiversity?

The total scores for each geothermal field are given in Table 4. The four highest

scoring fields are Waiotapu (340), Te Kopia (294), Waimangu (290) and Tokaanu-

Waihi-Hipaua (199).

It is important to regard these scores for geothermal fields as being relative to

each other, rather than absolute values to the exclusion of other considerations.

Although the relative intactness and diversity of each geothermal field is considered

to be reasonably reflected by its score, there are a few obvious anomalies. For

example, Tikitere has a score of 151 and Rotorua a score of 127, yet Rotorua

contains features of international significance (two large geysers) while Tikitere

has no geysers at all and no features of either international or national significance.

Instead, Tikitere has a wide variety of many individual geothermal feature types

and has also been less severely modified by human activity.

Similarly, Orakeikorako (130) might be expected to rank more highly than some

of the fields that scored higher, because of its large number of active geysers

and the rarity of these features. However, refinement of the ranking system to

address such issues is beyond the scope of this first attempt and will require a

great deal more discussion and planning to achieve. It is also possible that the

GeOTHeRMAL FIeLD GeODIVeRSITy RANKING

>300

Waiotapu 340

200–300

Te Kopia 294

Waimangu (incl. Rotomahana) 290

100–200

Tokaanu (incl. Waihi, Hipaua) 199

Tikitere 151

Whakaari 136

Orakeikorako 130

Rotorua 127

Waikite Valley 109

Rotoma 103

50–100

Tarawera 89

Tongariro 79

Ruapehu 78

Reporoa 69

Ngatamariki 68

Rotokawa (Taupo) 67

TABLe 4. GeODIVeRSITy RANKINGS OF GeOTHeRMAL FIeLDS IN ORDeR OF DeCReASING SCOReS.

See APPeNDICeS 1, 2 AND 3 FOR DeTAILeD SCOReS FOR eACH GeOTHeRMAL FIeLD.

GeOTHeRMAL FIeLD GeODIVeRSITy RANKING

10–50

Moutohora (Whale Island) 47

Mokai 40

Kawerau 36

Taheke 23

Tauhara 22

Wairakei (excl. Tauhara) 14

Rotoiti 14

Whangairorohea 11

Atiamuri 10

<10

Ongaroto (Whakamaru) 9

Okataina 8

Horohoro 8

Ohaaki (Broadlands) 7

Rotokawa (Rotorua) 5

Mangakino 2

Page 20: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

20 Cody—Geodiversity of geothermal fields

inclusion of biodiversity values in the ranking system may change the scores

and hence the placement of fields in Table 4. The addition of biodiversity values

would certainly produce more robust scores.

Given the limited amount of biodiversity information presently available for use

in the ranking system, several geothermal fields clearly stand out in terms of the

range and quality of their geothermal features and the naturalness of adjoining

land. Some fields do not score highly because they do not contain extensive

geothermal sequences, yet they have particular geothermal features that are

unique and exceptional worldwide. Both these categories are discussed more

fully below.

5 . 1 F I e L D S W I T H e x T e N S I V e G e O T H e R M A L S e q U e N C e S

The underground extent of the geothermal fields assessed in this study have

all been defined by robust and accepted means, such as resistivity surveys.

Geothermal reservoirs show up as areas of low resistivity (contours of

< 20 ohmmetres) compared with the ground around them.

Although the underground extent of geothermal fields can be very large

(c. 10 km × 10 km), not all of the land surface above the reservoirs exhibits

heating or geothermal activity, because impermeable surface rocks and strong

horizontal flows of underground cold water can block access of hot water and

steam to the ground surface. The surface extent of areas of geothermal activity

above reservoirs varies considerably from large (e.g. Waiotapu) to small (e.g.

Mangakino) or non-existent.

Altitudinal range commonly affects the variety of natural features that occur in

a geothermal area. Generally, the greater the altitudinal range in a geothermal

field, the greater the variety of features. This is mostly because large altitudinal

ranges can allow the separation of steam- and gas-related features (at higher

altitudes) from hot-water features (at lower altitudes).

Te Kopia (260 m), Tokaanu (356 m), Waiotapu (370 m), Tarawera (650 m) and

Ruapehu (1170 m) each have large altitudinal ranges. However, Ruapehu,

Tarawera and Tokaanu do not show a continuum of geothermal features

throughout their altitudinal range, as each has large areas without any surface

expression of the underlying geothermal activity. Waiotapu has a nearly

continuous sequence of geothermal features above its geothermal reservoir, but

still contains large areas of ground at ambient ground temperature, that contains

non-thermal vegetation and can be used for roads and forestry tracks, plantation

forest blocks, and buildings, farmland, power lines, etc.

Te Kopia has a good continuity of geothermal features that occur within an area

of rural and natural forested land. The Scenic Reserve adjoining and partially

enclosing Te Kopia comprises about 1700 ha of largely unmodified forest.

Geothermal features are present from 360 m a.s.l. c. 500 m west of Te Kopia

Road, to 620 m a.s.l. c. 300 m east of the Paeroa Fault scarp summit.

In historical times (pre-1950s), Wairakei had a large variety and number of

geothermal features and outstanding geothermal values. However, these have all

been irreversibly destroyed by extraction of fluid from the field for electricity

Page 21: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

21DOC Research & Development Series 281

generation and subsequent land changes. Wairakei is now known worldwide for

its large amount of land subsidence (> 15 m) induced by ongoing fluid removal

from the field (Allis 2000). The natural features formed from outflows of the deep

hot water (geysers, boiling springs and silica sinter deposition) have gone, but

steam-related activity has increased in some areas. Similarly, Orakeikorako was

highly significant for its abundance of large and frequently active geysers until

these were mostly destroyed in January 1961 by flooding associated with the

formation of Lake Ohakuri (Lloyd 1972).

5 . 2 G e O T H e R M A L F I e L D S W I T H I N D I V I D U A L F e A T U R e S O F O U T S T A N D I N G I M P O R T A N C e

Several New Zealand geothermal fields contain features that are of international

significance. Some are in fields that score highly in terms of the range of features

they contain, while others are in fields that have been modified by human activity

or have few other features of significant value.

examples of fields that contain individual features of international significance

are:

Waimangu: Frying Pan Lake and Inferno Crater, two interconnected, large

and sympathetically interactive flowing springs.

Waiotapu: Champagne Pool for its large size and brightly coloured mineral

deposits together with the associated Primrose Terrace, also known as

Artist’s Palette, for its extent of actively growing silica terrace, now the

largest of its type remaining in New Zealand, and Hakareteke Geyser, the

only clear acid water, sinter-depositing geyser in New Zealand.

Te Kopia: for its unique and long-active mud geyser, the only one of its

type in New Zealand and, possibly, the world; also, its large and powerful

Te Kopia fumarole, now considered to be the most powerful geothermal

fumarole remaining in New Zealand.

Orakeikorako: Waipapa Valley for its extent of actively forming silica

terraces, and Artist’s Palette Terrace for its active geysers.

Rotorua: Whakarewarewa for its frequently active large geyser Pohutu and

an extinct geyser that is readily accessible to people (the only example

of such a feature known in the world today; Cody & Lumb 1992).

Other geothermal fields in the TVZ that historically had internationally significant

geothermal features are:

Ohaaki (or Broadlands): Ohaaki spring and silica terraces. Deep hot water

ceased flowing to these features after electricity generation started in

1989. The spring was subsequently irreversibly changed when its vent

was concreted-up. The pool that remains is now fed by geothermal bore

water.

Wairakei: Geyser Valley had 22 geysers that were active daily until they

all dried up (by the early 1960s) following commissioning of the Wairakei

geothermal power station.

Tokaanu: Once had an extensive silica sinter terrace. Growth ceased at

an unknown date, possibly before europeans arrived in New Zealand.

Page 22: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

22 Cody—Geodiversity of geothermal fields

6. Geothermal features most vulnerable to effects of geothermal energy utilisation

The geothermal features most at risk from energy utilisation are the boiling

alkaline-chloride water springs and geysers, and associated silica sinter deposits

derived directly from the deep hot reservoir fluids. Wells may directly compete

with these natural features by extracting water from the same conduits as supply

them. It is also well established that the extraction of fluids from anywhere in

the reservoir invariably causes drawdown (i.e. lowers the water level in the

reservoir). This has two effects: a reduction in the amount of hot water available

to flow to the surface; and boiling at the top of the reservoir as a result of the

pressure drop caused by the reduction in water level. extraction does not need

to be very substantial before changes occur. Once boiling conditions develop,

great quantities of steam and other gases are evolved. This leads to an increase in

the amount of steam flowing to the ground surface. The chloride water features

then either die and become cold, or become increasingly steam-heated. existing

steam-heated features may increase in activity, and new hot and steaming ground

can form. Hydrothermal eruptions may also occur. exploited geothermal fields

commonly produce hydrothermal eruptions and sometimes these can produce

craters in excess of 100 m diameter with the catastrophic eruption of ejecta

volumes of >10 000 m3.

However, it is the geysers, flowing alkaline springs and silica sinter deposits

that are most vulnerable to loss when a geothermal field is exploited. Geysers

typically operate at very low pressures, perhaps rarely > 30 KPa and typically

< 10 KPa. Therefore, a pressure fall of a few KPa may be sufficient to permanently

stop boiling from ever commencing at the critical depth where a stored chamber

of water underneath a geyser can be induced to boil and erupt. It is well known

in New Zealand and other countries that air pressure fluctuations can sometimes

start and stop geysers erupting, indicating that driving pressures are only

c. 5 KPa or less.

Similarly, by experimental sandbagging of outflows, it has been found that most

hot flowing springs also operate at very low pressures, typically of only c. 3 KPa.

By contrast, most exploited geothermal fields undergo pressure drops in the

order of 20 atmospheres (or 2000 KPa); e.g. Ohaaki and Wairakei have undergone

this scale of pressure drop (Allis 2000).

At Wairakei and Ohaaki, well drawoff rates of 160 000 and 120 000 tonnes

per day (tpd) occur, while natural spring outflows were 10 000 and 500 tpd

respectively. After geothermal power stations went into production on these

fields, all spring flows quickly ceased (within 2 years at Wairakei and within

2 weeks at Ohaaki). At Rotorua, where natural outflow was estimated at

17 500 tpd before many wells began exploiting the field (for heating purposes,

rather than electricity generation), well drawoff of 35 000 tpd severely impacted

on flows of all hot springs and geysers (Cody & Lumb 1992). Some of the decline

of activity has been reversed since many wells were closed in the 1990s (see

Page 23: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

23DOC Research & Development Series 281

www.envbop.govt.nz/water/geothermal for more details about the Rotorua

geothermal field).

At Wairakei, new areas of hot ground formed at Craters of the Moon (Karapiti)

and new hot ground is still being formed at Ohaaki.

It is also important to recognise that some geothermal fields are linked, so that

the effects of exploitation in one field can be observed in the linked field. This

has occurred in Wairakei/Tauhara, where exploitation at Wairakei has affected

conditions in Tauhara. Other fields that are believed to be linked are Waimangu/

Waiotapu/Waikite/Reporoa and Orakeikorako/Te Kopia.

7. Significance of Te Kopia geothermal field

Te Kopia is significant because its surrounding landscape is still in a mostly

natural condition. This has been a largely fortuitous consequence of its location

on the steeply faced Paeroa Fault scarp, which has made the land less suitable

for farming use, rather than a result of any foresight in preservation of natural

landscapes. The relatively intact natural vegetation at Tokaanu and Tarawera

similarly results from these areas’ unsuitability for other land uses.

While Te Kopia has suffered some land clearing for pastural use and some

early logging of native trees, it still contains a substantial tract (c. 1700 ha) of

largely natural native forest. In contrast, Tarawera, Waimangu and Waiotapu

were denuded in AD 1886 by the volcanic eruption of Mount Tarawera, so that

vegetation in those areas has still not fully recovered to a mature or climax forest;

more recently, they have also been subject to exotic plant invasion.

Te Kopia has a varied topography. There are gullies and valleys with surface

streams, small marshes and wetlands, hillslopes, and steep faces on an active fault

scarp and its associated splinter faults. The field’s altitudinal range and exposed

setting at higher altitudes provide a progression of geothermal features and

growing situations for both ambient and thermophilic plants. Such sequences of

geothermal activity and associated vegetation are now rare in the TVZ because of

land-use practises. One particular feature of the geothermal activity in Te Kopia

has been the formation of landforms associated with hydrothermal eruptions.

These include a wetland enclosed by a low arcuate ridge of eruption ejecta, as

well as other ridges and lakes.

Ruapehu, Tarawera, Tokaanu and Waiotapu all have large altitudinal ranges, but

they all lack the continuity of geothermal features throughout that range, and/or

have significant human disturbance. For example, Ruapehu and Tarawera do not

have a continuity of geothermal features across the length and breadth of their

fields, and Tokaanu and Waiotapu have roads, housing and (at Waiotapu) plantation

forestry on areas of ambient temperature ground between the thermal areas.

In contrast, Te Kopia has a very good continuity of geothermal areas without large

tracts of ambient ground dissecting them. It also has only one road (near to its

Page 24: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

24 Cody—Geodiversity of geothermal fields

western flank), with few access ways such as farm or logging tracks fragmenting

the natural vegetation.

examination of the geodiversity spreadsheet (Appendix 3) shows that Te Kopia

scores low for alkaline and boiling springs, although it has a good range of acidic

geothermal water bodies, mud features and types of hot ground. It has deposits

of silica sinter from prehistoric times (C14 dated at 3000 years old; Browne et al.

1994). In recent times, it has been an area of ongoing change, with the formation

of new hot ground associated with local earthquake activity.

There is a general paucity of sulphur deposition at the ground surface at

Te Kopia and very little smell of H2S, although sulphates and alums are common.

This indicates that most H2S is being oxidised deeper within the ground, rather

than at the surface. As a result, the steam-heated surface features at Te Kopia

may be less acidic than in some other fields. The hot alkaline-neutral springs of

Te Kopia host tropical ferns and snails.

Fluid extraction at Te Kopia would lead to the cessation of alkaline–neutral

hot spring flows and quickly modify fumarole outputs. Hydrothermal eruptions

would be likely to occur. In the past, hydrothermal eruptions at Te Kopia have

produced craters ≤ 300 m dia. Ground heating would reduce in some places

but could also increase in others. Since heated ground is the most common

geothermal feature type, an increase in its extent at the expense of less common

features such as hot alkaline-neutral springs would reduce geodiversity.

Use of Te Kopia geothermal field for energy production would result in a loss of

geodiversity and an associated loss of biodiversity.

8. Summary

The ranking of high-temperature geothermal fields in this study according to

their individual geothermal features and other characteristics has been done

using a judgement of size, representativeness, natural quality and adjoining

natural values. It is an attempt to assess geothermal fields in a transparent and

quantitative manner and is, as far as we know, the first such ranking attempted

in New Zealand or elsewhere. At the time of writing this report, the author was

not aware that any significant scoring system had been compiled anywhere else

in the world. A rudimentary first attempt at such a system had been made by the

Geological Society of New Zealand (Houghton et al. 1989), but that work was

incomplete in that it considered only flowing springs and geysers that had already

been mapped and described in written reports and papers. It did not consider

the significance of any geothermal features that were not already documented.

The goal of this study was to establish a procedure by which high-temperature

geothermal fields in the TVZ could be ranked on the basis of the geodiversity

of their geothermal features. It is acknowledged that this is a first effort that

could be greatly improved with further inputs to develop more rigour in the

scoring procedure; it particularly needs to incorporate measures that assess

biodiversity.

Page 25: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

2�DOC Research & Development Series 281

It should be noted that the two regional councils responsible for managing the

land encompassed by the TVZ—environment Waikato and environment Bay of

Plenty—have systems of their own for classifying the geothermal fields in their

areas. Details of these can be found at www.ew.govt.nz/envioinfo/geothermal/

classification/index.htm and www.envbop.govt.nz/media/pdf/PRWLP9.7May9-

7.pdf.

8 . 1 A S S e S S M e N T O F R e L I A B I L I T y O F G e O D I V e R S I T y S C O R e S O B T A I N e D B y T H I S P R O C e S S

The geodiversity scores calculated for geothermal fields in this exercise

(Appendix 3) are generally in keeping with informal rankings made by the author

based on personal experience and impressions and similar assessments from other

informed people. Therefore, although it is apparent from this exercise that some

geothermal fields score higher than others because of clusters of characteristics

rather than because the individual features in the clusters are all of outstanding

merit, the rankings are considered to provide a fair and robust comparison.

9. Acknowledgements

This study was funded by the Department of Conservation Science Advice Fund

(SAF 2005/TT1).

The bibliography that has been independantly submitted to Tongariro/Taupo

and Rotorua Conservancies was created by a great deal of work carried out by

University of Auckland students and staff. It was specifically prepared for Waikato

Regional Council (environment Waikato; eW), who have willingly allowed its

distribution to DOC. I am grateful to Katherine Luketina, environmental Scientist

at eW, for permission to pass this on.

Map 1 was produced by Louise Cotterall, School of Geography, Geology and

environmental Science, Auckland University. eW provided information for the

map, and Dr Manfred Hochstein, Geothermal Institute, Auckland University, also

provided assistance.

Page 26: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

2� Cody—Geodiversity of geothermal fields

10. References

Allis, R.G. 2000: Review of subsidence at Wairakei field, New Zealand. Geothermics 29 (4/5):

455–478.

Brock, T.D. 1994: Life at high temperatures. yellowstone Association for Natural Sciences.

yellowstone National Park, Wyoming. www.bact.wisc.edu/Bact303/b1

Browne, P.R.L.; Bignall, G.; Mackenzie, K.M. 1994: Changes in thermal activity at the Te Kopia

geothermal field, Taupo Volcanic Zone, New Zealand. Transactions, Geothermal Resources

Council 18: 165–171.

Cody, A.D.; Lumb, J.T. 1992: Changes in thermal activity in the Rotorua geothermal field. Geothermics

21: 215–230.

Handley, K.M.; Campbell, K.A.; Mountain, B.W.; Browne, P.R.L. 2003: In situ experiments on the

growth and textural development of subaerial stromatolites, Champagne Pool, Waiotapu,

NZ. Proceedings of the 25th New Zealand Geothermal Workshop 2003: 55–60.

Houghton, B.F.; Lloyd, e.F.; Keam, R.F.; Johnston, D.M. 1989: Inventory of New Zealand geothermal

fields and features (2nd edition). Ecological Society of New Zealand Miscellaneous

Publication No. 44.

Lloyd, e.F. 1972: Geology and hot springs of Orakeikorako. New Zealand Geological Survey

Bulletin 85.

Page 27: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

2�DOC Research & Development Series 281

A1.1a

Appendix 1

G e O T H e R M A L F I e L D S I N V e N T O R y

This comprises a large spreadsheet split into a number of tables to enable

reproduction in this report. To reconstruct the spreadsheet, the tables need to

be viewed as follows:

A1.1b A1.1c A1.1d

A1.2a A1.2b A1.2c A1.2d

A1.3a A1.3b A1.3c A1.3d

He = hydrothermal eruption.

Page 28: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

2� Cody—Geodiversity of geothermal fields

TA

BL

e A

1.1

a

Fiel

d na

me

Surf

ace

area

(km

2 )

Geo

grap

hica

l set

ting

Alti

tude

ra

nge

min

.(m

a.s

.l.)

Alti

tude

ra

nge

max

.(m

a.s

.l.)

Alti

tude

ra

nge

tota

l (m

)

Nat

ural

heat

flow

(MW

)

Stor

edhe

at(P

J)

Max

.re

serv

oir

tem

p.

(ºC

)

Surf

ace

char

acte

ristic

s

Atia

mur

i8

Lake

terr

aces

, allu

vial

pla

ins.

27

036

090

c. 5

19

0016

52

larg

e flo

win

g sp

rings

(Wha

ngap

oa);

>5

smal

l sp

rings

som

e dr

owne

d by

Lak

e A

tiam

uri.

Bro

adla

nds

(Oha

aki)

15O

ld la

kebe

d pl

ains

and

rive

r te

rrace

s.

285

328

4310

069

0030

8La

rge

Oha

aki s

prin

g (1

2 L/

s) a

nd s

inte

r ter

race

s of

c. 2

ha;

sm

all g

eyse

r act

ive

until

195

0s.

Cra

ter L

ake

(Rua

pehu

) 0.

5C

rate

r of a

ctiv

e an

desi

te v

olca

no.

1360

2530

1170

300

Ver

y ac

idic

lake

in c

rate

r; la

ke v

arie

s w

ith

volc

anic

act

ivity

; rem

oved

dur

ing

1995

–96

erup

tions

.G

olde

n S

prin

gs

0.5

Lake

bed

and

allu

vial

pla

in.

292

300

82.

53

turb

id w

arm

spr

ings

, 9–4

0 L/

s, 4

0–50C

.

Hip

aua

(see

Toka

anu)

H

oroh

oro

1U

nwel

ded

igni

mbr

ite fa

n, la

kebe

d pl

ains

and

terr

aces

. 33

536

025

5>

160

1 la

rge

hot s

prin

g, 2

sm

all s

prin

gs, e

xtin

ct

sint

ers

and

sprin

g ve

nts,

HE

cra

ters

.

Hor

omat

angi

Ree

f 0.

5La

va d

ome

on la

kebe

d.

150

350

200

120

Gas

and

hot

wat

er v

ents

on

lake

bed.

Hum

phre

y's

Bay

0.

5M

argi

n of

rhyo

lite

lava

flow

s, la

ke

edge

sho

relin

e.

295

300

5W

ides

prea

d ga

s bu

bblin

g in

to la

ke, e

xten

sive

flo

ccul

atio

n of

iron

, war

m la

ke m

argi

ns.

Kaw

erau

12A

lluvi

al p

lain

s, h

ill s

lope

s, la

kele

ts.

2012

010

010

077

00>

315

Hot

alte

red

grou

nd, s

mal

l spr

ings

, fum

arol

es,

turb

id la

kele

ts, s

olfa

tara

, mud

pool

s.

Man

gaki

no (e

xcl.

Wha

kam

aru

or O

ngar

oto)

6R

iver

val

ley

gorg

e, d

row

ned

by

hydr

oele

ctric

dam

. 16

022

565

> 10

H

ot s

prin

gs u

nder

neat

h la

ke M

arae

tai.

Mok

ai40

Gen

tle h

ill c

ount

ry.

280

526

246

100

10 0

00

324

Larg

e m

ud p

ools

, mud

dy la

kele

ts, h

ot g

roun

d;

also

sm

all h

ot s

prin

gs a

long

Wai

papa

Stre

am.

Mou

toho

ra (W

hale

Isla

nd)

1Is

land

, ext

inct

and

esite

vol

cano

. 0

353

353

Hot

alte

red

grou

nd, h

ot w

ater

see

ps, s

ulph

ur

and

silic

a re

sidu

es.

Nga

tam

arik

i7

Stre

am v

alle

y al

luvi

al te

rrace

s, ri

ver

bank

s.29

033

040

3890

0??

?A

lkal

ine

flow

ing

sprin

gs, s

inte

r ter

race

s, w

arm

ac

id tu

rbid

poo

ls, H

E c

rate

r, ho

t bar

ren

grou

nd.

Oha

aki(

see

Bro

adla

nds)

O

kata

ina

0.1

Toe

of la

va fl

ow o

n la

kesh

ore.

31

531

61

< 0.

2 2

smal

l war

m s

prin

g ou

tflow

s al

ong

NE

sh

orel

ine.

Ong

arot

o (e

xcl.

Man

gaki

no)

0.5?

Lake

shor

e at

bas

e of

rhyo

lite

hill;

riv

er te

rrace

. 23

528

045

5W

arm

spr

ing

enco

unte

red

whe

n dr

illin

g pi

les

for

brid

ge. W

arm

spr

ing

and

hot g

roun

d on

wes

tern

sh

ore

of L

ake

Wha

kam

aru.

Ora

keik

orak

o12

Riv

er v

alle

y hi

llsid

es, a

djoi

ning

m

argi

ns o

f hyd

roel

ectri

c da

m (f

illed

Ja

nuar

y 19

61).

290

375

8534

1700

265

Gey

sers

, alk

alin

e an

d ac

id s

prin

gs, h

ot a

ltere

d an

d ba

rren

gro

und,

fum

arol

es, s

team

ing

cliff

s,

mud

poo

ls, s

inte

rs.

Page 29: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

2�DOC Research & Development Series 281

TA

BL

e A

1.1

b

Fiel

d na

me

Feat

ure

type

s (n

o. o

f diff

. ty

pes

from

Ta

ble

1)

Flow

ra

tes

(L/s

)

Ebul

litio

nhe

ight

(m

)

Wat

er c

hem

istr

y pH

Tem

p.

(ºC

)C

larit

y/co

lour

Si

nter

type

s Si

nter

str

uctu

res

Sint

er fo

rms

Atia

mur

i4

< 0.

5 N

ilN

eutra

l chl

orid

e 7

65C

lear

gre

en

Am

orph

ous

silic

a A

pron

s, c

one,

ven

tA

lgal

, mas

sive

Bro

adla

nds

(Oha

aki)

10N

ilN

ilA

lkal

ine

chlo

ride

< 3–

8 98

Milk

y tu

rbid

, gre

yA

mor

phou

s si

lica

Larg

e te

rrac

e, ri

ms

Den

se, m

assi

ve

Cra

ter L

ake

(Rua

pehu

) 3

100

> 25

A

cid

sulp

hate

<

3 35

–98

Turb

id g

rey

Nil

Nil

Nil

Gol

den

Spr

ings

2

50N

ilN

eutra

l bic

arbo

nate

6.

5–7

60Tu

rbid

faw

ny g

rey,

cl

ear

Nil

Nil

Nil

Hip

aua

(see

Tok

aanu

) H

oroh

oro

40.

5N

ilA

lkal

ine

chlo

ride

8.5

82C

lear

Am

orph

ous

silic

a R

ims,

terr

ace,

w

alls

D

ense

, mas

sive

Hor

omat

angi

Ree

f 2

Hum

phre

y's

Bay

Kaw

erau

100.

20.

3A

lkal

ine

chlo

ride,

aci

d su

lpha

te<

2–8

98C

lear

Am

orph

ous

silic

a C

rust

s, ri

nds

Res

idue

s, d

ense

Man

gaki

no (e

xcl.

Wha

kam

aru

or O

ngar

oto)

12

Nil

Alk

alin

e ch

lorid

e 8.

598

Cle

arN

ilN

ilN

il

Mok

ai10

101.

5A

lkal

ine

chlo

ride

bica

rbon

ate,

aci

d su

lpha

te

< 2–

7.6

98C

lear

, gre

y m

ilky

Am

orph

ous

silic

a R

inds

and

rim

s D

ense

, alg

al

Mou

toho

ra (W

hale

Isla

nd)

50.

2A

cid

sulp

hate

<

4 98

.5C

lear

Am

orph

ous

silic

a R

esid

ues

Nga

tam

arik

i

Oha

aki (

see

Bro

adla

nds)

O

kata

ina

Ong

arot

o (e

xcl.

Man

gaki

no)

11?

(disp

erse

d)N

ilN

eutra

l chl

orid

e N

ilN

il

Ora

keik

orak

o15

Up

to 2

0 G

eyse

rs

to 2

0 m

Alk

alin

e ch

lorid

e A

cid

sulp

hate

7–

9.2

2–3.

565

–98

40–9

0C

lear

, tur

quoi

se

blue

s, g

rey

turb

id,

mud

dy

Den

se, m

assi

ve,

alga

lTe

rrac

es, a

pron

s,

rims,

cas

cade

s,

cone

s

Alg

al, d

ense

, m

icro

bial

Page 30: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

30 Cody—Geodiversity of geothermal fields

TA

BL

e A

1.1

c

Fiel

d na

me

Age

rang

e of

fe

atur

es

Geo

ther

mal

land

form

s Pr

e-hi

stor

ic c

hara

cter

istic

s Ex

plor

atio

n H

uman

impa

cts

(effe

cts

of e

xtra

ctio

n an

d ot

her h

uman

impa

cts)

Atia

mur

iA

ll <

26 5

00 y

? H

E c

rate

r, al

gal s

inte

r te

rrace

s Fl

owin

g sp

rings

mor

e nu

mer

ous

One

wel

l to

605

m; m

ax. t

emp.

165C

at

550–

590

m; g

eoph

ysic

al, c

hem

ical

, ge

olog

ical

sur

veys

. MR

P a

pplie

d fo

r dril

ling

cons

ents

in e

arly

200

5.

Spe

ctac

ular

HE

cra

ter i

nfill

ed w

ith lo

gs.

Bro

adla

nds

(Oha

aki)

< 26

500

y

Ver

y la

rge

sint

er te

rrac

e La

rge

area

of s

ilica

sin

ter

terr

ace

grow

n ar

ound

Oha

aki

Poo

l

> 44

wel

ls 7

76–2

420

m; 3

wel

ls >

350

0 m

; ge

olog

ical

, che

mic

al, g

eoph

ysic

al s

urve

ys.

Loss

of O

haak

i Poo

l and

gro

wth

of s

ilica

te

rrac

es (n

ote

outfl

ow o

ver t

erra

ces

dive

rted

by M

aori)

; lan

d su

bsid

ence

of c

. 0.4

m/y

. Tot

al

subs

iden

ce c

. 3 m

ove

r c. 1

.5 k

m2 . N

ewly

fo

rmin

g bo

iling

gro

und

and

subs

iden

ce

fissu

res.

C

rate

r Lak

e (R

uape

hu)

c. 3

75 0

00 y

? La

rge

crat

er la

ke

Laha

rs d

own

Wha

ngae

hu

Riv

er, a

sh a

nd b

lock

eru

ptio

nsS

cien

tific

and

vol

cano

sur

veill

ance

. N

il

Gol

den

Spr

ings

<

26 5

00 y

U

nkno

wn

Reg

iona

l geo

phys

ical

, che

mic

al s

urve

ys.

Min

or/n

il? F

arm

land

to p

ool m

argi

ns.

Hip

aua

(see

Tok

aanu

) H

oroh

oro

< 26

500

y

Larg

e H

E c

rate

rs,

extin

ct s

prin

gs

Mor

e nu

mer

ous

flow

ing

sprin

gs,

3 la

rge

HE

crat

ers

c. 1

00 m

di

a., e

xten

sive

sin

ters

3 w

ells

, res

istiv

ity, c

hem

ical

, geo

logi

cal

surv

eys;

1 w

ell t

o 60

m, m

ax. t

emp.

86

C a

t w

ell b

otto

m.

Farm

land

to s

prin

g m

argi

ns; o

utflo

ws

dive

rted.

Hor

omat

angi

Ree

f G

as a

nd w

ater

che

mis

try, r

esis

tivity

, su

bmar

ine.

N

il

Hum

phre

y's

Bay

U

nkno

wn

Che

mis

try, g

eolo

gy. P

art o

f Oka

tain

a G

F?

(but

not

incl

uded

in O

kata

ina

deta

ils).

Nil

Kaw

erau

Hol

ocen

e;<

20 0

00 y

M

ore

abun

dant

spr

ing

outfl

ows

and

sint

er d

epos

ition

G

eoph

ysic

al, c

hem

ical

, geo

logi

cal s

urve

ys;

> 27

wel

ls d

rille

d 43

3 m

to >

160

0 m

. Lo

ss o

f nea

rly a

ll sp

rings

; sin

ter t

erra

ces

no

long

er g

row

ing;

land

fill o

f war

m la

kes;

gro

und

subs

iden

ce.

Man

gaki

no (e

xcl.

Wha

kam

aru

or O

ngar

oto)

?U

nkno

wn?

G

eoph

ysic

al s

urve

ys. 1

wel

l dril

led

to 6

00 m

. S

prin

gs d

row

ned

by fo

rmat

ion

of L

ake

Mar

aeta

i.

Mok

aiH

oloc

ene

HE

cra

ters

U

nkno

wn

Che

mic

al, g

eoph

ysic

al, g

eolo

gica

l sur

veys

; 6

wel

ls 6

09–2

600

m d

eep.

La

rge

mud

cra

ters

use

d as

rubb

ish

dum

ps;

farm

land

to m

argi

ns; a

nim

als

wal

king

thro

ugh

ther

mal

feat

ures

. M

outo

hora

(Wha

le Is

land

)P

ostd

ate

????

U

nkno

wn

Wat

er c

hem

istry

. S

ulph

ur m

inin

g; v

eget

atio

n cl

eare

d; n

ow

DO

C re

serv

e.

Nga

tam

arik

iH

E c

rate

r lak

e, s

ilica

si

nter

terr

ace

Unk

now

n C

hem

ical

, geo

phys

ical

, geo

logi

cal s

urve

ys; 4

w

ells

up

to c

. 300

0 m

dee

p.

Farm

land

ero

ded

and

fille

d in

hot

lake

; pin

e pl

anta

tion

plan

ted

over

ther

mal

are

a.

Oha

aki (

see

Bro

adla

nds)

O

kata

ina

Pro

babl

y in

clud

es H

umph

rey’

s B

ay a

s on

e G

F bu

t not

incl

uded

her

e.

Ong

arot

o (e

xcl.

Man

gaki

no)

Unk

now

n R

esis

tivity

sur

veyi

ng, c

hem

istry

of f

luid

s.

Mig

hty

Riv

er P

ower

inte

nd d

eep

wel

l (c

. 250

0 m

) in

2005

. Ong

arot

o-W

haka

mar

u is

ac

tual

ly S

E p

art o

f thi

s G

F al

so, b

ut re

gard

ed

sepa

rate

ly in

this

tabl

e.

Lake

Wha

kam

aru

has

drow

ned

som

e of

sp

rings

.

Ora

keik

orak

o<

26 5

00 y

La

rge

silic

a te

rrace

s,

larg

e al

kalin

e sp

rings

U

muk

uri s

inte

rs a

rea

of a

ctiv

e ho

t spr

ings

Fo

ur d

eep

drill

hole

s, g

eoph

ysic

s, c

hem

istry

. Fi

lling

Lak

e O

haku

ri in

Jan

uary

196

1 dr

owne

d ge

yser

s.

Page 31: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

31DOC Research & Development Series 281

TA

BL

e A

1.1

d

* R

efer

ence

s in

bib

liogr

aph

y lo

dge

d in

To

nga

riro

/Tau

po

an

d R

oto

rua

Co

nse

rvan

cies

.

Fiel

d na

me

Expl

oita

tion

Extr

actio

n (to

nnes

/day

) R

efer

ence

s*

Atia

mur

iN

one,

dur

ing

c. 1

970–

1995

one

spr

ing

dive

rted

into

sw

imm

ing

pool

but

this

was

bul

ldoz

ed a

nd b

urie

d in

199

5.

Nil

Mon

gillo

& C

lella

nd 1

984;

Alli

s et

al.

1987

.

Bro

adla

nds

(Oha

aki)

Pow

er s

tatio

n w

as fi

rst c

omm

issi

oned

at 1

14 M

We,

but

is n

ow

prod

ucin

g 50

MW

e be

caus

e of

fiel

d lim

itatio

ns.

120

000

Mon

gillo

& C

lella

nd 1

984;

Alli

s et

al.

1995

. w

ww

.geo

ther

mal

.org

.nz

(vie

wed

Apr

il 20

07)

Cra

ter L

ake

(Rua

pehu

) N

one

Nil

Mon

gillo

& C

lella

nd 1

984;

H. K

eys,

per

s. c

omm

.

Gol

den

Spr

ings

1

sprin

g us

ed fo

r bat

hing

; 3 s

prin

gs in

RD

C R

ecre

atio

n R

eser

ve.

Nil

Hip

aua

(see

Tok

aanu

) H

oroh

oro

1 w

ell h

eatin

g gl

assh

ouse

s fo

r flo

wer

s, s

prin

g di

verte

d to

ba

thtu

b fo

r mar

ae u

se.

120

Mon

gillo

& C

lella

nd 1

984;

Alli

s 19

87.

Hor

omat

angi

Ree

f N

il

Hum

phre

y's

Bay

(see

Ta

raw

era)

K

awer

au

6 M

We

elec

trici

ty p

rodu

ctio

n; d

irect

hea

t use

in p

aper

pr

oduc

tion,

tim

ber p

roce

ssin

g; h

eatin

g of

pub

lic h

all a

nd

bath

s.

7200

Mon

gillo

& C

lella

nd 1

984;

Alli

s et

al.

1993

. w

ww

.nzg

eoth

erm

al.o

rg.n

z (v

iew

ed A

pril

2007

).

Man

gaki

no (e

xcl.

Wha

kam

aru

or O

ngar

oto)

Non

eN

ilM

ongi

llo &

Cle

lland

198

4

Mok

aiE

lect

ricity

gen

erat

ion

sinc

e 20

00. E

xpan

ded

in 2

005

to to

tal o

f 94

MW

e. H

eat u

sed

in la

rge

gree

nhou

se c

ompl

ex.

28 0

00

Bib

by e

t al.

1981

; Mon

gillo

& C

lella

nd 1

984;

Web

ster

198

7.

ww

w.n

zgeo

ther

mal

.org

.nz

(vie

wed

Apr

il 20

07).

Mou

toho

ra (W

hale

Isla

nd)

Nil

Nil

NZG

S R

epor

t 38D

197

4; M

ongi

llo &

Cle

lland

198

4.

Nga

tam

arik

iN

one

to d

ate,

pro

pose

d el

ectri

city

use

.M

ongi

llo &

Cle

lland

198

4.

Oha

aki (

see

Bro

adla

nds)

O

kata

ina

Ong

arot

o (e

xcl.

Man

gaki

no)

Nil

as a

t Dec

embe

r 200

4.

Nil

Mon

gillo

& C

lella

nd 1

984.

Ora

keik

orak

oN

il, p

rote

cted

sta

tus

for t

ouris

m.

Nil

Mon

gillo

& C

lella

nd 1

984.

Page 32: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

32 Cody—Geodiversity of geothermal fields

TA

BL

e A

1.2

a

Fiel

d na

me

Surf

ace

area

(km

2 )

Geo

grap

hica

l set

ting

Alti

tude

ra

nge

min

.(m

a.s

.l.)

Alti

tude

ra

nge

max

.(m

a.s

.l.)

Alti

tude

ra

nge

tota

l(m

)

Nat

ural

heat

flow

(MW

)

Stor

edhe

at(P

J)

Max

.re

serv

oir

tem

p.

(°C

)

Surf

ace

char

acte

ristic

s

Rep

oroa

(exc

l. G

olde

n S

prin

gs)

15C

alde

ra, d

rain

ed la

ke b

asin

, now

fa

rmla

nds.

290

330

4015

524

0B

oilin

g al

kalin

e sp

rings

, mud

poo

ls, a

cid

turb

id

pool

s, b

arre

n ho

t gro

und,

war

m s

eepa

ges,

si

nter

s.R

otoi

ti2

Lake

sho

relin

es, l

akeb

ed, c

liffs

al

ong

lake

edg

e (u

nwel

ded

igni

mbr

ites)

.

155

170

1514

0U

nkno

wn

130

Gas

bub

blin

g to

lake

sur

face

, occ

asio

nal m

uddy

up

wel

lings

.

Rot

okaw

au (R

otok

awa)

(R

otor

ua)

2La

kebe

d an

d ad

join

ing

shor

es.

280

295

155

155

Are

as o

f gas

bub

blin

g in

to la

ke, h

ot s

prin

g un

der M

aori

bath

s.

Rot

okaw

a (T

aupo

) 10

Rol

ling

hill

slop

es, s

tream

val

ley,

la

kebe

d an

d sh

ores

. 29

040

511

521

030

0?H

E c

rate

rs, a

cid

sprin

gs, f

umar

oles

, hot

bar

ren

alte

red

grou

nd.

Rot

oma

Mar

shla

nd, l

akes

hore

s, a

lluvi

al

plai

ns.

290

420

130

20A

lkal

ine

sprin

gs, s

olfa

tara

and

war

m a

ltere

d gr

ound

, tur

bid

pool

s, fu

mar

oles

, ste

amin

g cl

iffs.

R

otom

ahan

a (s

ee

Wai

man

gu)

c.1

8

Rot

orua

12La

kebe

d pl

ains

and

terr

aces

, la

kesh

ore

and

lake

, rhy

olite

lava

hi

llsid

es.

210

400

190

470

3400

?25

0G

eyse

rs, a

lkal

ine

and

acid

flow

ing

sprin

gs,

turb

id w

arm

poo

ls a

nd la

kele

ts, s

olfa

tara

and

al

tere

d ho

t gro

und,

fum

arol

es.

Tahe

ke2

Ste

ep h

illsi

des,

stre

am v

alle

y flo

ors.

285

325

4013

Hot

ste

amin

g gr

ound

, sol

fata

ra, s

ilica

resi

dues

, su

lphu

r, w

eak

acid

spr

ings

. Ta

raw

era

c.

0.5

La

kesh

ores

, stre

am d

elta

, clif

fs o

n m

argi

n of

rhyo

lite

lava

flow

s,

volc

ano

crat

er.

300

950

650

25H

ot s

team

ing

grou

nd, f

low

ing

hot s

prin

gs, m

inor

si

nter

s, w

arm

see

page

s, g

as u

pflo

ws,

iron

flo

ccul

ants

.Ta

uhar

a (e

xcl.

Wai

rake

i) 20

Hig

h te

rrac

e sl

opes

, inc

ised

val

leys

, la

kesh

ores

.35

750

014

325

027

9N

eutra

l and

aci

d sp

rings

, war

m a

nd a

ltere

d gr

ound

, eru

ptio

n cr

ater

s, s

alt d

epos

its, s

team

ve

nts.

Te K

opia

15

Ste

ep h

illsi

des,

val

ley

floor

s, g

ullie

s al

l ass

ocia

ted

with

Pae

roa

Faul

t sc

arp.

360

620

260

150

2300

241

Ste

amin

g cl

iffs

and

grou

nd, f

umar

oles

, so

lfata

ra, t

urbi

d po

ols,

HE

cra

ters

. Neu

tral a

nd

acid

spr

ings

, mud

gey

ser a

nd m

ud p

ools

. Ti

kite

re (H

ell's

Gat

e,

Rua

hine

Spr

ings

) 10

Rol

ling

high

terr

aces

, HE

cra

ters

, la

kesh

ores

.27

940

612

712

062

3023

0A

cid

sprin

gs, p

ools

and

lake

lets

, HE

cra

ters

, so

lfata

ra, h

ot b

arre

n an

d al

tere

d gr

ound

, tur

bid

pool

s, m

udpo

ols.

To

kaan

u7.

5B

ase

of a

ndes

ite v

olca

no,

alon

gsid

e sh

ores

of L

ake

Taup

o.

Hip

aua

exte

nds

to u

pper

nor

th a

nd

east

ern

slop

es o

f and

esite

dom

e.

357

713

356

8032

0025

0

To

kaan

u-H

ipau

a 2

Ste

ep h

ill s

lope

s.

480

713

233

Ste

amin

g al

tere

d hi

ll sl

opes

, aci

dic

seep

s.

To

kaan

u-To

kaan

u 5

357

420

63A

lkal

ine

sprin

gs, h

ot g

roun

d, a

cid

pool

s.

To

kaan

u-W

aihi

0.

5H

ill s

ide

and

lake

shor

e.

< 35

7 42

030

Alk

alin

e sp

rings

, war

m g

roun

d.

Page 33: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

33DOC Research & Development Series 281

TA

BL

e A

1.2

b

Fiel

d na

me

Feat

ure

type

s (n

o. o

f diff

. ty

pes

from

Ta

ble

1)

Flow

ra

tes

(L/s

)

Ebul

litio

nhe

ight

(m

)

Wat

er c

hem

istr

y pH

Tem

p.

(C

)C

larit

y/co

lour

Si

nter

type

s Si

nter

str

uctu

res

Sint

er fo

rms

Rep

oroa

(exc

l. G

olde

n S

prin

gs)

85

0.3

Alk

alin

e ch

lorid

e

< 3–

8.7

98C

lear

, gre

y, b

lack

A

mor

phou

s si

lica,

ch

ryst

obal

ite

Con

es, t

erra

ces,

ap

rons

, rin

ds

Den

se, a

lgal

Rot

oiti

Rot

okaw

au (R

otok

awa)

(R

otor

ua)

3<

0.2

< 0.

1 W

eakl

y ac

idic

chl

orid

e 6.

550

Cle

arN

ilN

ilN

il

Rot

okaw

a (T

aupo

) 8

< 30

<

0.5

Aci

d su

lpha

te, c

hlor

ide

2.5–

5.5

40–9

0Tu

rbid

gre

y, c

lear

A

mor

phou

s si

lica

R

ims,

sm

all

shee

ts, s

picu

les

Spi

cula

r, m

icro

bial

Rot

oma

Rot

omah

ana

(see

W

aim

angu

)R

otor

ua13

2521

Alk

alin

ech

lorid

e,

bica

rbon

ate,

aci

d su

lpha

te

< 2–

9 98

Cle

ar, m

ilky,

blu

e,

gree

nA

mor

phou

s si

lica,

ch

ryst

obal

ite

Terr

aces

, apr

ons,

rim

s, c

asca

des,

m

ound

s

Den

se, r

esid

ues,

al

gal

Tahe

ke5

< 10

< 0.

5 A

cid

sulp

hate

2.

8–5

to 9

9 C

lear

to g

rey

turb

idA

mor

phou

s si

lica

Cru

sts

Res

idue

s

Tara

wer

a 7

≤ 0.

5<

0.2

Alk

alin

e ch

lorid

e to

98.

6 C

lear

Am

orph

ous

silic

a R

ims,

cru

sts

Alg

al, d

ense

Tauh

ara

(exc

l. W

aira

kei)

810

Nil

Alk

alin

e ch

lorid

e, a

cid

sulp

hate

2.5–

7.8

Cle

arA

mor

phou

s si

lica

Terr

aces

, rin

ds

Alg

al

Te K

opia

13

32

Aci

d su

lpha

te

< 2–

7.5

105

Cle

ar, b

lue,

milk

y A

mor

phou

s si

lica,

ch

ryst

obal

ite,

tridy

mite

Cru

sts,

rim

s,

bank

sA

lgal

, lam

inat

ed

dens

e

Tiki

tere

(Hel

l's G

ate,

R

uahi

ne S

prin

gs)

81

0.5

Aci

d su

lpha

te, a

lkal

ine

chlo

ride

2.5–

7.6

98C

lear

, milk

y, g

rey

Am

orph

ous

silic

a C

rust

sR

esid

ues

Toka

anu

78

1.5

Alk

alin

e ch

lorid

e 3.

5–8.

798

Cle

ar, t

urbi

d gr

ey

Am

orph

ous

silic

a A

pron

s, te

rrac

es,

rims,

con

es

Den

se

To

kaan

u-H

ipau

a

Toka

anu-

Toka

anu

To

kaan

u-W

aihi

Page 34: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

34 Cody—Geodiversity of geothermal fields

TA

BL

e A

1.2

c

Fiel

d na

me

Age

rang

e of

fe

atur

es

Geo

ther

mal

land

form

s Pr

e-hi

stor

ic c

hara

cter

istic

s Ex

plor

atio

n H

uman

impa

cts

(effe

cts

of e

xtra

ctio

n an

d ot

her h

uman

impa

cts)

Rep

oroa

(exc

l. G

olde

n S

prin

gs)

< 26

500

y

Mor

e flo

win

g sp

rings

and

ou

tflow

s.

1 w

ell t

o 13

38 m

; geo

phys

ical

, che

mic

al

surv

eys.

D

rain

age

of la

nd fo

r far

min

g ha

s st

oppe

d flo

ws

from

man

y sp

rings

at O

pahe

ke a

nd

Long

view

Roa

ds.

Rot

oiti

Rot

okaw

au (R

otok

awa)

(R

otor

ua)

All

< 75

00 y

P

erch

ed s

hallo

w la

ke,

expa

nsiv

e si

nter

s H

ot a

lkal

ine

sprin

g si

nter

s de

posi

ted

over

sev

eral

he

ctar

es.

Man

y w

ells

< 1

60 m

; geo

phys

ical

, che

mic

al

surv

eys.

Lo

wer

ed g

eoth

erm

al w

ater

leve

ls.

Rot

okaw

a (T

aupo

) <

250

000

y?

Larg

e H

E c

rate

r, do

lines

Mor

e w

ides

prea

d so

lfata

ric

activ

ity to

wes

t. M

any

wel

ls to

c. 1

800

m; g

eoph

ysic

al,

chem

ical

sur

veys

. S

ulph

ur m

inin

g da

mag

e to

land

.

Rot

oma

Rot

omah

ana

(see

W

aim

angu

)R

otor

uaA

ll <

65 0

00 y

H

E c

rate

rs, s

ilica

de

posi

tsH

E b

low

outs

, wid

espr

ead

terr

aces

and

apr

ons,

flow

ing

sprin

gs a

t hig

her a

ltitu

des.

Che

mic

al, g

eoph

ysic

al, b

otan

ical

sur

veys

, dr

illin

g.

Loss

of m

any

geys

ers

and

flow

ing

sprin

gs,

drai

nage

of h

ot p

ools

and

mar

shes

.

Tahe

ke<

65 0

00 y

S

olfa

tara

Wat

er a

nd g

as c

hem

istry

, res

istiv

ity.

Sul

phur

min

ing,

sur

face

stri

ppin

g, ro

adin

g.

Tara

wer

a

Pos

t dat

e A

D

1886

Nil?

All

pres

ent-d

ay fo

rms

post

date

AD

188

6.

Wat

er a

nd g

as c

hem

istry

, inc

lude

s S

E a

nd

NE

sho

res

of L

ake

Tara

wer

a an

d vo

lcan

o cr

ater

.

Nil

Tauh

ara

(exc

l. W

aira

kei)

< A

D 1

80

Abu

ndan

t spr

ing

outfl

ows

and

silic

a te

rrace

s.

Che

mic

al, g

eoph

ysic

al s

urve

ys; d

rillin

g.

Gro

und

subs

iden

ce, s

prin

gs d

ryin

g up

, in

fillin

g of

ther

mal

gro

und.

Te K

opia

30

00B

recc

ia h

ills,

HE

lake

s,

team

ing

cliff

s H

E b

low

outs

, alk

alin

e sp

rings

.C

hem

ical

, geo

phys

ical

, bot

anic

al s

urve

ys;

2 dr

illho

les

to 9

50 m

.N

il

Tiki

tere

(Hel

l's G

ate,

R

uahi

ne S

prin

gs)

65 0

00 y

H

E c

rate

rs, s

olfa

tara

; br

ecci

asH

E c

rate

rs.

Che

mic

al, g

eoph

ysic

al s

urve

ys; 6

wel

ls

drill

ed to

< 5

03 m

dep

th.

Den

udat

ion

of la

ndsc

ape,

re-c

onto

urin

g,

road

ing.

Toka

anu

Ste

amin

g hi

llslo

pes;

si

lica

apro

ns

Gey

sers

and

hot

flow

ing

sprin

gs m

ore

num

erou

s, la

rge

silic

a te

rrace

.

Che

mic

al, g

eoph

ysic

al s

urve

ys; d

rillin

g.

Low

erin

g of

wat

er le

vels

, ces

satio

n of

spr

ing

flow

s.

To

kaan

u-H

ipau

a

Toka

anu-

Toka

anu

To

kaan

u-W

aihi

Page 35: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

3�DOC Research & Development Series 281

TA

BL

e A

1.2

d

* R

efer

ence

s in

bib

liogr

aph

y lo

dge

d in

To

nga

riro

/Tau

po

an

d R

oto

rua

Co

nse

rvan

cies

.

Fiel

d na

me

Expl

oita

tion

Extr

actio

n (to

nnes

/day

) R

efer

ence

s*

Rep

oroa

(exc

l. G

olde

n S

prin

gs)

Nil

as a

t Mar

ch 2

005.

N

ilM

ahon

196

6; B

rom

ley

1993

; Jon

es e

t al.

1998

.

Rot

oiti

Rot

okaw

a (R

otok

awau

) (R

otor

ua)

Spr

ing

capt

ured

for M

aori

bath

, c. 8

wel

ls in

use

.<

250

Glo

ver 1

974;

Mon

gillo

& C

lella

nd 1

984.

Rot

okaw

a (T

aupo

) W

ells

sup

ply

two

pow

er d

evel

opm

ents

gen

erat

ing

35 M

We.

c.

10

000

Mon

gillo

& C

lella

nd 1

984.

Rot

oma

Rot

omah

ana

(see

W

aim

angu

)R

otor

ua45

0 w

ells

ext

ract

ing

hot w

ater

unt

il 19

87; m

anag

emen

t pla

n im

plem

ente

d in

199

5.

10 5

00

Mah

on 1

985;

Sco

tt &

Cod

y 20

00.

Tahe

keS

ulph

ur m

inin

g, u

nder

inve

stig

atio

n fo

r pos

sibl

e po

wer

ge

nera

tion

(Tru

st P

ower

). N

ilN

ZGS

Rep

ort 3

8d 1

974;

She

ppar

d &

Lyo

n 19

79; M

ongi

llo &

C

lella

nd 1

984.

Ta

raw

era

N

il (to

uris

m o

nly)

. N

ilM

ongi

llo &

Cle

lland

198

4.

Tauh

ara

(exc

l. W

aira

kei)

Man

y sh

allo

w w

ells

for d

omes

tic u

ses.

15

00D

onal

dson

198

2; G

rant

198

5.

Te K

opia

N

ilN

ilM

ongi

llo &

Cle

lland

198

4; ‘p

roba

bly

conn

ecte

d to

O

rake

ikor

ako’

Big

nall

& B

row

ne 1

994;

Mac

Ken

zie

et a

l. 19

94;

New

son

et a

l. 20

02.

Tiki

tere

(Hel

l's G

ate,

R

uahi

ne S

prin

gs)

Sul

phur

and

sili

ca m

inin

g.

Nil

Bro

mle

y 19

93; M

eza

2004

.

Toka

anu

Spr

ing

flow

div

erte

d to

bat

hs, p

rivat

e ho

t wat

er w

ells

. 50

0M

ahon

& K

lyen

196

8; R

obin

son

& S

hepp

ard

1986

; Rey

es

1987

; Sev

erne

199

5.

To

kaan

u-H

ipau

a

Toka

anu-

Toka

anu

To

kaan

u-W

aihi

Page 36: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

3� Cody—Geodiversity of geothermal fields

TA

BL

e A

1.3

a

Fiel

d na

me

Surf

ace

area

(km

2 )

Geo

grap

hica

l set

ting

Alti

tude

rang

em

in.

(m a

.s.l.

)

Alti

tude

rang

em

ax.

(m a

.s.l.

)

Alti

tude

ra

nge

tota

l(m

)

Nat

ural

heat

flow

(MW

)

Stor

edhe

at(P

J)

Max

.re

serv

oir

tem

p.

(°C

)

Surf

ace

char

acte

ristic

s

Tong

ariro

2

And

esite

vol

cano

13

0017

9049

020

0

K

etet

ahi

1N

orth

flan

k of

Ton

garir

o 13

4014

4010

013

0>

250

Vap

our-

dom

inat

ed s

yste

m, m

any

smal

l boi

ling

stea

m v

ents

and

hea

ted

surfa

ce w

ater

s, h

ot

grou

nd

Te M

ari

0.5

Cra

ter o

n no

rth fl

ank

of T

onga

riro

1420

1500

8020

Ste

amin

g ve

nts,

sal

t dep

osits

, and

alte

red

war

m g

roun

d

Em

eral

d La

kes

0.5

With

in v

olca

no c

rate

r 16

8017

9011

050

Ste

amin

g al

tere

d gr

ound

, sol

fata

ra, w

arm

aci

d la

kele

tsW

aihi

(see

Tok

aanu

) <

1 H

illsi

de la

kesh

ore

mar

gins

and

la

kebe

dW

aiki

te V

alle

y 5

Bas

e of

Pae

roa

Faul

t sca

rp

340

540

200

7020

0

B

aths

Gul

ly

0.1

Dee

ply

inci

sed

gully

B

oilin

g al

kalin

e sp

rings

, hot

alte

red

grou

nd

Te

War

o S

carp

0.

003

Mar

shla

nd a

long

bas

e of

hill

slop

e W

arm

neut

rals

prin

gsin

mar

sh

Pua

kohu

rea

4.9

Hill

side

s, v

alle

y fla

ts, s

tream

val

ley

Alk

alin

e sp

rings

, hot

gro

und,

ste

amin

g cl

iffs,

al

gal s

inte

rs

Wai

man

gu (a

nd

Rot

omah

ana)

18

Dee

ply

inci

sed

valle

y, la

kebe

d an

d sh

ores

, rhy

olite

dom

e m

argi

ns, H

E

and

volc

anic

cra

ters

< 33

7 44

010

325

054

0027

0H

E a

nd v

olca

nic

crat

ers,

hot

to b

oilin

g sp

rings

, cr

ater

lake

s, s

team

ing

cliff

s, g

eyse

rs

Wai

otap

u17

Unw

elde

d ig

nim

brite

terr

aces

, st

ream

val

leys

, hill

side

s an

d m

arsh

land

310

680

370

545

6100

295

Mud

pool

s an

d co

nes,

gey

sers

, col

laps

e ho

les,

ac

id a

ltere

d gr

ound

, HE

cra

ters

Wai

rake

i15

Rol

ling

hills

, stre

am a

nd ri

ver

valle

ys, h

igh

terr

aces

34

055

021

053

067

0027

1S

team

ing

hot a

ltere

d gr

ound

, mud

pool

s, tu

rbid

w

arm

lake

s, b

arre

n gr

ound

, sal

ts, g

eyse

rs,

alka

line

sprin

gs

Wha

kaar

i (W

hite

Isla

nd)

4.8

Act

ive

ande

site

vol

cano

isla

nd

032

132

112

080

0H

ot s

olfa

tara

, fum

arol

es, a

ctiv

e vo

lcan

ic v

ent

Wha

kam

aru

(see

O

ngar

oto)

c.

1

Rhy

olite

lava

dom

e, la

ke a

nd ri

ver

terra

ces

30

Wha

le Is

land

(see

M

outo

hora

) W

hang

airo

rohe

a <

0.00

5 A

lluvi

al v

alle

y te

rrac

e in

rolli

ng h

ills

290

300

10<

1 C

lear

hot

poo

l, ho

t spr

ings

inun

date

d by

stre

am

and

river

, pre

hist

oric

sili

cifie

d se

dim

ents

W

hite

Isla

nd (s

ee

Wha

kaar

i)12

0

Page 37: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

3�DOC Research & Development Series 281

TA

BL

e A

1.3

b

Fiel

d na

me

Feat

ure

type

s (n

o. o

f diff

. ty

pes

from

Ta

ble

1)

Flow

ra

tes

(L/s

)

Ebul

litio

nhe

ight

(m

)

Wat

er c

hem

istr

y pH

Tem

p.

(°C

)C

larit

y/co

lour

Si

nter

type

s Si

nter

str

uctu

res

Sint

er fo

rms

Tong

ariro

4

Nil

Nil

Aci

d su

lpha

te

< 2.

5 70

Turb

id, b

lue

and

gree

nN

ilN

ilN

il

K

etet

ahi

56

2A

cid

sulp

hate

2.

0–6.

513

8D

ark

grey

turb

id

Nil

Nil

Nil

Te

Mar

i

E

mer

ald

Lake

s N

ilN

ilA

cid

sulp

hate

<

3 Tu

rbid

, blu

e an

d gr

een

Nil

Nil

Nil

Wai

hi (s

ee T

okaa

nu)

Wai

kite

Val

ley

720

2A

lkal

ine

bica

rbon

ate

8.7

98C

lear

, milk

y bl

ueA

mor

phou

s si

lica

Rim

s,ca

scad

esD

ense

, alg

al

B

aths

Gul

ly

Cal

cite

Terr

aces

, rin

ds

Te

War

o S

carp

Pua

kohu

rea

Wai

man

gu (a

nd

Rot

omah

ana)

9

402.

5A

lkal

ine

chlo

ride

< 3–

9.5

98C

lear

, sky

blu

e,

gree

nA

mor

phou

s si

lica

Min

or te

rrac

esD

ense

, alg

al

Wai

otap

u13

512

Aci

d su

lpha

te, s

ulph

ate

chlo

ride,

chl

orid

e an

d ch

lorid

e bi

carb

onat

e

1.8–

898

Cle

ar, l

ime

gree

n,

blac

k, y

ello

w

Am

orph

ous

silic

a on

ly

Terr

aces

, ca

scad

es, a

pron

s R

esid

ues,

mas

sive

an

d de

nse,

sp

icul

ar

Wai

rake

i12

31

Aci

d su

lpha

te<

3 98

Gre

y tu

rbid

, milk

y A

mor

phou

s si

lica

Con

es, a

pron

s,

terr

aces

, rim

s D

ense

Wha

kaar

i7

11

Aci

d su

lpha

te

< 2

800

Cle

ar, g

reen

, ye

llow

A

nhyd

rite

Ven

t cru

sts

Res

idue

s

Wha

kam

aru

(see

O

ngar

oto)

W

hale

Isla

nd (s

ee

Mou

toho

ra)

Wha

ngai

roro

hea

2<

1?

Nil

Neu

tral c

hlor

ide

7.4

38C

lear

Am

orph

ous

silic

a S

ilici

fied

sedi

men

tsD

ense

Whi

te Is

land

(see

W

haka

ari)

Page 38: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

3� Cody—Geodiversity of geothermal fields

TA

BL

e A

1.3

c

Fiel

d na

me

Age

rang

e of

fe

atur

es

Geo

ther

mal

land

form

s Pr

e-hi

stor

ic c

hara

cter

istic

s Ex

plor

atio

n H

uman

impa

cts

(effe

cts

of e

xtra

ctio

n an

d ot

her h

uman

impa

cts)

Tong

ariro

>

20 0

00 y

C

hem

ical

, geo

logi

cal s

urve

ys.

Nil

K

etet

ahi

Hol

ocen

eIn

tens

ely

alte

red

valle

y U

nkno

wn,

mod

ified

by

volc

anic

eru

ptio

ns?

Che

mic

al, g

eoph

ysic

al s

urve

ys.

Nil

Te

Mar

i

E

mer

ald

Lake

s G

as a

nd w

ater

che

mis

try.

Wai

hi (s

ee T

okaa

nu)

Wai

kite

Val

ley

Hol

ocen

e<

20 0

00 y

H

E c

rate

rs, l

arge

silic

a La

rge

silic

a te

rrac

e an

d flo

win

g sp

rings

; bro

ad.

Che

mic

al, b

otan

ical

sur

veys

. D

rain

age

of la

nd fo

r far

min

g ha

s de

stro

yed

silic

a ap

rons

.

Bat

hs G

ully

Te

rrac

e, s

team

ing

cliff

s S

ilica

apr

ons.

Te

War

o S

carp

Pua

kohu

rea

Wai

man

gu (a

nd

Rot

omah

ana)

A

ll po

st d

ate

volc

. eru

ptio

n of

M

t Tar

awer

a on

10

Jun

e 18

86.

Vol

cani

c cr

ater

s, h

ot

lake

s, s

team

ing

cliff

s O

nly

GF

in w

orld

to fo

rm in

hi

stor

ical

reco

rd. P

rior t

o A

D

1886

, no

geot

herm

al a

ctiv

ity

in W

aim

angu

Val

ley.

Che

mic

al a

nd p

hysi

cal m

onito

ring.

D

OC

Sce

nic

Res

erve

. War

bric

k Te

rrace

was

bu

ilt w

ith s

andb

ags

to fo

rm te

rrac

e, c

.189

0s.

Wai

otap

uH

oloc

ene

to

pres

ent

(> 2

6 00

0 yb

p to

pr

esen

t)

Hug

e si

lica

terr

ace,

m

any

larg

e H

E c

rate

rs,

larg

e co

llaps

e ho

les,

ac

id g

eyse

r

Man

y la

rge

HE

cra

ters

form

ed

c. A

D 1

320,

incl

udin

g C

ham

pagn

e P

ool.

7 w

ells

, 500

–110

0 m

dee

p, n

ow a

ll gr

oute

d sh

ut. D

rillin

g do

ne in

195

0s. P

rese

nt-d

ay

mon

itorin

g an

d sc

ient

ific

inve

stig

atio

ns.

DO

C S

ceni

c R

eser

ve. F

ores

t har

vest

ing

and

road

ing,

tour

ist i

mpa

cts

sinc

e 18

90s

(min

imal

).

Wai

rake

i20

00y?

C

ham

pagn

e P

ool,

Gey

ser V

alle

y M

any

flow

ing

alka

line

sprin

gs

and

geys

ers.

G

eoph

ysic

al; c

hem

ical

, bot

anic

al s

urve

ys;

drill

ing.

La

rge

subs

iden

ce b

owl,

cess

atio

n of

all

flow

ing

hot s

prin

gs a

nd g

eyse

rs, f

orm

atio

n of

ho

t gro

und.

W

haka

ari

All

< 10

00 y

V

olca

nic

crat

er v

ents

, fu

mar

oles

Sim

ilar t

o to

day?

C

hem

ical

, geo

phys

ical

, bot

anic

al s

urve

ys.

Sul

phur

min

ing,

fact

ory

and

hous

ing

build

ings

, wha

rf.

Wha

kam

aru

(see

O

ngar

oto)

Wha

le Is

land

(see

M

outo

hora

)

Wha

ngai

roro

hea

< 20

00 y

P

erch

ed w

arm

lake

, ex

tens

ive

silic

ified

se

dim

ents

Unk

now

n.

Che

mis

try

2 ho

t spr

ings

dro

wne

d by

filli

ng o

f Lak

e O

haku

ri in

Jan

uary

196

1. A

rea

now

pin

e pl

anta

tion.

Whi

te Is

land

(see

W

haka

ari)

Page 39: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

3�DOC Research & Development Series 281

TA

BL

e A

1.3

d

* R

efer

ence

s in

bib

liogr

aph

y lo

dge

d in

To

nga

riro

/Tau

po

an

d R

oto

rua

Co

nse

rvan

cies

.

Fiel

d na

me

Expl

oita

tion

Extr

actio

n (T

onne

s/da

y)

Ref

eren

ces*

Tong

ariro

N

ilN

ilW

alsh

1997

.

K

etet

ahi

Non

eN

ilM

oore

& B

rock

198

1; M

ongi

llo &

Cle

lland

198

4; W

alsh

199

7.

Te

Mar

i

E

mer

ald

Lake

s N

il

Wai

hi (s

ee T

okaa

nu)

Wai

kite

Val

ley

Spr

ings

pip

ed in

to b

athi

ng p

ools

. 60

0S

hepp

ard

& R

obin

son

1980

; Woo

d 19

94.

B

aths

Gul

ly

Te

War

o S

carp

Pua

kohu

rea

Wai

man

gu (a

nd

Rot

omah

ana)

N

o ex

ploi

tatio

n, p

assi

ve to

uris

m.

Nil

Glo

ver 1

976;

Kea

m 1

981;

Key

woo

d 19

91; M

cLeo

d 19

92;

Sim

mon

s et

al.

1994

.

Wai

otap

uN

o ex

tract

ive

expl

oita

tion,

sol

ely

tour

ism

and

bat

hing

use

s.

Ero

sion

of C

ham

pagn

e P

ool m

argi

ns, d

amag

e to

veg

etat

ion.

N

ilLl

oyd

1959

; Hed

enqu

ist &

Hen

ley

1985

; Hed

enqu

ist &

Bro

wne

19

89; B

ibby

et a

l. 19

94; G

igge

nbac

h et

al.

1994

.

Wai

rake

iE

xtra

ctio

n of

wat

er a

nd s

team

for e

lect

ricity

gen

erat

ion

(c

. 178

MW

e), t

ouris

m, h

eat u

sed

in p

raw

n fa

rm.

160

000

Allis

199

0; A

llis

2000

. w

ww

.nzg

eoth

erm

al.o

rg.n

z (v

iew

ed A

pril

2007

).

Wha

kaar

iS

ulph

ur m

inin

g un

til c

. 193

0s; n

ow to

uris

m. P

rivat

ely

owne

d (B

uttle

fam

ily) a

dmin

iste

red

by D

OC

as

Sce

nic

Res

erve

. N

ilH

ough

ton

& N

airn

198

9.

Wha

kam

aru

(see

O

ngar

oto)

W

hale

Isla

nd (s

ee

Mou

toho

ra)

Wha

ngai

roro

hea

Use

d fo

r bat

hing

by

loca

l peo

ple.

N

ilO

nly

‘dis

cove

red’

to s

cien

ce in

198

0s.

Whi

te Is

land

(see

W

haka

ari)

Page 40: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

40 Cody—Geodiversity of geothermal fields

Appendix 2

I N D I V I D U A L G e O T H e R M A L F e A T U R e S I N V e N T O R y

This comprises a large spreadsheet split into a number of tables to enable

reproduction in this report. To reconstruct the spreadsheet, the tables need to

be viewed as follows:

A = active at present in geothermal field; Hn = historically active but now inactive

or lost due to natural causes; Hh = historically active but now inactive due to

human causes; P = prehistorically active; and N = never present.

O = outstanding example in its natural state; G = good example in its natural

state; M = modified; and D = severely degraded.

I = internationally important, if it is the only one of its kind or the best in

New Zealand; R = regionally important, if it is one of the best examples in the

TVZ; L = locally important, if it is one of the best examples in its geothermal

field.

He = hydrothermal eruption.

A2.1a

A2.2a A2.2b

A2.3a A2.3b

A2.4a A2.4b

A2.5a A2.5b

A2.6a A2.6b

A2.7a A2.7b

A2.8a A2.8b

A2.1b

A2.9a A2.9b

A2.10a A2.10b

Page 41: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

41DOC Research & Development Series 281

TA

BL

e A

2.1

a

Fiel

d na

me

Type

of f

eatu

re

Size

Fe

atur

e na

me/

num

ber

Stat

us(A

, Hn,

Hh,

P,

N)

Qua

lity

(O, G

, M, D

) R

epre

sent

- at

ion

(I, R

, L)

Hyd

rolo

gica

l cha

ract

er,

gase

ous

char

acte

r,

flow

and

ebu

latio

n A

tiam

uri

Dee

p flu

id fl

owin

g sp

ring

Larg

eW

hang

apoa

Eas

t A

MR

Wea

k flo

w, w

eak

bubb

ling

Dee

p flu

id fl

owin

g sp

ring

Larg

eW

hang

apoa

Wes

t A

MR

Wea

k flo

w, w

eak

bubb

ling

Dee

p flu

id fl

owin

g sp

ring

Sm

all

Mat

apan

Roa

d S

prin

g A

GL

Mod

erat

e flo

w, c

alm

Ext

inct

Spr

ing

Larg

eB

erg'

s C

rate

r P

DN

il flo

w, c

alm

Bro

adla

nds

(Oha

aki)

Dee

p flu

id fl

owin

g sp

ring

Larg

eO

haak

i Poo

lH

hO

(D)

I, bu

t now

L

Stro

ng, w

eak

Dee

p flu

id fl

owin

g sp

ring

Sm

all

Unn

amed

Hh

DL

Nil,

cal

m

Dee

p flu

id fl

owin

g sp

ring

Sm

all

Unn

amed

Hh

DL

Nil,

cal

m

Cra

ter L

ake

(Rua

pehu

) S

team

and

gas

La

rge

Cra

ter L

ake

AO

IN

on-fl

owin

g, c

alm

Ste

am a

nd g

asM

oder

ate

Sili

ca R

apid

s A

GR

Flow

ing,

cal

m

Gol

den

Spr

ings

D

eep

fluid

flow

ing

sprin

g La

rge

Gol

den

Spr

ing

Wes

tA

ML

Stro

ng fl

ow, s

trong

gas

ebu

llitio

n

Dee

p flu

id fl

owin

g sp

ring

Larg

eG

olde

n S

prin

g M

iddl

e A

ML

Stro

ng fl

ow, w

eak

ebul

litio

n D

eep

fluid

flow

ing

sprin

g La

rge

Gol

den

Spr

ing

Eas

t A

ML

Stro

ng fl

ow, w

eak

ebul

litio

n

Hor

ohor

o D

eep

fluid

flow

ing

sprin

g La

rge

Wai

pupu

mah

ana

AM

LW

eak

flow

, spo

radi

c w

eak

gas

Dee

p flu

id fl

owin

g sp

ring

Sm

all

Unn

amed

(Sou

ther

n gu

lly)

AG

Wea

k flo

w, c

alm

H

E c

rate

r La

rge

Unn

amed

road

side

farm

land

P

GL

Non

-flow

ing,

cal

m

HE

cra

ter

Larg

eU

nnam

ed ro

adsi

de fa

rmla

nd

PG

LN

on-fl

owin

g, c

alm

D

eep

fluid

flow

ing

sprin

g La

rge

Unn

amed

(roa

dsid

e)

PM

LN

on-fl

owin

g, c

alm

Hum

phre

y’s

Bay

G

as v

entin

g La

rge

Hum

phre

y’s

Bay

AG

RW

eak,

gen

tle b

ubbl

ing

Kaw

erau

Aci

d la

ke

Lake

Rot

oitip

aku

Hh

O (D

) L

Non

-flow

ing,

cal

m

Alk

alin

e la

ke

Lake

Um

upok

apok

a H

hO

(D)

LN

on-fl

owin

g, c

alm

Hot

bar

ren

grou

nd

Unn

amed

AG

RN

on-fl

owin

g, c

alm

D

eep

fluid

flow

ing

sprin

gs

Unn

amed

AM

LW

eak

flow

s, w

eak

bubb

ling

Sol

fata

raU

nnam

edA

GR

Non

-flow

ing,

ste

amin

g M

anag

akin

o (e

xcl.

Wha

kam

aru

or O

ngar

oto

Dee

p flu

id fl

owin

g sp

rings

Wea

kU

nnam

edA

GL

Wea

k flo

ws,

gen

tle b

ubbl

ing

Page 42: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

42 Cody—Geodiversity of geothermal fields

TA

BL

e A

2.1

b

Fiel

d na

me

Che

mic

al c

hara

cter

Ph

ysic

al c

hara

cter

Si

nter

dep

ositi

on

Com

men

ts

Atia

mur

iC

hlor

ide,

neu

tral-a

lkal

ine

Hot

cle

ar fl

owin

g sp

ring

Min

or, a

mor

phou

s si

lica,

alg

al a

pron

s S

ever

al o

ther

spr

ings

sub

mer

ged

in L

ake

Atia

mur

i. C

hlor

ide,

neu

tral-a

lkal

ine

Hot

cle

ar fl

owin

g sp

ring

Min

or, a

mor

phou

s si

lica,

alg

al a

pron

s W

hang

apoa

spr

ings

DO

C la

nd s

ince

200

3.C

hlor

ide,

neu

tral-a

lkal

ine

Hot

cle

ar fl

owin

g sp

ring

Nil

Boi

ling

mud

pool

and

war

m s

inte

r spr

ing

foun

d in

20

03 o

n B

ergs

farm

. R

ainw

ater

HE

cra

ter,

extin

ct s

prin

g M

inor

, am

orph

ous

silic

a, s

ilici

fied

teph

ras

Infil

led

with

deb

ris b

ut E

nv W

aika

to in

tend

to fe

nce

it of

f. B

road

land

s (O

haak

i) A

lkal

ine

chlo

ride

Hot

turb

id fl

owin

g sp

ring

Mas

sive

and

abu

ndan

t, ex

tens

ive

terr

aces

, apr

ons

All

Oha

aki s

prin

gs a

nd th

e on

ly g

eyse

r wer

e de

stro

yed

by c

omm

issi

onin

g of

pow

er s

tatio

n in

19

89. O

haak

i Poo

l ven

t inf

illed

with

con

cret

e an

d w

ater

now

sup

plie

d by

pip

elin

e.

Dry

D

ried

up, o

nce

flow

ing

sprin

g M

inor

Dry

D

ried

up, o

nce

flow

ing

sprin

g M

inor

Cra

ter L

ake

(Rua

pehu

) A

cid

sulp

hate

, pH

< 2

W

arm

, fum

arol

ic s

trong

, gre

y tu

rbid

N

ilIn

term

itten

tly fl

ows

and

heat

s; v

olca

nic

crat

er la

ke

with

act

ivity

mod

ified

by

met

eoro

logi

cal c

ondi

tions

, fu

mar

olic

and

vol

cani

c ac

tivity

. B

icar

bona

te a

lkal

ine

Col

d m

iner

alis

ed s

prin

gs, c

lear

S

ilica

dep

ositi

ngG

olde

n S

prin

gs

Neu

tral b

icar

bona

te

War

m, s

light

turb

idity

N

il2

larg

e flo

win

g sp

rings

in R

DC

pub

lic re

serv

e.

Loca

lly u

sed

for b

athi

ng. A

lso

clea

r spr

ing

in

stre

ambe

d. A

bund

ant a

lgae

and

iron

con

tent

. N

eutra

l bic

arbo

nate

W

arm

, slig

ht tu

rbid

ity

Nil

Neu

tral b

icar

bona

te

War

m, c

lear

N

ilH

oroh

oro

Neu

tral c

hlor

ide

Hot

, cle

ar

Min

or, a

mor

phou

s si

lica,

apr

on a

nd

terra

ce

Terr

ace

grow

th s

topp

ed w

ith c

hann

el c

ut th

roug

h w

all b

efor

e 19

48.

Neu

tral c

hlor

ide

Hot

, cle

ar

Nil

In s

wam

py g

ully

, no

sint

ers

pres

ent.

Dry

C

old,

dry

Nil

Sea

sona

l sw

ampy

mar

sh, e

rupt

ion

brec

cias

, si

nter

s ab

sent

. D

ry

Col

d, d

ry

Nil

Sev

eral

larg

e cr

ater

s po

stda

te c

. 26

500

y B

P.

Dry

C

old,

dry

Min

or, a

mor

phou

s si

lica,

mar

gins

and

w

alls

S

inte

r gro

wth

cea

sed

whe

n sp

ring

drie

d up

in

preh

isto

rical

tim

e.

Hum

phre

y’s

Bay

B

icar

bona

te a

lkal

ine

20C

, pH

6.5

, cle

ar

No

silic

a, a

bund

ant i

ron

oxid

es/

hydr

oxid

es

Wid

espr

ead

CO

2 bub

blin

g in

to la

ke, i

ron

depo

sits

.

Kaw

erau

Aci

dsu

lpha

teIn

fille

d w

ith w

ood

was

tes,

rubb

ish

dum

p ar

ea

Nil

but p

revi

ousl

y si

lica

resi

dues

La

kes

have

bee

n us

ed fo

r dum

ping

of p

ulp

mill

w

aste

s si

nce

1970

s an

d la

nd n

ow re

clai

med

, lak

es

alm

ost c

ompl

etel

y go

ne. S

prin

gs a

long

rive

r and

st

ream

ban

ks g

reat

ly re

duce

d in

flow

s si

nce

wel

l pr

oduc

tion

of 1

970s

. A

cid

sulp

hate

Infil

led

with

woo

d w

aste

s, ru

bbis

h du

mp

area

N

il bu

t pre

viou

sly

silic

a re

sidu

es

Ste

am,C

O2

Hill

slop

es o

f ste

amin

g gr

ound

N

ilA

lkal

ine

chlo

ride

Spr

ings

alo

ng b

anks

of r

iver

and

st

ream

Wea

k cr

usts

and

rim

s of

am

orph

ous

silic

a S

team

,CO

2S

team

ing

barr

en s

ulph

urou

s gr

ound

N

ilM

anag

akin

o (e

xcl.

Wha

kam

aru

or O

ngar

oto

Alk

alin

e ch

lorid

e C

lear

hot

upf

low

s U

nkno

wn

Sub

mer

ged

unde

r Lak

e M

arae

tai a

t Man

gaki

no, n

o lo

nger

vis

ible

.

Page 43: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

43DOC Research & Development Series 281

TA

BL

e A

2.2

a

Fiel

d na

me

Type

of f

eatu

re

Size

Fe

atur

e na

me/

num

ber

Stat

us(A

, Hn,

Hh,

P,

N)

Qua

lity

(O, G

, M, D

) R

epre

sent

- at

ion

(I, R

, L)

Hyd

rolo

gica

l cha

ract

er,

gase

ous

char

acte

r,

flow

and

ebu

latio

n M

okai

Dee

p flu

id fl

owin

g sp

rings

W

aipa

pa S

tream

spr

ings

A

GR

Stro

ng, c

alm

Fum

arol

e U

nnam

ed (u

pper

Mok

aute

ure

Stre

am)

AO

NN

il, s

trong

c. 1

m

Aci

d m

ud p

ools

U

nnam

ed (u

pper

Mok

aute

ure

Stre

am)

AM

LN

il, w

eak

c. 0

.5 m

Mud

con

es (‘

volc

anoe

s’)

Unn

amed

(upp

er M

okau

teur

e S

tream

)A

GL

Nil,

wea

k c.

0.5

m

Turb

id a

cid

lake

lets

U

nnam

ed (u

pper

Mok

aute

ure

Stre

am)

AM

LW

eak,

calm

Aci

dsp

ring

Ohi

near

iki (

uppe

r Oka

ma

Stre

am)

AM

RW

eak,

calm

HE

crat

ers

Unn

amed

(bes

ide

Tiro

hang

a R

oad)

AM

NN

il, s

trong

c. 1

m

Mou

toho

ra (W

hale

Isla

nd)

Ste

am h

eate

d gr

ound

La

rge

Sul

phur

Val

ley

AG

RM

oder

ate

flow

s, m

oder

ate

<

0.5

m h

igh

Ste

am fu

mar

oles

La

rge

Unn

amed

AG

RS

trong

ste

am fl

ows

Ste

am h

eate

d gr

ound

wat

ers

Larg

eU

nnam

edA

GR

Stro

ng s

tream

flow

s N

gata

mar

iki

Dee

p flu

id fl

owin

g sp

ring

Cal

cite

Spr

ing

(Pav

lova

) H

nG

LN

o ou

tflow

s si

nce

2003

, cal

m

Dee

p flu

id fl

owin

g sp

ring

Unn

amed

—H

E 1

A

GL

Wea

k flo

w, c

alm

Dee

p flu

id fl

owin

g sp

ring

Unn

amed

—H

E 2

A

GL

Stro

ng fl

ow, m

oder

ate

< 0.

2 m

Dee

p flu

id fl

owin

g sp

ring

Unn

amed

—H

E 3

A

GL

Mod

erat

e flo

w, w

eak

bubb

ling

<

0.1

m

Dee

p flu

id fl

owin

g sp

ring

Lake

Hn

MR

Mod

erat

e flo

w, w

eak

bubb

ling

<

0.1

m

Dee

p flu

id fl

owin

g sp

ring

New

Sou

th S

prin

g H

nG

LW

eak

flow

, cal

m

Dee

p flu

id fl

owin

g sp

ring

Nor

thw

est S

prin

g A

GL

No

outfl

ows,

cal

m

Dee

p flu

id fl

owin

g sp

ring

Sou

th S

prin

g A

GL

Mod

erat

e flo

w, w

eak

bubb

ling

<

0.1

m

Dee

p flu

id fl

owin

g sp

ring

Nor

th T

erra

ce s

prin

g A

GR

Mod

erat

e flo

w, w

eak

bubb

ling

<

0.3

m

Dee

p flu

id fl

owin

g sp

ring

Nor

th T

erra

ce N

ew s

prin

g A

GL

Mod

erat

e flo

w, w

eak

bubb

ling

<

0.3

m

Dee

p flu

id fl

owin

g sp

ring

Unn

amed

—W

aika

to R

iver

spr

ing

1A

ML

Stro

ng fl

ow, c

alm

Dee

p flu

id fl

owin

g sp

ring

Unn

amed

—W

aika

to R

iver

spr

ing

2A

ML

Stro

ng fl

ow, w

eak

bubb

ling

<

0.1

m

Page 44: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

44 Cody—Geodiversity of geothermal fields

TA

BL

e A

2.2

b

Fiel

d na

me

Che

mic

al c

hara

cter

Ph

ysic

al c

hara

cter

Si

nter

dep

ositi

on

Com

men

ts

Mok

aiA

lkal

ine

chlo

ride

Hot

, cle

ar

Wea

k cr

usts

and

rim

s of

am

orph

ous

silic

a S

prin

gs a

long

mid

dle

reac

hes

of W

aipa

pa S

tream

; fe

rns,

etc

. A

cid

sulp

hate

M

uddy

turb

id

Nil

Pow

erfu

l > 1

0 M

W in

cra

ter a

gain

st e

ast s

ide

of

ridge

.A

cid

sulp

hate

M

uddy

turb

id

Nil

Turb

id s

team

and

gas

-hea

ted

grou

ndw

ater

s su

rrou

nded

by

farm

land

, unf

ence

d, c

attle

wal

k th

roug

h th

em.

Aci

d su

lpha

te

Mud

dy tu

rbid

N

ilN

o od

ours

, cle

ar s

prin

g su

pply

ing

bath

ing

pool

. U

sed

as ru

bbis

h du

mps

, eru

pted

acr

oss

past

ure

in

c. 1

992.

A

cid

sulp

hate

M

uddy

turb

id

Nil

Aci

d su

lpha

te

War

m c

lear

Nil

Aci

d su

lpha

te

Mud

dy tu

rbid

N

il

Mou

toho

ra (W

hale

Isla

nd)

Aci

d su

lpha

te

Cle

ar b

oilin

g, 4

5–98C

Sili

care

sidu

esS

team

ing

grou

nd a

nd s

mal

l fum

arol

es in

are

a of

S

ulph

ur V

alle

y.

Aci

d co

nden

sate

s C

lear

, up

to 1

01C

ste

am v

ents

S

ilica

resi

dues

S

team

ven

ts d

epos

iting

sul

phur

. A

cid

sulp

hate

s C

lear

, up

to 9

8C

, pH

2, c

. 5 L

/s fl

ow

Sili

ca re

sidu

es

Col

lect

ed o

utflo

w o

f c. 5

L/s

. N

gata

mar

iki

Alk

alin

e ch

lorid

e C

lear

, 45

C, p

H 7

.5, w

arm

C

alci

te/a

mor

phou

s si

lica

apro

ns, r

ims

Cea

sed

hot o

utflo

ws

in la

te 2

002.

A

cid

sulp

hate

chl

orid

e G

rey

turb

id w

arm

, 30

C, p

H 6

W

eak

silic

a cr

ust a

t wat

er le

vel

Form

ed c

. 200

1, c

ease

d flo

win

g 20

03.

Neu

tral s

ulph

ate

chlo

ride

Gre

y tu

rbid

hot

, 75

C, p

H 7

.5

Nil

Form

ed 2

003,

flow

and

bub

blin

g st

reng

then

ed b

y ea

rly 2

005.

A

cid

sulp

hate

chl

orid

e G

rey

turb

id h

ot, >

70

C, p

H 6

N

ilN

ewly

form

ed la

te 2

003,

poo

l c. 8

m d

ia.,

SW

co

rner

of o

ld la

ke.

Alk

alin

ech

lorid

e C

lear

and

gre

y tu

rbid

flow

s, h

ot

alka

line

Nil

Lake

form

ed b

y H

E in

c. 1

948,

infil

led

by fl

ood

in

c. 1

995.

N

eutra

l chl

orid

e G

rey

turb

id w

arm

, pH

6.8

Nil

Flow

dec

reas

ed o

ver 1

995–

2004

and

coo

led.

N

eutra

l chl

orid

e C

lear

, war

m 5

0C

, pH

7

Wea

k w

ater

line

silic

a rim

H

ot o

verfl

ow u

ntil

c. 1

980,

sin

ce th

en h

as c

oole

d an

d le

vel f

alle

n.

Neu

tral c

hlor

ide

Cle

ar, h

ot 8

0C

, pH

7.8

W

eak

wat

erlin

e si

lica

rimW

indb

low

n pi

nes

lyin

g ov

er s

prin

g.

Alk

alin

e ch

lorid

e C

lear

, hot

98

C, p

H 7

.6

Am

orph

ous

silic

a ca

scad

es, r

ims,

cr

usts

O

n la

rge

silic

a te

rrace

, onc

e st

rong

er p

rehi

stor

ic

flow

s?

Alk

alin

e ch

lorid

e C

lear

, hot

98

C, p

H 7

.6

Am

orph

ous

silic

a rim

and

cru

sts

Spr

ing

form

ed c

. 199

5 an

d ha

s be

com

e cl

ear a

nd

sint

er d

epos

iting

. N

eutra

l chl

orid

e C

lear

, war

m 6

0C

, pH

7.5

S

ilica

and

iron

oxi

de h

ydro

xide

sin

ters

S

prin

g su

bmer

ged

by fi

lling

Lak

e O

haku

ri in

Ja

nuar

y 19

61.

Aci

d su

lpha

te c

hlor

ide

Cle

ar, h

ot, p

H 6

.5

Nil

Spr

ing

subm

erge

d by

filli

ng L

ake

Oha

kuri

in

Janu

ary

1961

.

Page 45: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

4�DOC Research & Development Series 281

TA

BL

e A

2.3

a

Fiel

d na

me

Type

of f

eatu

re

Size

Fe

atur

e na

me/

num

ber

Stat

us(A

, Hn,

Hh,

P,

N)

Qua

lity

(O, G

, M, D

) R

epre

sent

- at

ion

(I, R

, L)

Hyd

rolo

gica

l cha

ract

er,

gase

ous

char

acte

r,

flow

and

ebu

latio

n O

kata

ina

Dee

p flu

id m

ixed

wat

ers

Mod

erat

eU

nnam

edA

GL

Mod

erat

e flo

ws,

cal

m

Ong

arot

o (e

xcl.

Man

gaki

no)

Dee

p flu

id m

ixed

gro

undw

ater

s M

oder

ate

Unn

amed

AG

LM

oder

ate

flow

s, c

alm

Ste

amin

g gr

ound

La

rge

Unn

amed

AG

LN

o flo

ws,

gen

tle s

team

ing

Ora

keik

orak

oD

eep

fluid

flow

ing

sprin

g La

rge

Aor

angi

gey

ser,

S 1

005

Hn

ON

Stro

ng fl

ows,

gey

ser 1

5 m

hig

h

Dee

p flu

id fl

owin

g sp

ring

Larg

eA

rtist

's P

alet

te s

prin

g, S

741

A

ON

Stro

ng o

verfl

ows,

ste

ady

boili

ng

< 0.

2 m

D

eep

fluid

flow

ing

sprin

g S

mal

lB

ush

geys

er, S

96

AG

RW

eak

flow

s <

0.1

L/s,

gey

ser

< 0.

7 m

hig

h D

eep

fluid

flow

ing

sprin

g S

mal

lC

asca

de g

eyse

r, S

97

Hn

GR

Mod

erat

e flo

ws

geys

er <

3 m

hi

ghD

eep

fluid

flow

ing

sprin

g La

rge

Cau

ldro

n, S

124

H

nG

RS

trong

flow

s c.

5 L

/s g

eyse

r 2 m

hi

ghD

eep

fluid

flow

ing

sprin

g La

rge

Dia

mon

d ge

yser

, S 9

5 A

OR

Mod

erat

e flo

ws

geys

er <

3 m

hi

ghD

eep

fluid

flow

ing

sprin

g La

rge

Dre

adno

ught

gey

ser,

S 1

25

Hn

GR

Stro

ng fl

ows,

gey

ser,

10 m

hig

h

Dee

p flu

id fl

owin

g sp

ring

Mod

erat

eD

evil's

Thr

oat,

S 7

0 A

GL

Flow

s of

c. 0

.5 L

/s, b

oilin

g

< 0.

5 m

hig

h D

eep

fluid

flow

ing

sprin

g M

oder

ate

Fred

and

Mag

gie,

S 1

19

AG

LFl

ows

< 0.

5 L/

s, b

oilin

g <

0.5

m

high

Dee

p flu

id fl

owin

g sp

ring

Larg

eH

ochs

tette

r Poo

l or P

uia

Tuhi

tara

ta, S

98

AO

NS

trong

flow

s c.

10

L/s,

hot

, cal

m

Dee

p flu

id fl

owin

g sp

ring

Larg

eK

urap

ai, S

708

A

MN

Stro

ng fl

ows

c. 2

5 L/

s, g

eyse

r c.

10

m h

igh

Dee

p flu

id fl

owin

g sp

ring

Mod

erat

eM

anga

nese

Poo

l, S

120

A

GR

Mod

erat

e flo

ws,

wea

k bu

bblin

g

< 0.

1 m

D

eep

fluid

flow

ing

sprin

g M

oder

ate

My

Lady

's L

ace

(Sod

a Fo

unta

in),

S 1

11

AG

R

Flow

c. 0

.5 L

/s, s

trong

boi

ling

< 0.

5 m

D

eep

fluid

flow

ing

sprin

g La

rge

Ora

keik

orak

o ge

yser

, S 1

6 H

hO

IFl

ows

c. 5

0 L/

s, g

eyse

r 60

m

high

Dee

p flu

id fl

owin

g sp

ring

Larg

eR

ahur

ahu

geys

er, S

20

Hh

OI

Flow

s c.

100

L/s

, gey

ser 3

5 m

hi

ghD

eep

fluid

flow

ing

sprin

g La

rge

Tera

ta g

eyse

r, S

15

Hh

OI

Flow

s c.

50

L/s,

gey

ser 1

7 m

hi

ghD

eep

fluid

flow

ing

sprin

g La

rge

Min

ginu

i gey

ser,

S 1

9 H

hO

IS

trong

flow

s, g

eyse

r c. 1

0 m

hig

h

Dee

p flu

id fl

owin

g sp

ring

Larg

eO

haki

gey

ser,

S 1

4H

hO

IS

trong

flow

s, g

eyse

r c. 8

? m

hig

h

Dee

p flu

id fl

owin

g sp

ring

Larg

eTe

Mim

i-a-H

omai

tera

ngi g

eyse

r, S

10

Hh

OI

Stro

ng fl

ows,

gey

ser c

. 10?

m

high

Dee

p flu

id fl

owin

g sp

ring

Larg

eN

gaw

ha T

uata

hi, g

eyse

r, S

12

Hh

OI

Stro

ng fl

ows,

gey

ser c

. 7?

m h

igh

Dee

p flu

id fl

owin

g sp

ring

Mod

erat

eP

yram

id o

f Gey

sers

, S 8

4 –

S 8

6 A

ON

Mod

erat

e flo

ws,

gey

sers

0.5

–2 m

hi

gh

Page 46: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

4� Cody—Geodiversity of geothermal fields

TA

BL

e A

2.3

b

Fiel

d na

me

Che

mic

al c

hara

cter

Ph

ysic

al c

hara

cter

Si

nter

dep

ositi

on

Com

men

ts

Oka

tain

aN

eutra

l chl

orid

e W

arm

39

C, p

H 7

cle

ar u

pflo

ws

Iron

oxid

es h

ydro

xide

s Iro

n de

posi

ts a

nd w

arm

upf

low

s al

ong

c. 3

0 m

of

shor

e in

eat

s en

d of

lake

. O

ngar

oto

(exc

l. M

anga

kino

)N

eutra

l chl

orid

e W

arm

neu

tral s

eeps

into

Lak

e W

haka

mar

uN

ilW

arm

upf

low

s su

bmer

ged

by fi

lling

of L

ake

Wha

kam

aru.

Aci

d su

lpha

te c

onde

nsat

es

War

m to

hot

gro

und

Nil,

sili

ca re

sidu

es, s

ulph

ur a

nd a

lum

s S

lope

s of

hill

on

sout

h si

de o

f Lak

e W

haka

mar

u.O

rake

ikor

ako

Alk

alin

e ch

lorid

e C

lear

boi

ling

sprin

g 97C

pH

7.9

S

ilica

sin

ter r

im a

nd a

long

out

flow

G

eyse

r act

ion

befo

re 1

961,

HE

in e

arly

200

1, n

ow

stea

dy b

oilin

g on

ly b

oils

and

flow

s fo

r yea

rs, a

lso

stop

s flo

win

g, w

ater

leve

l dro

ps c

. 4 m

. A

lkal

ine

chlo

ride

Sky

blu

e tra

nslu

cent

, 95–

98C

, pH

7.6

Stro

ng s

ilica

dep

ositi

on, f

retw

orks

, rim

s A

lkal

ine

chlo

ride

Cle

ar, 9

8C

gey

ser

Den

se s

ilica

wal

ls a

nd s

urfa

ce

surr

ound

sN

oisy

and

cry

ptic

. Hid

den

in s

hrub

s. P

lays

eve

ry

10–2

0 m

inut

es.

Alk

alin

e ch

lorid

e C

lear

, 98

C g

eyse

r D

ense

sili

ca s

urro

unds

and

alg

al

outfl

ow s

inte

rs

Rar

ely

geys

ers

sinc

e Ja

nuar

y 19

61 w

hen

Lake

O

haku

ri fil

led.

A

lkal

ine

chlo

ride

Cle

ar, h

ot 8

0–95C

, pH

7.8

D

ense

sili

ca w

alls

and

sur

face

su

rrou

nds

Rar

ely

geys

ers,

usu

ally

cal

m a

nd c

onve

ctin

g,

0.1–

0.5

m b

elow

ove

rflow

. A

lkal

ine

chlo

ride

Cle

ar, 9

8C

, pH

8.7

, eru

pts

man

y tim

es d

aily

A

bund

ant a

mor

phou

s si

lica

and

alga

l si

nter

sA

ctiv

ity v

aryi

ng, b

efor

e 20

03 e

rupt

ions

3–8

m,

sinc

e 20

04 o

nly

1–2

m h

igh.

A

lkal

ine

chlo

ride

Cle

ar, 8

5–98C

, ina

ctiv

e, s

tead

y bo

iling

Am

orph

ous

silic

a su

rrou

nds

and

wal

ls

Rar

ely

erup

ts, u

sual

ly b

oilin

g st

eadi

ly 0

.2–0

.8 m

be

low

ove

rflow

. A

lkal

ine

chlo

ride

Cle

ar, 9

8C

, ste

ady

boili

ng

Am

orph

ous

silic

a, b

lack

col

ours

Ste

adily

boi

ls a

nd fl

ows

all t

he ti

me.

Alk

alin

ech

lorid

e C

lear

, 98

C, b

oilin

g st

reng

th o

scill

ates

<

0.3

m

Am

orph

ous

silic

a, b

lack

col

ours

C

onst

ant b

oilin

g bu

t osc

illat

ing

stre

ngth

of h

eigh

t an

d flo

ws.

A

lkal

ine

chlo

ride

Cle

ar, 8

0C

, pH

8

Alg

al s

ilica

sin

ters

C

alm

spr

ing

c. 1

0 m

dia

. on

Rai

nbow

Ter

race

.

Alk

alin

e ch

lorid

e C

lear

, boi

ling

Am

orph

ous

silic

a si

nter

s, m

amill

ary

Act

ive

durin

g 20

03–2

005,

eru

ptio

ns 1

5–20

min

utes

ev

ery

10–2

0 ho

urs.

A

lkal

ine

chlo

ride

Cle

ar, c

alm

, 85–

95C

, pH

7.5

A

mor

phou

s si

lica

sint

er s

urro

unds

Fl

ows

for m

onth

s th

en re

treat

s be

low

ove

rflow

for

mon

ths.

Alk

alin

e ch

lorid

e C

lear

, boi

ling

flow

ing

sprin

gA

mor

phou

s si

lica

sint

er s

urro

unds

Fl

ows

for m

onth

s th

en re

treat

s be

low

ove

rflow

for

mon

ths.

Alk

alin

e ch

lorid

e C

lear

, boi

ling

geys

er

Abu

ndan

t am

orph

ous

silic

a an

d al

gal

sint

ers

Dro

wne

d by

filli

ng L

ake

Oha

kuri

in J

anua

ry 1

961.

Alk

alin

e ch

lorid

e C

lear

, boi

ling

geys

er

Abu

ndan

t am

orph

ous

silic

a an

d al

gal

sint

ers

Dro

wne

d by

filli

ng L

ake

Oha

kuri

in J

anua

ry 1

961,

er

upte

d at

ang

le.

Alk

alin

e ch

lorid

e C

lear

, boi

ling

geys

er

Abu

ndan

t am

orph

ous

silic

a an

d al

gal

sint

ers

Dro

wne

d by

filli

ng L

ake

Oha

kuri

in J

anua

ry 1

961.

Alk

alin

e ch

lorid

e C

lear

, boi

ling

geys

er

Abu

ndan

t am

orph

ous

silic

a an

d al

gal

sint

ers

Dro

wne

d by

filli

ng L

ake

Oha

kuri

in J

anua

ry 1

961.

Alk

alin

e ch

lorid

e C

lear

, boi

ling

geys

er

Abu

ndan

t am

orph

ous

silic

a an

d al

gal

sint

ers

Dro

wne

d by

filli

ng L

ake

Oha

kuri.

Alk

alin

e ch

lorid

e C

lear

, boi

ling

geys

er

Abu

ndan

t am

orph

ous

silic

a an

d al

gal

sint

ers

Dro

wne

d by

filli

ng L

ake

Oha

kuri.

Alk

alin

e ch

lorid

e C

lear

, boi

ling

geys

er

Abu

ndan

t am

orph

ous

silic

a an

d al

gal

sint

ers

Dro

wne

d by

filli

ng L

ake

Oha

kuri.

Alk

alin

e ch

lorid

e C

lear

, boi

ling

98C

Abu

ndan

t sili

ca a

nd a

lgal

sin

ters

, ye

llow

s-br

owns

A

ctiv

ity fl

uctu

ates

and

occ

asio

nally

sto

ps fo

r wee

ks

or m

onth

s.

Page 47: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

4�DOC Research & Development Series 281

TA

BL

e A

2.4

a

Fiel

d na

me

Type

of f

eatu

re

Size

Fe

atur

e na

me/

num

ber

Stat

us(A

, Hn,

Hh,

P,

N)

Qua

lity

(O, G

, M, D

) R

epre

sent

- at

ion

(I, R

, L)

Hyd

rolo

gica

l cha

ract

er,

gase

ous

char

acte

r,

flow

and

ebu

latio

n O

rake

ikor

ako

(con

tinue

d)D

eep

fluid

flow

ing

sprin

g La

rge

Psy

che'

s B

ath,

S 7

04

AG

RN

o ov

erflo

w, g

entle

bub

blin

g

Dee

p flu

id fl

owin

g sp

ring

Larg

eS

766

H

nG

LN

o ov

erflo

w, g

entle

bub

blin

g

Dee

p flu

id fl

owin

g sp

ring

Mod

erat

eS

772

A

GR

Mod

erat

e flo

ws,

gey

sers

7 m

hi

ghD

eep

fluid

flow

ing

sprin

g M

oder

ate

S 7

77

AG

RM

oder

ate

flow

s, g

eyse

rs 1

0 m

hi

ghD

eep

fluid

flow

ing

sprin

g M

oder

ate

S 7

78

AG

RM

oder

ate

flow

s, g

eyse

rs 8

m

high

Dee

p flu

id fl

owin

g sp

ring

Sm

all

S 7

95

AG

IS

mal

l flo

ws

< 1

L/s,

gey

sers

2 m

hi

ghD

eep

fluid

flow

ing

sprin

g M

oder

ate

Sap

phire

gey

ser,

S 1

06

AO

NFl

ows

c. 3

L/s

, gey

sers

3 m

hig

h

Dee

p flu

id fl

owin

g sp

ring

Larg

eW

airir

i gey

ser,

S 1

26

Hn

OR

Flow

s c.

10

L/s,

gey

sers

10

m h

igh

Sili

ca te

rrac

e La

rge

Arti

st's

Pal

ette

AO

IN

umer

ous

boili

ng s

prin

gs

Fum

arol

eLa

rge

Unn

amed

AG

RN

o ou

tflow

, stro

ng s

team

/gas

em

issi

onM

udpo

olLa

rge

Unn

amed

AG

RN

o ou

tflow

s, s

tead

y m

oder

ate

boili

ngR

epor

oaD

eep

fluid

flow

ing

sprin

g La

rge

But

cher

'sP

ool

AM

LS

trong

flow

, wea

k bu

bblin

g

Dee

p flu

id fl

owin

g sp

ring

Mod

erat

eP

ukek

ahu

AG

LS

trong

flow

, cal

m

Lo

ngvi

ew R

oad

Ste

am &

gas

hea

ted

pool

M

oder

ate

Unn

amed

AM

LW

eak

flow

s, b

ubbl

ing

< 0.

1 m

hi

ghS

team

& g

as h

eate

d po

ol

Larg

eU

nnam

edA

ML

Wea

k flo

ws,

bub

blin

g <

0.1

m

high

Ste

am &

gas

hea

ted

pool

La

rge

Unn

amed

AM

LN

il flo

ws,

bub

blin

g <

0.1m

hig

h

Ste

am &

gas

hea

ted

pool

M

oder

ate

Unn

amed

AM

LN

il flo

ws,

bub

blin

g <

0.1m

hig

h S

team

& g

as h

eate

d po

ol

Mod

erat

eU

nnam

edA

ML

Nil

flow

s, b

ubbl

ing

< 0.

5m h

igh

O

pahe

ke (O

pate

kete

ke)

Dee

p flu

id fl

owin

g sp

ring

Larg

eM

aori

Nor

th s

prin

g A

ON

Mod

erat

e flo

w, b

oilin

g <

0.3

m

high

Dee

p flu

id fl

owin

g sp

ring

Larg

eM

aori

Sou

th s

prin

g A

MN

Mod

erat

e flo

w, b

oilin

g <

0.3

m

high

Dee

p flu

id fl

owin

g sp

ring

Mod

erat

eS

cald

ing

Spr

ing

AM

LW

eak

flow

, gen

tle b

ubbl

ing

<

0.05

m

Dee

p flu

id fl

owin

g sp

ring

Mod

erat

eS

outh

Spr

ing

AM

LW

eak

flow

, cyc

lical

bub

blin

g

< 0.

1 m

D

eep

fluid

flow

ing

sprin

g La

rge

Sou

thw

est S

prin

g A

MR

Stro

ng fl

ow, g

entle

bub

blin

g <

0.1

m

HE

cra

ter

Mod

erat

eE

dgec

umbe

Cra

ter

AG

LN

o ou

tflow

s, g

entle

fizz

y bu

bblin

g <

0.1

m

Aci

d tu

rbid

poo

l M

oder

ate

Unn

amed

AM

LN

o ou

tflow

s, g

entle

bub

blin

g <

0.1

m

Bar

ren

war

m g

roun

d La

rge

Unn

amed

AM

LS

team

ing

and

sulp

hur d

epos

its

Page 48: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

4� Cody—Geodiversity of geothermal fields

TA

BL

e A

2.4

b

Fiel

d na

me

Che

mic

al c

hara

cter

Ph

ysic

al c

hara

cter

Si

nter

dep

ositi

on

Com

men

ts

Ora

keik

orak

o (c

ontin

ued)

W

eakl

y ac

idic

sul

phat

e ch

lorid

e P

ale

grey

turb

id, 7

5–90C

Min

or s

ilica

sin

ters

aro

und

wal

ls

Has

ove

rflow

ed h

isto

rical

ly; u

sual

ly w

ater

leve

l c.

2 m

bel

ow o

verfl

ow.

Wea

kly

acid

ic s

ulph

ate

chlo

ride

Pal

e gr

ey tu

rbid

, 75–

90C

Min

or s

ilica

sin

ters

aro

und

wal

ls

Gey

sere

d 5

m h

igh

man

y tim

es d

aily

in

2000

–200

1, n

ow w

eak

bubb

ling.

A

lkal

ine

chlo

ride

Cle

ar b

oilin

g 98C

, pH

8

Den

se g

rey

silic

a si

nter

s al

l aro

und

G

eyse

rs e

very

hou

r for

sev

eral

min

utes

with

ov

erflo

ws.

A

lkal

ine

chlo

ride

Cle

ar b

oilin

g, 9

8C

, pH

8

Den

se g

rey

silic

a si

nter

s al

l aro

und

G

eyse

rs e

very

few

hou

rs, b

lew

out

rubb

le in

200

2 (H

E).

Alk

alin

e ch

lorid

e C

lear

boi

ling,

98

C, p

H 8

D

ense

gre

y si

lica

sint

ers

all a

roun

d

Gey

sers

eve

ry fe

w h

ours

, ble

w o

ut ru

bble

in 2

002

(HE

), al

ongs

ide

S 7

77.

Alk

alin

e ch

lorid

e C

lear

boi

ling

D

ark

grey

sili

ca s

inte

rs

Has

ver

y un

usua

l dou

ble-

actio

n er

uptio

n st

yle,

un

ique

in w

orld

. A

lkal

ine

chlo

ride

Cle

ar b

oilin

gW

hite

to p

ale

grey

sili

ca s

inte

rs, a

lgal

in

out

flow

s E

rupt

s ev

ery

20 m

inut

es fo

r 2–3

min

utes

.

Alk

alin

e ch

lorid

e C

lear

boi

ling

Mas

sive

den

se s

ilica

sin

ters

Er

upte

d la

st c

. 200

1 fo

r 6 m

onth

s, m

any

times

dai

ly.

Alk

alin

e ch

lorid

e C

lear

boi

ling

geys

ers

and

sprin

gs

Mas

sive

den

se s

ilica

sin

ters

S

prin

gs a

nd g

eyse

rs in

term

itten

tly a

ctiv

e,

exch

ange

s of

func

tion

com

mon

. A

cid

cond

ensa

tes

Cle

ar g

as p

lum

e 10

1C

Nil,

bric

k re

d gr

ound

on

bank

s P

ower

ful f

umar

ole,

at R

ed H

ills,

c. 5

MW

.

Aci

d su

lpha

te g

rey

mud

s D

ark

grey

mud

s N

il, p

yrite

bla

cken

ed s

ilica

mud

s S

trong

mud

pool

, boi

ling

< 1

m h

igh.

Rep

oroa

Neu

tralb

icar

bona

te

45C

, pH

6.8

, faw

ny tu

rbid

, iro

n de

posi

tsN

il

Neu

tralb

icar

bona

te

45C

, pH

6.8

, faw

ny tu

rbid

, iro

n de

posi

tsN

il

Lo

ngvi

ew R

oad

Neu

tral b

icar

bona

te s

ulph

ate

70C

, gre

eny

grey

turb

id, p

H 5

.5

Alg

al m

asse

s of

am

orph

ous

silic

a S

ever

ely

mod

ified

by

land

dra

inag

e, fa

rmer

stil

l try

ing

to d

rain

spr

ings

. W

eakl

y ac

idic

bic

arbo

nate

sul

phat

e 33C

, pH

6, a

lgal

gre

en s

uspe

nsio

n A

lgal

and

mic

robi

al s

ilica

dep

osits

S

ever

ely

mod

ified

by

land

dra

inag

e, fa

rmer

stil

l try

ing

to d

rain

spr

ings

. A

cid

sulp

hate

90C

, pH

3.7

, gre

y tu

rbid

sus

pens

ion

Spi

cula

r sili

ca s

inte

rs a

roun

d m

argi

ns

Sev

erel

y m

odifi

ed b

y la

nd d

rain

age,

farm

er s

till

tryin

g to

dra

in s

prin

gs.

Aci

dic

sulp

hate

mud

dy p

ool

75C

, pH

4.5

, dar

k gr

ey m

uddy

N

il, a

mor

phou

s si

lica

susp

ensi

on

Mod

ified

by

farm

er.

Aci

dic

sulp

hate

mud

poo

l 93C

, vis

cous

mud

s N

il, a

mor

phou

s si

lica

susp

ensi

on

Mod

ified

by

farm

er.

O

pahe

ke (O

pate

kete

ke)

Alk

alin

e ch

lorid

e 98C

, pH

8, c

lear

D

ense

am

orph

ous

silic

a si

nter

s, a

lgal

si

nter

sIn

sm

all e

ncla

ve o

f Mao

ri la

nd, n

atur

al c

ondi

tion

and

larg

e al

gal t

erra

ces.

A

lkal

ine

chlo

ride

97C

, pH

7.8

; cle

ar

Den

se a

mor

phou

s si

lica

sint

ers

M

aori

land

, sili

ca te

rrac

es m

odifi

ed b

y du

ctin

g w

ater

to b

athi

ng s

hed.

N

eutra

lchl

orid

e90C

, pH

7, c

lear

S

pars

e am

orph

ous

silic

a rim

and

ed

ge d

epos

its

Land

dra

ined

, use

d fo

r sca

ldin

g an

imal

car

case

s.

Wea

kly

acid

ic c

hlor

ide

sulp

hate

90C

, pH

6.7

, dar

k tu

rbid

bro

wn

Nil,

dar

k si

lica

and

pyrit

e m

uds

With

in p

astu

re b

ut c

attle

tram

ple

mar

gins

and

ou

tflow

cha

nnel

. A

lkal

ine

chlo

ride

96C

, pH

8.7

, cle

ar

Spa

rse

amor

phou

s si

lica

rims

With

in d

rain

ed p

astu

re la

nd, f

ence

d of

f. W

eakl

y ac

idic

sul

phat

e 85C

, pH

3.5

, dar

k gr

ey tu

rbid

W

eak

silic

a re

sidu

es a

roun

d m

argi

ns

Form

ed d

urin

g E

dgec

umbe

ear

thqu

ake

of M

arch

19

87.

Stro

ngly

aci

dic

sulp

hate

mud

dy w

ater

92C

, pH

3

Nil,

dar

k gr

ey m

uds,

pyr

ite c

olou

ring

Fenc

ed o

ff, m

ud v

isco

sity

cha

nges

with

rain

fall.

S

trong

aci

d co

nden

sate

s, o

doro

us

45C

gro

und

Nil,

geo

ther

mal

ly a

ltere

d an

d st

eam

ing,

sul

phur

A

rea

has

been

bul

ldoz

ed to

rem

ove

old

sint

er

sprin

g co

nes.

Page 49: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

4�DOC Research & Development Series 281

TA

BL

e A

2.5

a

Fiel

d na

me

Type

of f

eatu

re

Size

Fe

atur

e na

me/

num

ber

Stat

us(A

, Hn,

Hh,

P,

N)

Qua

lity

(O, G

, M, D

) R

epre

sent

- at

ion

(I, R

, L)

Hyd

rolo

gica

l cha

ract

er,

gase

ous

char

acte

r,

flow

and

ebu

latio

n R

otoi

tiD

eep

fluid

flow

ing

sprin

g La

rge

Cen

tre B

asin

A

GR

Stro

ngly

flow

ing

sprin

g, s

trong

bu

bblin

gR

otok

awa

(Tau

po)

Dee

p flu

id m

ixed

wat

ers

Larg

eR

otok

awa

Lake

A

ON

Out

flow

c. 3

0 L/

s, w

eak

bubb

ling

cent

res

Dee

p flu

id m

ixed

wat

ers

Larg

eP

arak

iri S

tream

AG

RO

utflo

ws

> 30

L/s

, man

y sp

rings

Fum

arol

eLa

rge

Unn

amed

AG

RN

il flo

w, s

tead

y st

eam

ing

Dee

p flu

id m

ixed

wat

ers

Mod

erat

eU

nnam

edM

GL

Wea

k flo

ws

< 0.

1 L/

s, g

entle

bu

bblin

gS

team

hea

ted

grou

nd

Stro

ngU

nnam

edM

GL

No

outfl

ows,

his

sing

ste

amin

g

Rot

okaw

au (R

otok

awa)

(R

otor

ua)

Dee

p flu

id fl

owin

g sp

ring

Sm

all

Bat

hs S

prin

g A

ML

Flow

ing

c. 0

.2 L

/s, w

eak

gas

bubb

ling

Gas

upf

low

S

mal

lB

ubbl

e B

ay S

prin

g H

hM

LC

old

gas

bubb

ling

into

lake

Ste

amin

g gr

ound

M

oder

ate

Unn

amed

AM

LS

team

and

gas

es s

eepi

ng

thro

ugh

soil

Tahe

keS

team

hea

ted

mix

ed w

ater

s M

oder

ate

Kui

rau

Stre

am

AG

LO

utflo

w c

. 3 L

/s, s

team

ing

grou

ndFu

mar

olic

sol

fata

ra

Stro

ngU

nnam

edA

MR

No

flow

s, s

team

ing

grou

nd

Ste

am h

eate

d gr

ound

S

trong

Unn

amed

AG

L

No

flow

s, s

team

ing

hills

ides

Ste

am h

eate

d m

ixed

wat

ers

Mod

erat

eU

nnam

edA

ML

Flow

s <

1 L/

s, b

ubbl

ing

< 0.

1 m

Tara

wer

a D

eep

fluid

out

flow

s M

oder

ate

Hot

Wat

er B

each

A

GR

Mod

erat

e, m

oder

ate

< 0.

5 m

Gas

and

flui

d up

flow

s La

rge

Red

Bea

ch

AG

LS

trong

flow

s, s

trong

bub

blin

g

< 0.

2 m

D

eep

fluid

out

flow

s M

oder

ate

Wai

rua

Del

ta

AG

LM

oder

ate

flow

s, w

eak

bubb

ling

Tauh

ara-

Taup

o (e

xcl.

Wai

rake

i)

Spa

D

eep

fluid

flow

ing

sprin

g La

rge

Eun

ice

Gey

ser,

S 4

1H

hD

NS

trong

flow

, gey

ser,

c. 1

0 m

hig

h

Dee

p flu

id fl

owin

g sp

ring

Larg

eW

aipi

kira

ngi G

eyse

r, S

42

Hh

DN

Stro

ng fl

ows,

gey

ser;

c. 5

–8 m

hi

ghM

ixed

wat

ers

and

stea

m

Larg

eO

tum

uhek

e S

tream

sou

rce

AM

LS

trong

flow

, mod

erat

e bu

bblin

g

< 0.

3 m

M

ixed

wat

ers

and

stea

m

Larg

eK

athl

een

Spr

ing

Hh

DL

Stro

ng fl

ow, c

alm

spr

ing

Ste

am a

nd g

as h

eatin

g La

rge

Taup

o P

ony

Clu

b A

ML

Wea

k se

epag

e flo

ws,

mod

erat

e ga

sD

eep

fluid

flow

ing

sprin

g La

rge

Cro

w's

Nes

t or T

ewak

atur

ou

Gey

ser S

43

Hh

DN

Stro

ng fl

ows,

gey

ser,

c. 5

–8 m

hi

gh

Page 50: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

�0 Cody—Geodiversity of geothermal fields

TA

BL

e A

2.5

b

Fiel

d na

me

Che

mic

al c

hara

cter

Ph

ysic

al c

hara

cter

Si

nter

dep

ositi

on

Com

men

ts

Rot

oiti

Alk

alin

e ch

lorid

e C

lear

wat

er, w

arm

U

nkno

wn

On

bed

of la

ke; c

. 120

m d

eep

larg

e ve

nt in

bow

l c.

90

m d

eep,

big

hea

tflow

. R

otok

awa

(Tau

po)

Aci

d su

lpha

te c

hlor

ide

Turb

id g

rey

wat

ers,

war

m a

cidi

c W

eak

spic

ular

sili

ca s

inte

rs a

roun

d sh

ore

sprin

gs

Lake

is H

E c

rate

r, no

w fl

owin

g an

d ga

s ve

ntin

g fro

m m

any

sour

ces.

A

cid

sulp

hate

chl

orid

e Tu

rbid

gre

y an

d cl

ear w

ater

s, w

eakl

y ac

idic

Sili

ca re

sidu

es a

nd s

picu

lar d

epos

its

alon

g ba

nks

Stre

am h

as m

any

sprin

gs in

its

bed

alon

g ch

anne

l to

Wai

kato

Riv

er.

Aci

d su

lpha

te c

onde

nsat

es a

nd

sulp

hur

Turb

id g

rey

and

yello

w w

ater

s, a

cidi

c N

il, s

ulph

ur d

epos

its

Sev

eral

larg

e cr

ater

s w

ith fu

mar

olic

act

ivity

, som

e co

llaps

e, s

ome

HE

cra

ters

. A

cid

sulp

hate

chl

orid

e Tu

rbid

gre

y, h

ot a

cid

sprin

gs

Min

or s

picu

lar s

ilica

sin

ters

A

rea

seve

rely

mod

ified

by

sulp

hur m

inin

g in

197

0s

to 1

980s

. A

cid

cond

ensa

tes,

alu

ms,

sul

phur

B

arre

n, s

ulph

ur d

epos

its

Sili

ca re

sidu

esTh

erm

ophi

lic v

eget

atio

n an

d ho

t gro

und

chan

ged

by s

ulph

ur m

inin

g.

Rot

okaw

au (R

otok

awa)

(R

otor

ua)

Neu

tral c

hlor

ide

bica

rbon

ate

Cle

ar 4

7C

, pH

6.7

, no

odou

rs

Nil,

slim

y gr

ey m

icro

bial

gro

wth

s S

prin

g ha

s ba

th p

ool b

uilt

over

top,

upf

low

s th

roug

h flo

or.

Unk

now

n G

as b

ubbl

ing,

col

d, n

o od

ours

N

ilG

as b

ubbl

ing

from

lake

bed

into

sha

llow

wat

er

0.5

m, N

E s

ide

of la

ke.

Unk

now

n, a

cidi

c co

nden

sate

s,

sulp

hur

Gas

bub

blin

g, c

old,

no

odou

rs

Nil,

wea

k su

lphu

rous

dep

osits

A

rea

c. 1

0 m

dia

. of b

arre

n gr

ound

, wea

k su

lphu

r ce

men

ting.

Tahe

keA

cid

sulp

hate

Turb

id g

rey

mix

ed w

ater

s, 4

0–70C

,pH

2

Nil,

col

loid

al s

ulph

ur a

nd s

ulph

ur

depo

sits

Stre

am is

col

lect

ed o

utflo

w fr

om m

ain

north

ern

area

of s

olfa

tara

. A

cid

cond

ensa

tes,

sul

phur

dep

osits

G

rey

resi

dues

and

mud

dy w

ater

s, h

ot

acid

icN

il, s

ilica

resi

dues

and

sul

phur

de

posi

tsA

rea

of c

. 1 h

ecta

re o

f sol

fata

ra, s

team

ing

grou

nd,

mud

dy p

ools

. A

cid

cond

ensa

tes,

sul

phur

dep

osits

G

rey

resi

dues

, hot

dec

ayin

g gr

ound

N

il, s

ulph

ur a

nd a

lum

dep

osits

H

illsi

des

with

stro

ng s

team

ing,

dec

ayin

g an

d co

llaps

ing,

land

slip

s.

Aci

dsu

lpha

teTu

rbid

gre

y m

ixed

wat

ers,

90

C,

pH 2

.5

Nil,

sul

phur

dep

osits

, sili

ca re

sidu

es

Ext

ensi

vely

min

ed fo

r sul

phur

in 1

980s

.

Tara

wer

a A

lkal

ine

chlo

ride

Hot

98

C, p

H 8

.7, c

lear

A

mor

phou

s si

lica,

rim

s, c

rust

s,

casc

ades

Num

erou

s m

inor

dep

osits

from

man

y ou

tflow

s al

ong

lake

shor

e.

Alk

alin

e bi

carb

onat

e C

old

20C

, pH

7, c

lear

/ora

ngey

turb

id

Iron

oxid

es a

nd h

ydro

xide

s ab

unda

nt

Occ

urs

alon

g sh

orel

ine

of rh

yolit

e la

va c

liffs

into

de

ep w

ater

. A

lkal

ine

chlo

ride

Hot

70

C, p

H 7

.5, c

lear

N

ilU

pflo

ws

into

col

d st

ream

and

sed

imen

ts o

f stre

am

delta

.Ta

uhar

a-Ta

upo

(exc

l. W

aira

kei)

S

pa

Alk

alin

e ch

lorid

e 98C

, pH

7.8

, cle

ar, g

eyse

r W

eak

amor

phou

s si

lica

Drie

d up

by

1950

s af

ter b

last

ing

of W

aika

to R

iver

ch

anne

l alo

ngsi

de.

Alk

alin

e ch

lorid

e 98C

, pH

8, c

lear

gey

ser

Mod

erat

e am

orph

ous

silic

aD

ried

up a

nd c

old

sinc

e ea

rly 1

950s

.

Aci

d su

lpha

te

85C

, pH

6.3

, cle

ar

Wea

k am

orph

ous

alga

l silic

aFl

ow h

as re

duce

d gr

eatly

sin

ce 1

970s

.

Aci

d su

lpha

te c

hlor

ide

62C

, pH

7, c

lear

W

eak

amor

phou

s si

lica

Ove

rflow

ed u

ntil

2002

, flo

ws

wea

kene

d ov

er

seve

ral d

ecad

es.

Aci

d su

lpha

te c

onde

nsat

es

98C

, pH

< 2

, tur

bid

mud

dy p

ools

N

ilH

E c

rate

rs a

nd n

ewly

form

ed h

ot g

roun

d,

incr

ease

d st

eam

hea

ting.

A

lkal

ine

chlo

ride

98C

, pH

8, c

lear

gey

ser

Abu

ndan

t am

orph

ous

silic

a V

ent o

f bra

nche

s se

t with

sin

ter,

dest

roye

d by

19

50s.

Page 51: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

�1DOC Research & Development Series 281

TA

BL

e A

2.6

a

Fiel

d na

me

Type

of f

eatu

re

Size

Fe

atur

e na

me/

num

ber

Stat

us(A

, Hn,

Hh,

P,

N)

Qua

lity

(O, G

, M, D

) R

epre

sent

- at

ion

(I, R

, L)

Hyd

rolo

gica

l cha

ract

er,

gase

ous

char

acte

r, flo

w a

nd e

bula

tion

D

e B

retts

(Ter

race

s)

Dee

p flu

id fl

owin

g sp

ring

Mod

erat

eIro

n S

prin

gH

hD

LM

oder

ate

flow

s, c

alm

Dee

p flu

id fl

owin

g sp

ring

Sm

all

Sod

a B

ath

Hh

DL

Wea

k flo

ws,

cal

m

Sin

ter T

erra

ces

Larg

eIro

n Te

rrac

e H

hD

NS

trong

flow

s, c

alm

Te K

opia

S

team

-hea

ted

grou

ndw

ater

A

cid

Spr

ing

AG

RM

oder

ate

flow

; wea

k bu

bblin

g

< 0.

1mS

team

ing

grou

nd

Unn

amed

—E

xtin

ct h

ot s

prin

g H

nG

RS

team

ing

grou

nd, w

eak

stea

m

flow

D

eep

fluid

flow

ing

sprin

gs

Unn

amed

—N

W M

urph

y's

sprin

gs

AG

RW

eak

flow

s, w

eak

bubb

ling

Ste

am a

nd g

as u

pflo

ws

Unn

amed

—S

outh

ern

Fum

arol

es

AG

L>

5 fu

mar

oles

, stro

ng s

team

ing,

no

isy

Ste

am a

nd g

as u

pflo

ws

Unn

amed

—S

team

ing

Clif

fs

AG

NW

eak–

mod

erat

e st

eam

flow

s,

nois

y S

team

-hea

ted

mud

dy w

ater

M

ud G

eyse

r A

OI

Stro

ng fl

ows,

gey

ser e

rupt

s

5–8

m h

igh

Ste

am-h

eate

d m

uddy

wat

er

Mur

phy'

s To

mo

Nor

th

AG

RS

trong

flow

s, in

term

itten

t,

2–5

m h

igh

Ste

am-h

eate

d m

uddy

wat

er

Mur

phy'

s To

mo

Mid

dle

AG

RW

eak

stea

m fl

ow, w

eak

bubb

ling

< 1

m

Ste

am-h

eate

d m

uddy

wat

er

Mur

phy'

s To

mo

Sou

th

AG

RW

eak

stea

m fl

ow, w

eak

bubb

ling

< 1

m

Ste

am a

nd g

as e

mis

sion

Te

Kop

ia F

umar

ole

AO

IS

trong

ste

amflo

ws

c. 3

0 M

W

Ste

am-h

eate

d gr

ound

wat

ers

Unn

amed

—S

outh

ern

Lake

AO

NW

eak

flow

s, w

eak

bubb

ling

Ste

am-h

eate

d gr

ound

wat

ers

Unn

amed

—M

iddl

e La

keA

ON

Wea

k flo

ws,

wea

k bu

bblin

g

Ste

am-h

eate

d gr

ound

wat

ers

Unn

amed

—N

orth

ern

Lake

AG

NW

eak

flow

s, w

eak

bubb

ling

Tiki

tere

(inc

l. H

ell’s

Gat

e an

d R

uahi

ne)

Ste

am-h

eate

d m

ixed

wat

ers

Larg

eD

evil's

Bat

h A

GL

No

flow

s, w

eak

bubb

ling

Ste

am-h

eate

d m

ixed

wat

ers

Larg

eH

urut

ini

AG

RN

o ou

tflow

, wea

k bu

bblin

g

Ste

am-h

eate

d m

ixed

wat

ers

Larg

eS

team

ing

Clif

f A

GR

Mod

erat

e flo

w 1

L/s

, stro

ng

bubb

ling

1 m

S

team

-hea

ted

mix

ed w

ater

s M

oder

ate

Coo

king

Poo

l A

GR

Wea

k flo

w <

0.2

L/s

mod

erat

e bu

bblin

g 0.

2 m

S

team

-hea

ted

mix

ed w

ater

s La

rge

Sul

phur

Bat

h A

GR

Mod

erat

e flo

w 3

L/s

, bub

blin

g

< 0.

1 m

S

team

-hea

ted

mix

ed w

ater

s M

oder

ate

Mud

Vol

cano

A

GR

No

outfl

ow, w

eak

bubb

ling

<

1 m

hig

h D

eep

fluid

mix

ed g

roun

dwat

er

Mod

erat

eM

anup

irua

Spr

ing

AG

LO

utflo

w c

. 3 L

/s, w

eak

bubb

ling

Dee

p flu

id fl

owin

g sp

rings

M

oder

ate

Par

enga

reng

a S

prin

gsA

GL

Out

flow

s 1–

3 L/

s, g

entle

bub

blin

g

Page 52: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

�2 Cody—Geodiversity of geothermal fields

TA

BL

e A

2.6

b

Fiel

d na

me

Che

mic

al c

hara

cter

Ph

ysic

al c

hara

cter

Si

nter

dep

ositi

on

Com

men

ts

D

e B

retts

(Ter

race

s)

Alk

alin

e ch

lorid

e C

lear

, 80

C, p

H 7

.8

Wea

k am

orph

ous

alga

l sin

ters

S

prin

g de

stro

yed

by h

uman

act

ivity

, rem

ains

vi

sibl

e in

200

5.

Alk

alin

e ch

lorid

e C

lear

, 56

CA

lgal

sint

ers

Doe

s no

t exi

st in

200

5, d

estro

yed

by h

uman

ac

tivity

ear

ly 2

0th

cent

ury.

A

lkal

ine

chlo

ride

Cle

ar, c

. 50

CLa

rge

expa

nse

of a

lgal

and

iron

co

lour

ed s

inte

rs

No

long

er re

cogn

isab

le in

200

5, d

estro

yed

by

hum

an a

ctiv

ity b

y c.

190

0s.

Te K

opia

A

cid

sulp

hate

, pH

3.5

, no

odou

rs

Cle

ar, 8

0–93C

Iron

depo

sits

on

botto

m a

nd w

alls

Fl

ow a

nd te

mpe

ratu

re fl

uctu

atin

g; o

ld s

inte

r wal

l al

ong

north

sid

e.

Aci

d co

nden

sate

s C

rum

blin

g ho

t gro

und,

to 9

8C

Sili

ca s

inte

rs c

. 3 m

hig

h al

ong

wes

t si

deC

arbo

n da

ted

from

bas

e of

sin

ters

= 3

000

y ol

d al

kalin

e sp

ring.

A

lkal

ine

chlo

ride

Cle

ar, h

ot 6

0–67C

, pH

7.4

W

eak

silic

a in

ter-

grow

n w

ith g

reen

al

gae

Five

spr

ings

c. 4

0 m

apa

rt al

ong

terr

ace

abov

e co

ld s

tream

. A

cid

cond

ensa

tes

Hot

gro

und,

ste

amin

g 98C

, 1–3

MW

N

o de

posi

ts

Sca

ttere

d al

ong

faul

t sca

rp s

lope

s at

sou

th e

nd o

f Te

Kop

ia.

Aci

d co

nden

sate

s H

ot g

roun

d, s

team

ing

98C

, 1–3

MW

N

ilB

arre

n ho

t ste

ep s

lope

s ab

ove

lake

lets

.

Aci

dsu

lpha

teM

uddy

wat

er, h

ot 9

8C

, pH

3,

mud

flow

s N

il, b

ut d

oes

depo

sit a

mor

phou

s si

lica

mud

sG

eyse

r act

ive

wee

ks/m

onth

s ev

ery

few

yea

rs;

sam

e si

nce

AD

185

0s.

Aci

dsu

lpha

teM

ud p

ool,

98C

, occ

as. 2

–5 m

hig

h m

uds

Nil,

mud

eje

cta

Has

Hyd

roth

erm

al E

rupt

ions

occ

asio

nally

, with

m

ud e

ject

a <

5 m

aw

ay.

Aci

dsu

lpha

teM

ud p

ool,

98C

, occ

as. <

1 m

hig

h m

uds

Nil,

mud

eje

ctas

of a

mor

phou

s si

lica

Occ

asio

nally

has

min

or H

Es

and

ejec

ts m

ud.

Aci

dsu

lpha

teM

ud p

ool,

98C

, occ

as. <

1 m

hig

h m

uds

Nil

Dar

k gr

ey m

uds

in c

rate

r, so

uthe

rnm

ost o

f thr

ee.

Aci

d co

nden

sate

s La

rge

stea

m v

ent >

98

C, v

ery

nois

y N

ilN

oise

= >

20

m2 v

eloc

ity, v

ent c

. 5 m

dia

. with

ro

cks

in it

. A

cid

sulp

hate

, pH

3–4

Tu

rbid

lake

let,

45–5

5C

, wea

k bu

bblin

gN

il, p

rehi

stor

ical

sin

ters

aro

und

this

la

keO

utflo

ws

c. 3

L/s

to s

tream

flow

ing

wes

t acr

oss

padd

ock.

Aci

d su

lpha

te, p

H 4

.5

Turb

id la

kele

t, 45

–55

C, w

eak

bubb

ling

Nil

Flow

s c.

2 L

/s to

SW

and

join

s ab

ove

lake

let

outfl

ow s

tream

. A

cid

sulp

hate

, pH

2.5

–3.5

Tu

rbid

lake

let,

55–6

5C

, wea

k bu

bblin

gN

il, a

bund

ant s

ilica

resi

dues

alo

ng

east

sho

relin

e Fl

ows

sout

h in

to a

bove

lake

let.

Tiki

tere

(inc

l. H

ell’s

Gat

e an

d R

uahi

ne)

Aci

d su

lpha

te

Bro

wn

turb

id w

ater

, H2S

odo

ur, 5

1C

,pH

2.4

N

il, c

ollo

idal

sili

ca a

nd s

ulph

ur in

su

spen

sion

Bub

bles

of C

O2 a

ll ov

er, s

urfa

ce a

rea

110

m2 .

Aci

dsu

lpha

teTu

rbid

bro

wn

wat

er, H

2S o

dour

, 40

C,

pH 2

N

il, c

ollo

idal

sili

ca a

nd s

ulph

ur in

su

spen

sion

Bub

blin

g C

O2 a

ll ov

er, s

urfa

ce a

rea

350

m2 .

Aci

dsu

lpha

teTu

rbid

bro

wn

wat

er, H

2S o

dour

, 90

C,

pH 6

N

il, c

ollo

idal

sili

ca a

nd s

ulph

ur in

su

spen

sion

Stro

ng H

2S s

mel

l, ha

s ha

d H

E in

196

0s.

Aci

d su

lpha

te

Turb

id b

row

n w

ater

, 75

C, p

H 6

W

eak

spic

ular

sili

ca s

inte

rs

(mic

robi

al),

dark

gre

y P

ool c

. 3 m

dia

met

er.

Aci

d su

lpha

te

Turb

id fa

wny

gre

y, 4

7C

, pH

3

Nil,

col

loid

al s

ilica

and

sul

phur

in

susp

ensi

onP

ool c

. 15

m d

iam

eter

.

Aci

d co

nden

sate

s, p

yrite

enr

iche

d m

uds

Dar

k gr

ey s

ticky

mud

, 97

C in

ven

t N

il, m

uds

of s

ilica

col

oure

d bl

ack

with

py

rite

Mud

con

e c.

7 m

dia

. bas

e an

d c.

2 m

hig

h, e

ject

s m

ud 1

–2 m

hig

h.

Aci

d su

lpha

te b

icar

bona

te c

hlor

ide

Slig

ht m

ilky

turb

id, 4

5C

, pH

6.5

N

il, s

ulph

ur d

epos

its

Spr

ings

em

erge

at b

ase

of c

liff,

supp

ly p

ublic

ba

thin

g po

ols.

A

lkal

ine

chlo

ride

bica

rbon

ate

Cle

ar, 6

5–90C

, pH

7

Den

se s

ilica

mar

gins

and

wal

ls

Spr

ings

at s

hore

line

of L

ake

Rot

oiti;

som

etim

es

subm

erge

d.

Page 53: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

�3DOC Research & Development Series 281

TA

BL

e A

2.7

a

Fiel

d na

me

Type

of f

eatu

re

Size

Fe

atur

e na

me/

num

ber

Stat

us(A

, Hn,

Hh,

P,

N)

Qua

lity

(O, G

, M, D

) R

epre

sent

- at

ion

(I, R

, L)

Hyd

rolo

gica

l cha

ract

er,

gase

ous

char

acte

r, flo

w a

nd e

bula

tion

Tiki

tere

(con

tinue

d)

Dee

p flu

id fl

owin

g sp

rings

M

oder

ate

Otu

tara

ra S

prin

gs

AG

LO

utflo

ws

1–3

L/s,

gen

tle b

ubbl

ing

Fum

arol

eS

trong

Rua

hine

Cra

ter

AG

RW

eak

outfl

ow <

0.5

L/s

, stro

ng

boili

ngS

olfa

tara

Stro

ngU

nnam

ed (i

n H

ell's

Gat

e)

AG

RN

o ou

tflow

s, s

trong

ste

am/g

as

flow

s To

kaan

u

Hip

aua

Ste

amin

g fu

mar

oles

S

mal

l/m

oder

ate

Unn

amed

AG

RN

il, w

eak

to m

oder

ate

To

kaan

u D

eep

fluid

flow

ing

bore

S

mal

lH

ealy

Bor

e N

o. 3

A

MR

Wea

k, m

oder

ate

< 0.

5 m

Dee

p flu

id fl

owin

g sp

ring

Mod

erat

eH

oani

A, B

A

GR

Wea

k, c

alm

Dee

p flu

id fl

owin

g sp

ring

Mod

erat

eM

ataw

ai

AG

NW

eak,

cal

m/g

eyse

r 2 m

Dee

p flu

id fl

owin

g sp

ring

Larg

eP

aure

niA

GR

Mod

erat

e, c

alm

D

eep

fluid

flow

ing

sprin

g M

oder

ate

Taka

rea

5, 6

A

GR

Wea

k, c

alm

D

eep

fluid

flow

ing

sprin

g S

mal

lTa

umat

apuh

ipuh

i A

MN

Wea

k, g

eyse

r < 2

m

Dee

p flu

id fl

owin

g sp

ring

Sm

all

Te K

oro

a Te

Poi

nga

Hh

DL

Nil,

cal

m

Mix

ed d

eep

fluid

/gro

undw

ater

M

oder

ate

Tere

tere

H

nG

LN

il, c

alm

D

eep

fluid

flow

ing

sprin

g M

oder

ate

Tuw

hare

A

GR

Wea

k/ni

l, ca

lm

W

aihi

D

eep

fluid

flow

ing

sprin

g S

mal

lU

nnam

ed, s

prin

gs 3

5–48

A

G, M

0

Mod

erat

e to

wea

k, c

alm

to w

eak

Tong

ariro

Ket

etah

i A

cid

pool

s M

oder

ate

Unn

amed

AG

RN

onflo

win

g, s

trong

boi

ling

< 1

m

high

Fum

arol

esS

trong

Unn

amed

AG

RW

eak

flow

s, c

onst

ant b

oilin

g

< 2

m h

igh

War

m s

tream

La

rge

Man

gatip

ua S

tream

A

GR

Stro

ng fl

owin

g

Hot

bar

ren

grou

nd

Larg

eU

nnam

edA

GL

No

outfl

ows,

his

sing

ste

am

emis

sion

sA

cid

sprin

gsM

oder

ate

Unn

amed

AG

LW

eak

flow

s, c

onst

ant b

oilin

g

< 1

m h

igh

Wai

kite

Val

ley

Dee

p flu

id fl

owin

g sp

ring

Sm

all

Bat

hs S

uppl

y sp

ring,

WE

102

1,

S55

98A

ML

Stro

ng, w

eak

< 0.

3 m

Dee

p flu

id fl

owin

g sp

ring

Sm

all

Cal

cite

Spr

ing,

WE

103

0, S

5585

H

nD

N (D

) W

eak,

wea

k <

0.3

m

Dee

p flu

id fl

owin

g sp

ring

Larg

eH

T G

eyse

r, W

E 1

001,

S56

51

Hn,

A

ON

Stro

ng, w

eak

< 0.

3 m

Dee

p flu

id fl

owin

g sp

ring

Larg

eM

anur

oa, W

E 1

031,

S55

86

AO

IS

trong

, stro

ng <

2 m

Dee

p flu

id fl

owin

g sp

ring

Larg

eN

orth

Gul

ly, W

E 1

026,

S55

80

AO

NS

trong

, wea

k <

0.2

m

Page 54: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

�4 Cody—Geodiversity of geothermal fields

TA

BL

e A

2.7

b

Fiel

d na

me

Che

mic

al c

hara

cter

Ph

ysic

al c

hara

cter

Si

nter

dep

ositi

on

Com

men

ts

Tiki

tere

(con

tinue

d)

Alk

alin

e ch

lorid

e bi

carb

onat

e C

lear

, 70–

88C

, pH

7

Nil,

col

loid

al s

ilica

and

sul

phur

in

susp

ensi

onS

prin

gs in

pea

ty g

roun

d, im

poun

ded

and

leak

age

flow

into

gro

und.

A

cid

sulp

hate

con

dens

ates

Tu

rbid

gre

y, 9

7C

, pH

2.7

N

il, c

ollo

idal

sili

ca a

nd s

ulph

ur in

su

spen

sion

HE

cra

ter c

. 35

m d

ia. w

ith p

ower

ful f

umar

olic

ac

tivity

. S

ulph

ur d

epos

ition

, aci

dic

Gre

y st

eam

ing

exfo

liatin

g gr

ound

S

ilica

resi

dues

, exf

olia

ting

grou

nd,

sulp

hur

Are

a c.

250

0 m

2 with

sul

phur

mou

nds

and

silic

a cr

usts

.To

kaan

u

Hip

aua

Aci

d su

lpha

te c

onde

nsat

es

Ste

amin

g ho

t alte

red

grou

nd,

fum

arol

esN

ilH

illsl

opes

hot

and

dec

ayin

g, u

nsta

ble

due

to

fum

arol

ic a

ctiv

ity.

To

kaan

u A

lkal

ine

chlo

ride

Hot

cle

ar fl

owin

g bo

re

Ext

ensi

ve te

rrac

e, a

mor

phou

s si

lica,

iro

n ox

ides

W

ell d

rille

d in

194

0s, n

ow c

onst

ant d

isch

arge

, iro

n co

lour

ed s

inte

rs.

Alk

alin

e ch

lorid

e H

ot c

lear

Act

ive

abun

dant

alg

al, a

mor

phou

s si

lica

Bro

ad a

rea

of s

inte

r dep

ositi

on a

roun

d po

ol.

Alk

alin

ech

lorid

e H

ot c

lear

, exc

hang

e of

func

tion

com

mon

Act

ive

abun

dant

den

se a

mor

phou

s si

lica

Som

etim

es g

eyse

rs, s

omet

imes

rece

ives

war

m

inflo

w fr

om H

oani

. A

lkal

ine

chlo

ride

Hot

gre

eny

trans

luce

ntN

ilP

iped

to s

uppl

y ba

thin

g po

ols.

A

lkal

ine

chlo

ride

Hot

cle

ar

Min

or d

ense

am

orph

ous

silic

a, a

lgal

In

terc

onne

cted

with

dra

ins

to s

uppl

y ba

ths.

A

lkal

ine

chlo

ride

Hot

cle

ar

Act

ive

min

or, a

mor

phou

s si

lica

Act

ive

geys

er b

ut m

uch

wea

ker t

han

hist

oric

ally

, la

nd d

rain

age/

wel

ls?

Alk

alin

e ch

lorid

e H

ot c

lear

N

il, d

ense

am

orph

ous

silic

a H

isto

rical

ly o

verfl

owed

, now

no

flow

s du

e to

land

dr

aina

ge/w

ell u

se?

Mix

ed n

eutra

l gro

undw

ater

/chl

orid

e C

old

turb

id d

ark

brow

n (ta

nnin

s?)

Nil,

ext

ensi

ve s

ilica

terr

ace

surr

ound

s So

met

imes

eru

pts,

usu

ally

col

d an

d ca

lm, n

o flo

ws.

A

lkal

ine

chlo

ride

Hot

cle

ar

Wea

k, d

ense

am

orph

ous

silic

a O

ccas

iona

lly o

verfl

ows.

Wai

hi

Alk

alin

e bi

carb

onat

e ch

lorid

e,pH

6.6

–7.9

H

ot c

lear

W

eak

rims,

cru

sts

of a

mor

phou

s si

lica

Man

y sm

all s

prin

gs a

long

lake

edg

e, m

ostly

m

odifi

ed to

sup

ply

bath

s. S

prin

g at

sou

ther

nmos

t en

d of

vill

age

shor

elin

e na

med

Wha

kata

ra.

Tong

ariro

Ket

etah

i A

cid

sulp

hate

Tu

rbid

dar

k gr

ey, 9

8C

, pH

2

Nil

Pyr

ite d

epos

its; d

ark

grey

mud

s, n

o ou

tflow

s.

Aci

d su

lpha

te

Turb

id d

ark

grey

, 138C

, pH

2

Nil

Som

e ar

e ‘g

eyse

ring’

ste

ady

stat

e ej

ectio

n of

w

ater

s <

2 m

hig

h.

Aci

d su

lpha

te

Turb

id d

ark

grey

, 54

C, p

H 2

N

ilC

olle

cted

out

flow

from

all

fum

arol

es a

nd a

cid

sprin

gs.

Aci

d su

lpha

te

Hot

gro

und,

bar

ren,

sal

t dep

osits

N

ilS

team

-hea

ted

grou

nd w

ith a

lum

sal

t dep

osits

.

Aci

d su

lpha

te

Turb

id d

ark

grey

, < 9

8C

, pH

2

Nil

Con

dens

ates

and

rain

wat

ers

colle

ct in

poo

ls, p

yrite

ric

h bl

ack

sedi

men

ts.

Wai

kite

Val

ley

Hot

cle

ar

Sili

casi

nter

rim

s an

d ou

tflow

cru

sts

Spr

ing

encl

osed

by

conc

rete

wal

ls to

su

pply

sw

imm

ing

pool

H

ot, c

lear

Hot

milk

y tu

rbid

P

ure

calc

ite s

inte

rs

Cea

sed

flow

ing

in c

. 199

5, o

nly

pure

ca

lcite

sin

ters

in T

VZ

Hot

, milk

y tu

rbid

Hot

cle

ar

Mix

ed s

ilica

and

cal

cite

rim

s, c

rust

s C

reat

ed c

. 198

4, g

eyse

red

c. 8

–10

m

high

freq

uent

ly u

ntil

c. 1

986

Hot

, cle

ar.

Hot

clea

rM

assi

ve d

ense

am

orph

ous

silic

a m

argi

nsS

pect

acul

ar b

oilin

g sp

ring

and

sint

ers,

sa

me

as in

pho

to o

f 189

1 H

ot, c

lear

.

Alk

alin

e ch

lorid

e bi

carb

onat

e, p

H 8

H

ot m

ilky

blue

turb

id

Abu

ndan

t mix

ed a

mor

phou

s si

lica

and

calc

iteB

oilin

g flo

win

g sp

ring,

in 2

003

enla

rged

ven

t and

in

crea

sed

outfl

ows.

Page 55: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

��DOC Research & Development Series 281

TA

BL

e A

2.8

a

Fiel

d na

me

Type

of f

eatu

re

Size

Fe

atur

e na

me/

num

ber

Stat

us(A

, Hn,

Hh,

P,

N)

Qua

lity

(O, G

, M, D

) R

epre

sent

- at

ion

(I, R

, L)

Hyd

rolo

gica

l cha

ract

er,

gase

ous

char

acte

r, flo

w a

nd e

bula

tion

Wai

kite

Val

ley

(con

t’d)

Dee

pflu

id fl

owin

g sp

ring

Mod

erat

eS

cald

ing

Spr

ing,

WE

100

8,

S56

44A

GR

Wea

k, w

eak

< 0.

1 m

Dee

p flu

id fl

owin

g sp

ring

Mod

erat

eS

quas

h S

uppl

y sp

ring,

WE

102

2,

S55

97A

ML

Stro

ng, w

eak

< 0.

3 m

Dee

p flu

id m

ixed

gro

undw

ater

La

rge

Sub

mer

ged

sprin

g, W

E 1

007,

S

5632

AG

LS

trong

,cal

m

Dee

p flu

id m

ixed

gro

undw

ater

M

oder

ate

War

m L

akel

et s

prin

g, W

E 1

005,

S

5638

AG

RS

trong

flow

, cal

m

Ste

amin

g ba

rren

gro

und

Larg

eU

nnam

edA

GL

Nil

flow

, ste

amin

g hi

ssin

g gr

ound

D

eep

fluid

mix

ed g

roun

dwat

er

Larg

eU

nnam

ed—

new

ly fo

rmed

A

GR

Stro

ng fl

ow, c

alm

Dee

p flu

id g

as g

roun

dwat

er

Larg

eU

nnam

ed—

HE

cra

ter

PG

LN

o flo

ws,

cal

m

Dee

p flu

id fl

owin

g sp

ring

Larg

eU

nnam

ed—

cold

and

dry

spr

ing

PG

RN

o flo

ws,

cal

m

Dee

p flu

id fl

owin

g sp

ring

Larg

eU

nnam

ed—

exte

nsiv

e si

lica

flats

H

hD

LN

o flo

ws,

cal

m

Wai

man

gu(in

cl. R

otom

ahan

a)

Dee

p flu

id fl

owin

g sp

ring

Sm

all

Bird

's N

est S

prin

gs

AG

RM

oder

ate

flow

s, b

oilin

g, c

. 0.5

m

high

Ste

am u

pflo

ws

Larg

eB

lack

Cra

ter

AG

NS

team

flow

mod

erat

e, c

alm

Mix

ed g

roun

dwat

er d

eep

fluid

s La

rge

Fryi

ng P

an L

ake

AO

IS

trong

out

flow

s, w

eak

bubb

ling

<

0.1

m

Mix

ed g

roun

dwat

er d

eep

fluid

s La

rge

Infe

rno

AO

IS

trong

out

flow

s, w

eak

bubb

ling

<

0.1

m

Dee

p flu

id fl

owin

g sp

ring

Larg

eIo

dine

Spr

ing

AO

NS

trong

flow

s, g

eyse

r c. 2

m h

igh

Dee

p flu

id fl

owin

g sp

ring

Sm

all

Unn

amed

AO

NS

mal

l flo

ws,

boi

ling

sprin

g

Dee

p flu

id fl

owin

g sp

ring

Mod

erat

eTa

haro

to G

eyse

r A

GN

Mod

erat

e flo

w, g

eyse

r, c.

3 m

hi

ghS

team

ing

grou

nd

Stro

ngC

athe

dral

Roc

ks; G

ibra

ltar R

ock

AG

R

No

flow

, stro

ng s

team

flow

s

Dee

p flu

id fl

owin

g sp

ring

Mod

erat

eW

arbr

ick'

s Te

rrac

e A

MN

Mod

erat

e flo

w, b

oilin

g <

0.5

m

high

Dee

p flu

id fl

owin

g sp

ring

Stro

ngH

ole

in T

he W

all G

eyse

r A

ON

Stro

ng o

verfl

ows,

gey

sers

c.

2 m

hig

h D

eep

fluid

flow

ing

sprin

g S

trong

Pin

k Te

rrac

e B

ay G

eyse

r A

ON

Stro

ng o

verfl

ows,

gey

sers

c.

10

m h

igh

Wai

otap

uD

eep

fluid

flow

ing

sprin

g M

oder

ate

Bla

ck S

prin

g, S

49

AG

LM

oder

ate

flow

, wea

k <

0.1

m

Dee

p flu

id fl

owin

g sp

ring

Larg

eC

ham

pagn

e P

ool,

S 6

4 A

OI

Stro

ng fl

ow, w

eak

< 0.

05 m

Dee

p flu

id fl

owin

g sp

ring

Sm

all

Lady

Kno

x G

eyse

r, S

52

AM

RS

trong

flow

, gey

ser d

aily

8–1

2 m

Dee

p flu

id a

nd g

roun

dwat

er

Sm

all

NW

Spr

ing,

S 6

6 A

GL

Wea

k flo

w, g

eyse

r < 2

m

Dee

p flu

id fl

owin

g sp

ring

Larg

eP

ost M

istre

ss, S

20

AO

RM

oder

ate

flow

, wea

k <

0.1

m

Page 56: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

�� Cody—Geodiversity of geothermal fields

TA

BL

e A

2.8

b

Fiel

d na

me

Che

mic

al c

hara

cter

Ph

ysic

al c

hara

cter

Si

nter

dep

ositi

on

Com

men

ts

Wai

kite

Val

ley

(con

t’d)

Alk

alin

e ch

lorid

e bi

carb

onat

e pH

8

Hot

cle

ar

Wea

k m

argi

ns, o

utflo

ws,

am

orph

ous

silic

a S

olita

ry s

prin

g in

farm

land

on

valle

y flo

or, e

nclo

sed

by ra

iling

fenc

e.

Alk

alin

e ch

lorid

e bi

carb

onat

e pH

8

Hot

cle

ar

Wea

k m

argi

n rim

s, a

mor

phou

s si

lica

Enc

lose

dby

con

cret

e w

alls

to s

uppl

y sq

uash

clu

b.

Alk

alin

e ch

lorid

e bi

carb

onat

e pH

8

War

m c

lear

N

ilU

pflo

ws

into

bed

of c

old

stre

am fr

om la

rge

shaf

t ve

nt.

Alk

alin

e ch

lorid

e bi

carb

onat

e pH

8

War

m c

lear

N

ilS

prin

gs a

t bas

e of

clif

f flo

win

g in

to w

arm

lake

.

Aci

d su

lpha

te c

onde

nsat

es

Dry

and

hot

bar

ren

grou

nd

Nil

Ste

amin

g ba

rren

gro

und

at b

ase

of c

liffs

. M

ixed

bic

arbo

nate

chl

orid

e an

d fre

shw

ater

W

arm

cle

ar

Abu

ndan

t am

orph

ous

alga

l sili

ca a

nd

alga

eB

egan

form

ing

c. 1

995,

rapi

dly

expa

ndin

g al

gal

sint

er d

epos

its.

No

wat

er, d

ry

Col

d, d

ry

Nil

5 H

E c

rate

rs fo

rmed

AD

132

0?

No

wat

er, d

ry

Col

d, d

ry

Mas

sive

terr

ace,

pre

hist

oric

al

Onc

e ex

tens

ive

silic

a te

rrace

form

atio

n fil

ling

gully

an

d do

wns

lope

. N

o w

ater

, dry

C

old,

dry

M

ixed

sin

ters

, lar

ge e

xpan

se,

preh

isto

rical

Onc

e ex

tens

ive

flat-l

ying

sili

ca s

inte

rs a

cros

s va

lley

floor

. W

aim

angu

(incl

. Rot

omah

ana)

A

lkal

ine

chlo

ride

Boi

ling,

cle

ar, 9

8C

, pH

7.8

A

bund

ant a

mor

phou

s si

lica,

iron

co

lour

edA

ctiv

ely

grow

ing

and

sint

ers

over

whe

lmed

foot

path

by

199

0s.

Aci

d su

lpha

te c

onde

nsat

es

Hot

ste

amin

g gr

ound

, bar

ren

N

ilFo

rmed

10

June

188

6, s

team

ing

alte

red

hot

grou

nd in

cra

ter.

Aci

d su

lpha

te c

hlor

ide

Cle

ar g

reen

hot

lake

, 55–

70C

, pH

5

Nil

Flow

s ar

e co

uple

d in

vers

ely

to In

fern

o C

rate

r flo

ws,

cyc

le c

. 6 w

eeks

. A

cid

sulp

hate

chl

orid

e Tu

rbid

blu

e-gr

ey h

ot w

arm

lake

, 55

C,

pH 4

D

ense

am

orph

ous

silic

a rim

s an

d m

uds

Form

ed 1

0 Ju

ne 1

886,

flow

s cy

clic

al.

Alk

alin

e ch

lorid

e C

lear

, 98

C, p

H 8

.5

Abu

ndan

t am

orph

ous

silic

a an

d iro

n ox

ides

Rap

idly

form

ing

larg

e si

nter

terr

aces

.

Alk

alin

e ch

lorid

e C

lear

, 98

C, p

H 8

A

mor

phou

s si

lica

and

dens

e al

gae

On

wes

tern

sho

re o

f Fry

ing

Pan

Lak

e.

Alk

alin

e ch

lorid

e C

lear

, 98

C, p

H 8

Iro

n ox

ides

and

am

orph

ous

silic

a O

n so

uth

shor

e of

Fry

ing

Pan

Lak

e, v

ery

activ

e in

19

80s,

now

err

atic

. A

cid

cond

ensa

tes

Mos

sy a

nd b

arre

n gr

ound

, 55–

95C

Nil

Hill

side

s al

ong

north

sid

e of

Fry

ing

Pan

Lak

e,

alte

red

hot c

liffs

. A

lkal

ine

chlo

ride

Cle

ar, 9

8C

, pH

8, s

tead

y bo

iling

A

bund

ant a

lgal

am

orph

ous

silic

a an

d iro

n co

lour

s W

as s

andb

agge

d in

189

0s b

ut te

rrac

es o

f sin

ter

have

ove

rgro

wn

thes

e.

Alk

alin

ech

lorid

e C

lear

, 98

C, p

H 8

, eru

pts

ever

y

c. 1

0 m

inut

es

Den

se a

mor

phou

s si

lica

rims

and

wal

l O

n cl

iff ju

st a

bove

lake

leve

l in

Rot

omah

ana.

Alk

alin

ech

lorid

e C

lear

, 98

C, p

H 7

.8, e

rupt

s ev

ery

few

ho

urs

Den

se a

mor

phou

s si

lica

surr

ound

s O

n N

W s

hore

of R

otom

ahan

a, in

Pin

k Te

rrac

e B

ay.

Wai

otap

uN

eutra

l chl

orid

e, p

H 7

.2

Hot

, cle

ar

Bla

ck a

mor

phou

s si

lica

crus

ts, r

ims,

sp

icul

esS

picu

lar m

icro

bial

sin

ter m

argi

ns, p

yrite

bla

cken

ed.

Chl

orid

e bi

carb

onat

e, p

H 5

.4

Hot

, tra

nslu

cent

gre

en-y

ello

w

Mas

sive

vas

t dep

osits

, am

orph

ous

silic

a, m

etal

s O

utst

andi

ng s

ole

rem

aini

ng N

Z la

rge

silic

a te

rrac

e,

antim

ony/

tung

sten

N

eutra

l chl

orid

e, p

H 7

.4

Hot

, cle

ar, s

oapy

sm

ells

Min

or s

oapy

ste

arat

e-si

licat

e m

iner

al

Gey

ser w

ith a

rtific

ial c

one,

soa

ped

daily

at 1

015

hour

s.N

eutra

l chl

orid

e, p

H 6

.8

Hot

, gre

y tu

rbid

D

ark

grey

am

orph

ous

silic

a an

d py

rite

Spo

radi

c ge

yser

act

ion,

dar

k gr

ey s

inte

r sur

roun

ds.

Alk

alin

e ch

lorid

e, p

H 8

.0

Hot

, cle

ar

Min

or d

ense

, am

orph

ous

silic

a rim

s,

crus

ts

In g

ully

on

wes

t sid

e of

SH

5, c

. 8 m

dia

met

er s

prin

g.

Page 57: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

��DOC Research & Development Series 281

TA

BL

e A

2.9

a

Fiel

d na

me

Type

of f

eatu

re

Size

Fe

atur

e na

me/

num

ber

Stat

us(A

, Hn,

Hh,

P,

N)

Qua

lity

(O, G

, M, D

) R

epre

sent

- at

ion

(I, R

, L)

Hyd

rolo

gica

l cha

ract

er,

gase

ous

char

acte

r, flo

w a

nd e

bula

tion

Wai

otap

u (c

ont’d

) D

eep

fluid

and

gro

undw

ater

La

rge

Ven

us B

ath,

S 4

8 A

GL

Wea

k flo

w, c

alm

D

eep

fluid

flow

ing

sprin

g S

mal

lW

aiot

apu

Gey

ser;

S 7

0 A

GR

Mod

erat

e flo

w, g

eyse

r 2.5

m

Ste

am h

eate

d m

udpo

ol

Larg

eU

nnam

ed—

larg

e m

ud p

ool o

n Lo

op R

oad

AO

NN

o flo

w, m

ud s

plas

hes

< 2

m

Ste

am h

eate

d gr

ound

wat

ers

Sm

all

Hak

aret

eke

geys

er, S

49N

A

GN

Wea

k flo

ws,

mod

erat

e, <

2 m

hi

ghW

aira

kei (

excl

. Tau

hara

-Ta

upo)

W

aira

kei G

eyse

r Val

ley

Ste

amin

g fu

mar

ole

Larg

eK

arap

iti F

umar

ole

Hh

DI

Ste

am fl

ow, s

trong

, 38

MW

Turb

id la

ke

Larg

eA

lum

Lak

e A

GN

Mod

erat

e flo

w, w

eak

bubb

ling

Dee

p flu

id fl

owin

g sp

ring

Larg

eG

reat

Wai

rake

i Gey

ser,

S 5

9 H

hD

IS

trong

flow

, gey

ser 3

0 m

hig

h

Dee

p flu

id fl

owin

g sp

ring

Larg

eC

ham

pagn

e P

ool,

S 9

7H

hD

IS

trong

flow

, gey

ser 2

m h

igh

Dee

p flu

id fl

owin

g sp

ring

Larg

eW

aita

ngi P

ool

Hh

DR

Stro

ng fl

ow, b

oilin

g 1

m h

igh

Dee

p flu

id fl

owin

g sp

ring

Larg

eD

rago

n's

Mou

th G

eyse

r, S

38

Hh

DN

Stro

ng fl

ow, g

eyse

r 5 m

hig

h

Dee

p flu

id fl

owin

g sp

ring

Larg

eO

pal P

ool

Hh

DR

Stro

ng fl

ow, b

oilin

g flo

win

g sp

ring

Dee

p flu

id fl

owin

g sp

ring

Larg

eD

anci

ng R

ock

Gey

ser,

S 1

90

Hh

DN

Stro

ng fl

ows,

gey

ser

Dee

p flu

id fl

owin

g sp

ring

Larg

eR

ainb

ow P

ool,

S 1

97

Hh

DR

Stro

ng o

utflo

w, b

oilin

g sp

ring

Dee

p flu

id fl

owin

g sp

ring

Larg

eO

cean

Gey

ser,

S 1

98

Hh

DN

Stro

ng fl

ows,

gey

ser

Sin

terT

erra

ce

Larg

eTu

huat

ahia

Terr

ace

Hh

DN

Wet

,cal

m

Ste

amin

g m

ud p

ool

Larg

eD

evil's

Inkp

ot, o

r Bla

ck G

eyse

r,

S 3

7 A

ML

No

outfl

ow, s

team

ing

mud

Dee

p flu

id fl

owin

g sp

ring

Larg

eK

uiw

ai P

ools

, S 4

8–51

H

hD

RM

oder

ate

flow

s, b

ubbl

ing

mod

erat

ely

Dee

p flu

id fl

owin

g sp

ring

Larg

eD

onke

y E

ngin

e G

eyse

r, S

54

Hh

DR

Stro

ng fl

ows,

gey

ser,

3 m

hig

h

Dee

p flu

id fl

owin

g sp

ring

Larg

eH

aem

atite

Gey

ser o

r Her

on's

N

est,

S 6

5 H

hD

RS

trong

flow

s, g

eyse

r, 3–

5 m

hig

h

Ste

am h

eate

d m

ud

Larg

eP

ackh

orse

Gey

ser,

S 8

3 A

ML

No

flow

, mud

pool

, stro

ng

spla

shin

gD

eep

fluid

flow

ing

sprin

g La

rge

Eag

le's

Nes

t Gey

ser,

S 1

31

Hh

DN

Stro

ng fl

ows,

gey

ser 1

0 m

hig

h

Dee

p flu

id fl

owin

g sp

ring

Larg

eD

evil's

Pun

ch B

owl,

S 1

85

Hh

DN

Stro

ng fl

ows,

hot

spr

ing

Dee

p flu

id fl

owin

g sp

ring

Larg

eP

rince

of W

ales

Fea

ther

s G

eyse

r, S

188

H

hD

NS

trong

flow

s, g

eyse

r 18–

25 m

hi

ghD

eep

fluid

flow

ing

sprin

g La

rge

Nga

Mah

anga

or T

win

s G

eyse

r, S

190

Hh

DN

Stro

ng fl

ows,

gey

ser 1

5 m

hig

h

Page 58: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

�� Cody—Geodiversity of geothermal fields

TA

BL

e A

2.9

b

Fiel

d na

me

Che

mic

al c

hara

cter

Ph

ysic

al c

hara

cter

Si

nter

dep

ositi

on

Com

men

ts

Wai

otap

u (c

ont’d

) A

cid

sulp

hate

chl

orid

e, p

H 4

.0

Hot

slig

ht g

rey

turb

id

Min

or c

ollo

idal

sili

ca s

inte

rs

Onc

e us

ed fo

r bat

h, n

ow to

o ho

t. N

eutra

l chl

orid

e, p

H 7

.5

Hot

cle

ar

Den

se a

mor

phou

s si

lica

apro

n Er

upts

eve

ry 2

–4 h

ours

< 2

m h

igh

for 1

0–15

min

utes

. A

cid

sulp

hate

con

dens

ates

H

ot m

uddy

turb

id

Nil

In e

arly

20t

h ce

ntur

y w

as m

ud c

one

c. 3

m h

igh

and

c. 1

0 m

dia

. A

cid

sulp

hate

, pH

3.5

H

ot c

lear

A

bund

ant i

ron-

colo

ured

am

orph

ous

silic

a, s

picu

les

Spi

cula

r mic

robi

al s

inte

rs w

ith re

d-bl

ack

iron

colo

urin

g, o

nly

NZ

clea

r aci

d w

ater

gey

ser.

Wai

rake

i (ex

cl. T

auha

ra-

Taup

o)

Wai

rake

i Gey

ser V

alle

y A

cid

cond

ensa

tes

Pow

erfu

l fum

arol

e, v

ery

nois

y N

ilG

reat

ly re

duce

d st

eam

flow

s si

nce

late

195

0s,

ceas

ed b

y ea

rly 1

970s

. A

cid

sulp

hate

W

arm

turb

id

Nil

Ste

am-h

eate

d w

ater

s in

HE

cra

ter,

outfl

ows

into

st

ream

; eru

pted

200

1.

Alk

alin

e ch

lorid

e C

lear

boi

ling

geys

erA

bund

ant a

mor

phou

s si

lica

Cea

sed

all a

ctiv

ity in

late

195

0s, n

ow s

team

ing

and

crum

blin

g aw

ay.

Alk

alin

e ch

lorid

e C

lear

boi

ling

sprin

gA

bund

ant a

mor

phou

s si

lica

Cea

sed

flow

ing

in la

te 1

950s

, by

2005

wat

er le

vel

c. 3

0 m

bel

ow o

verfl

ow.

Alk

alin

e ch

lorid

e bi

carb

onat

e C

lear

boi

ling

sprin

g A

bund

ant a

mor

phou

s si

lica

Cea

sed

all a

ctiv

ity a

nd d

ried

up in

late

195

0s, n

ow

badl

y de

caye

d.

Alk

alin

e ch

lorid

e C

lear

boi

ling

sprin

g A

mor

phou

s si

lica

Cea

sed

all a

ctiv

ity a

nd d

ried

up in

late

195

0s, n

ow

badl

y de

caye

d.

Alk

alin

e ch

lorid

e C

lear

boi

ling

sprin

g A

mor

phou

s si

lica

Cea

sed

all a

ctiv

ity a

nd d

ried

up in

late

195

0s, n

ow

badl

y de

caye

d.

Alk

alin

e ch

lorid

e C

lear

boi

ling

geys

er

Am

orph

ous

silic

a C

ease

d al

l act

ivity

and

drie

d up

in la

te 1

950s

, now

ba

dly

deca

yed.

A

lkal

ine

chlo

ride

Cle

ar b

oilin

g sp

ring

Am

orph

ous

silic

a C

ease

d al

l act

ivity

and

drie

d up

in la

te 1

950s

, now

ba

dly

deca

yed.

A

lkal

ine

chlo

ride

Cle

ar b

oilin

g ge

yser

A

mor

phou

s si

lica

Cea

sed

all a

ctiv

ity a

nd d

ried

up in

late

195

0s, n

ow

badl

y de

caye

d.

Alk

alin

e ch

lorid

e S

ilica

terr

ace

dow

n sl

ope

to s

tream

A

bund

ant a

mor

phou

s si

lica

Cea

sed

depo

sitin

g si

nter

s w

hen

Cha

mpa

gne

Poo

l st

oppe

d flo

win

g.

Aci

d su

lpha

te c

onde

nsat

es

Dar

k gr

ey m

udpo

ol, b

ubbl

ing

,1 m

hi

ghN

ilA

bout

15

m u

p hi

llsid

e on

eas

t sid

e of

low

er v

alle

y.

Alk

alin

e ch

lorid

e C

lear

hot

spr

ing

Am

orph

ous

silic

a

Drie

d up

by

early

196

0s.

Alk

alin

e ch

lorid

e H

ot c

lear

spr

ing

Abu

ndan

t am

orph

ous

silic

a C

ease

d al

l gey

serin

g an

d flo

ws

in la

te 1

950s

, now

st

eam

ing/

deca

ying

. A

lkal

ine

chlo

ride

Hot

boi

ling

geys

er

Am

orph

ous

silic

a an

d br

ick

red

colo

urat

ions

Now

col

d an

d de

cayi

ng, c

ease

d pl

ayin

g in

late

19

50s.

Aci

d su

lpha

te m

uds

Mud

dy p

ool

Nil

Kno

wn

to h

ave

man

y m

onth

s of

vig

orou

s m

ud

erup

tions

in h

isto

ric ti

me.

A

lkal

ine

chlo

ride

Cle

ar b

oilin

g sp

ring

Am

orph

ous

silic

a D

ried

up b

y ea

rly 1

960s

, war

m a

nd b

adly

dec

ayed

no

w.

Alk

alin

e ch

lorid

e C

lear

boi

ling

sprin

g A

mor

phou

s si

lica

Drie

d up

by

late

1950

s, n

ow d

ecay

ed.

Alk

alin

e ch

lorid

e C

lear

boi

ling

geys

erA

bund

ant a

mor

phou

s si

lica

Als

o th

rew

wat

ers

side

way

s fo

r 15

m, h

ad a

m

ultip

le v

ent.

Alk

alin

e ch

lorid

e C

lear

boi

ling

geys

erA

bund

ant a

mor

phou

s si

lica

Pad

dle

Whe

el a

nd D

anci

ng R

ock

Gey

sers

bot

h m

ake

up th

e Tw

ins.

Page 59: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

��DOC Research & Development Series 281

TA

BL

e A

2.1

0a

Fiel

d na

me

Type

of f

eatu

re

Size

Fe

atur

e na

me/

num

ber

Stat

us(A

, Hn,

Hh,

P,

N)

Qua

lity

(O, G

, M, D

) R

epre

sent

- at

ion

(I, R

, L)

Hyd

rolo

gica

l cha

ract

er,

gase

ous

char

acte

r, flo

w a

nd e

bula

tion

W

aira

kei G

eyse

r Val

ley

(c

ont’d

) D

eep

fluid

flow

ing

sprin

g La

rge

Brid

al V

eil,

Cas

cade

s or

Red

C

oral

, S 1

99

Hh

DR

Stro

ng fl

ows,

gey

ser 7

m h

igh

Dee

p flu

id fl

owin

g sp

ring

Larg

eTe

Rek

erek

e o

Ron

goka

ko,

S 2

05

Hh

DR

Stro

ng fl

ows,

con

tinua

l spl

ashe

r

W

aior

a V

alle

y S

team

hea

ted

grou

ndw

ater

s La

rge

Piro

riror

i or B

lue

Lake

H

hD

LS

trong

flow

ing,

bub

blin

g m

oder

atel

y S

team

hea

ted

mud

pool

M

oder

ate

Frog

Mud

Pon

d H

hD

LN

o ou

tflow

, stro

ngly

boi

ling

< 1

m

Mix

ed d

eep

and

surfa

ce w

ater

La

rge

Kiri

ohen

eke

Stre

am

Hh

DR

Stro

ngflo

w

Mix

ed d

eep

and

surfa

ce w

ater

La

rge

Red

Lak

e H

hD

NM

oder

ate

flow

, gen

tle b

ubbl

ing

Ste

am fu

mar

ole

Larg

eG

reat

Wai

rake

i Sul

phur

Cra

ter

AM

RW

eak

stea

m fl

ow, w

eak

gas

flow

Ste

am-h

eate

d gr

ound

wat

er

Sm

all

Sat

an's

Eye

s H

hD

LW

eak

stea

m fl

ow, w

eak

gas

flow

Wha

kaar

i (W

hite

Isla

nd)

Fum

arol

eLa

rge

Noi

sy N

ellie

H

nO

N

Ver

y st

rong

gas

flow

, noi

sy,

c. 5

0 m

Fum

arol

eLa

rge

Don

ald

Mou

ndH

nO

NM

any

stro

ng fu

mar

oles

, noi

sy

vent

sC

onde

nsat

e m

ixed

wat

er la

ke

Larg

e19

78 C

rate

r H

nO

NN

on-fl

owin

g la

ke, p

ower

ful

bubb

ling,

1 m

Fu

mar

ole

Larg

eB

lue

Duc

kH

nG

NS

trong

gas

flow

, noi

sy g

as p

lum

e,

10 m

W

hang

airo

rohe

a D

eep

fluid

upf

low

La

rge

Mai

n la

kele

tA

GN

Wea

k up

flow

, wea

k ga

s bu

bblin

g D

eep

fluid

flow

ing

sprin

g S

mal

lS

tream

spr

ings

A

GL

Wea

k up

flow

, cal

m

Dee

p flu

id fl

owin

g sp

ring

Sm

all

Hot

Spr

ing

1 H

hD

LW

eak

upflo

w, c

alm

Dee

p flu

id fl

owin

g sp

ring

Sm

all

Hot

Spr

ing

2 H

hD

LW

eak

upflo

w, c

alm

Page 60: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

�0 Cody—Geodiversity of geothermal fields

TA

BL

e A

2.1

0b

Fiel

d na

me

Che

mic

al c

hara

cter

Ph

ysic

al c

hara

cter

Si

nter

dep

ositi

on

Com

men

ts

W

aira

kei G

eyse

r Val

ley

(c

ont’d

) A

lkal

ine

chlo

ride

Cle

ar b

oilin

g ge

yser

Abu

ndan

t am

orph

ous

silic

a A

lso

know

n as

Pet

rifyi

ng G

eyse

r, dr

ied

up in

late

19

50s.

Alk

alin

e ch

lorid

e C

lear

boi

ling

sprin

gA

bund

ant a

mor

phou

s si

lica

Als

o kn

own

as G

iant

's H

eal M

ark

Gey

ser,

play

ed

< 12

m h

igh.

Wai

ora

Val

ley

Aci

d su

lpha

te c

hlor

ide

mix

ed w

ater

s C

lear

pal

e bl

ue c

olou

r, bu

bblin

g

< 0.

3 m

N

ilD

ried

up b

y ea

rly 1

960s

, now

col

d an

d de

stro

yed

by ro

ad w

orks

. A

cid

sulp

hate

mud

s G

rey

mud

dy, s

trong

bub

blin

g <

1 m

N

ilD

ried

up b

y ea

rly 1

960s

, now

col

d an

d de

stro

yed

by ro

ad w

orks

. A

cid

sulp

hate

chl

orid

e w

ater

s C

lear

pal

e bl

ue c

olou

r S

ilica

dep

ositi

on a

long

cha

nnel

D

ried

up b

y 19

59, b

ut w

ell w

ater

div

erte

d ba

ck in

to

it in

200

1.A

cid

sulp

hate

B

right

red

turb

id, w

arm

N

ilD

ried

up b

y ea

rly 1

960s

, now

col

d an

d de

stro

yed

by ro

ad w

orks

. A

cid

cond

ensa

tes

War

m c

rate

r HE

? N

ilS

team

flow

gre

atly

redu

ced

and

larg

ely

over

grow

n/de

stro

yed

sinc

e 19

60s.

A

cid

sulp

hate

Cle

ar b

oilin

g po

ol, p

H c

. 3, c

. 98

C,

< 1

m h

igh

Red

dish

iron

oxi

des,

hyd

roxi

des

Drie

d up

and

col

d no

w, d

estro

yed

by e

arly

196

0s.

Wha

kaar

i (W

hite

Isla

nd)

CO

2, H

2O, H

Cl,

SO

2 ver

y ac

idic

gas

es

Col

ourle

ss g

as p

lum

e, in

cand

esce

nt

< 80

0C

Gyp

sum

and

anh

ydrit

e, a

lum

s on

ou

ter m

argi

ns

No

long

er e

xist

s, p

ower

ful n

oisy

dis

char

ge th

roug

h 19

70s

to 1

980s

. D

itto

Col

ourle

ss g

ases

, stro

ng a

cid

cond

ensa

tes

Anh

ydrit

e an

d su

lpha

te s

alts

N

ow m

uch

wea

kene

d an

d si

te e

xhum

ed b

y ne

w

vent

s in

199

0s.

Stro

ngly

aci

dic

Yello

w g

reen

turb

id

Nil

Mix

ture

of c

onde

nsat

es a

nd ra

inw

ater

s, w

ith g

as

prod

ucts

—st

rong

aci

ds.

Aci

d ga

ses

Cle

ar g

as, 2

00–5

00C

dur

ing

1970

s N

il; a

nhyd

rite

insi

de, g

ypsu

m a

nd

alum

s ou

ter r

ind

No

long

er e

xist

s, a

ll fe

atur

es v

ery

shor

t-liv

ed h

ere.

Wha

ngai

roro

hea

Neu

tral c

hlor

ide

War

m c

lear

, no

odou

rs

Nil

War

m la

ke in

allu

vial

terr

ace,

see

page

out

flow

s.

Neu

tral c

hlor

ide

War

m c

lear

, no

odou

rs

Nil

War

m s

prin

gs ri

sing

into

bed

of f

low

ing

cold

stre

am.

Alk

alin

e ch

lorid

e H

ot c

lear

N

ilH

ot s

prin

g su

bmer

ged

by L

ake

Oha

kuri

in J

anua

ry

1961

.A

lkal

ine

chlo

ride

Hot

cle

ar

Nil

Hot

spr

ing

subm

erge

d by

Lak

e O

haku

ri in

Jan

uary

19

61.

Page 61: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

�1DOC Research & Development Series 281

Appendix 3

G e O T H e R M A L F I e L D S R A N K I N G

This comprises a large spreadsheet split into a number of tables to enable

reproduction in this report. To reconstruct the spreadsheet, the tables need to

be viewed as follows:

A3.1a A3.1b A3.1c

A3.2a A3.2b A3.2c

A3.3a A3.3b A3.3c

For geothermal fields with with dual names:

Broadlands see Ohaaki

Ketetahi see Tongariro

Hipaua see Tokaanu

Rotomahana see Waimangu

Taupo see Tauhara

Waihi see Tokaanu

Whale Island see Moutohora

Whakamaru see Ongaroto

Page 62: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

�2 Cody—Geodiversity of geothermal fields

TA

BL

e A

3.1

a

Geo

ther

mal

feat

ure

type

Atiamuri

Horohoro

Kawerau

Mangakino

Mokai

Moutohora (Whale Is.)

Ngatamariki

Ohaaki/ Broadlands

Okataina

Ongaroto (Whakamaru)

Orakeikorako

Reporoa

Rotoiti

Gey

ser (

alka

line-

neut

ral)

00

00

00

00

00

200

0G

eyse

r (ac

id w

ater

) 0

00

00

00

00

00

00

Gey

ser (

mud

) 0

00

00

00

00

00

00

Alk

alin

e-ne

utra

l spr

ing

boili

ng la

rge

00

00

00

00

00

98

0A

lkal

ine-

neut

ral s

prin

g bo

iling

mod

erat

e 0

00

00

00

00

09

70

Alk

alin

e-ne

utra

l spr

ing

boili

ng s

mal

l 0

06

20

06

00

09

30

Alk

alin

e-ne

utra

l spr

ing

hot l

arge

5

03

00

08

00

06

38

Alk

alin

e-ne

utra

l spr

ing

hot m

oder

ate

00

30

40

50

00

63

0A

lkal

ine-

neut

ral s

prin

g ho

t sm

all

33

62

00

50

00

63

0A

lkal

ine-

neut

ral s

prin

g w

arm

larg

e 0

33

00

06

00

08

20

Alk

alin

e-ne

utra

l spr

ing

war

m m

oder

ate

00

30

40

50

00

83

0A

lkal

ine-

neut

ral s

prin

g w

arm

sm

all

00

40

00

40

00

83

0A

lkal

ine-

neut

ral s

prin

g te

pid

larg

e 0

02

00

06

00

06

20

Alk

alin

e-ne

utra

l spr

ing

tepi

d m

oder

ate

00

20

00

00

00

52

0A

lkal

ine-

neut

ral s

prin

g te

pid

smal

l 0

32

00

04

00

26

20

Wea

k-m

oder

ate

acid

spr

ing

boili

ng la

rge

00

00

00

01

00

62

0W

eak-

mod

erat

e ac

id s

prin

g bo

iling

mod

erat

e 0

00

00

00

00

06

20

Wea

k-m

oder

ate

acid

spr

ing

boili

ng s

mal

l 0

03

00

60

00

06

20

Wea

k-m

oder

ate

acid

spr

ing

hot l

arge

0

00

00

05

00

07

20

Wea

k-m

oder

ate

acid

spr

ing

hot m

oder

ate

00

30

00

00

00

62

0W

eak-

mod

erat

e ac

id s

prin

g ho

t sm

all

00

30

36

00

00

62

0W

eak-

mod

erat

e ac

id s

prin

g w

arm

larg

e 0

00

00

05

00

04

20

Wea

k-m

oder

ate

acid

spr

ing

war

m m

oder

ate

00

00

30

00

00

42

0W

eak-

mod

erat

e ac

id s

prin

g w

arm

sm

all

00

00

06

00

00

62

0W

eak-

mod

erat

e ac

id s

prin

g te

pid

larg

e 0

03

00

00

00

06

20

Wea

k-m

oder

ate

acid

spr

ing

tepi

d m

oder

ate

00

30

00

00

04

52

0W

eak-

mod

erat

e ac

id s

prin

g te

pid

smal

l 0

03

00

00

04

05

20

Stro

ngly

aci

d sp

ring

boili

ng la

rge

00

00

00

00

00

00

0S

trong

ly a

cid

sprin

g bo

iling

mod

erat

e 0

00

00

00

00

00

00

Stro

ngly

aci

d sp

ring

boili

ng s

mal

l 0

00

00

60

00

00

00

Stro

ngly

aci

d sp

ring

hot l

arge

0

00

00

00

00

00

20

Stro

ngly

aci

d sp

ring

hot m

oder

ate

00

30

00

00

00

42

0S

trong

ly a

cid

sprin

g ho

t sm

all

00

30

05

00

00

42

0S

trong

ly a

cid

sprin

g w

arm

larg

e 0

00

00

00

00

09

20

Stro

ngly

aci

d sp

ring

war

m m

oder

ate

00

00

30

00

00

42

0S

trong

ly a

cid

sprin

g w

arm

sm

all

00

00

30

00

00

42

0S

trong

ly a

cid

sprin

g te

pid

larg

e 0

00

00

00

00

00

00

Stro

ngly

aci

d sp

ring

tepi

d m

oder

ate

00

00

00

00

00

02

0S

trong

ly a

cid

sprin

g te

pid

smal

l 0

00

00

00

00

04

20

Mix

ed w

ater

lake

boi

ling

00

00

00

00

00

00

0

Page 63: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

�3DOC Research & Development Series 281

TA

BL

e A

3.1

b

Geo

ther

mal

feat

ure

type

Rotokawau (Rotorua)

Rotokawa (Taupo)

Rotoma

Ruapehu

Taheke

Tarawera

Tauhara

Te Kopia

Tiketere

Tokaanu

Tongario

Waikite

Waimangu

Gey

ser (

alka

line-

neut

ral)

00

020

00

00

00

200

0G

eyse

r (ac

id w

ater

) 0

00

00

00

00

00

100

Gey

ser (

mud

) 0

00

00

00

020

00

00

Alk

alin

e-ne

utra

l spr

ing

boili

ng la

rge

00

07

00

00

00

70

10A

lkal

ine-

neut

ral s

prin

g bo

iling

mod

erat

e 0

00

80

06

00

05

08

Alk

alin

e-ne

utra

l spr

ing

boili

ng s

mal

l 4

00

80

06

00

63

09

Alk

alin

e-ne

utra

l spr

ing

hot l

arge

4

06

80

00

00

05

08

Alk

alin

e-ne

utra

l spr

ing

hot m

oder

ate

40

48

00

40

00

50

8A

lkal

ine-

neut

ral s

prin

g ho

t sm

all

40

58

00

40

04

20

8A

lkal

ine-

neut

ral s

prin

g w

arm

larg

e 4

06

70

06

00

04

05

Alk

alin

e-ne

utra

l spr

ing

war

m m

oder

ate

40

57

00

63

60

40

5A

lkal

ine-

neut

ral s

prin

g w

arm

sm

all

20

67

00

65

64

40

5A

lkal

ine-

neut

ral s

prin

g te

pid

larg

e 0

06

78

00

30

44

08

Alk

alin

e-ne

utra

l spr

ing

tepi

d m

oder

ate

00

57

00

63

04

30

6A

lkal

ine-

neut

ral s

prin

g te

pid

smal

l 0

05

70

06

30

35

03

Wea

k-m

oder

ate

acid

spr

ing

boili

ng la

rge

00

00

00

00

00

00

0W

eak-

mod

erat

e ac

id s

prin

g bo

iling

mod

erat

e 0

00

50

00

00

00

00

Wea

k-m

oder

ate

acid

spr

ing

boili

ng s

mal

l 0

00

50

00

00

00

00

Wea

k-m

oder

ate

acid

spr

ing

hot l

arge

0

40

50

00

06

50

00

Wea

k-m

oder

ate

acid

spr

ing

hot m

oder

ate

03

05

00

00

44

40

0W

eak-

mod

erat

e ac

id s

prin

g ho

t sm

all

03

05

00

04

44

40

0W

eak-

mod

erat

e ac

id s

prin

g w

arm

larg

e 0

40

40

00

00

00

06

Wea

k-m

oder

ate

acid

spr

ing

war

m m

oder

ate

03

04

00

00

00

00

0W

eak-

mod

erat

e ac

id s

prin

g w

arm

sm

all

23

04

00

00

44

00

0W

eak-

mod

erat

e ac

id s

prin

g te

pid

larg

e 0

70

40

00

04

40

00

Wea

k-m

oder

ate

acid

spr

ing

tepi

d m

oder

ate

03

04

00

00

44

40

5W

eak-

mod

erat

e ac

id s

prin

g te

pid

smal

l 0

30

40

00

04

40

05

Stro

ngly

aci

d sp

ring

boili

ng la

rge

00

00

00

00

00

08

0S

trong

ly a

cid

sprin

g bo

iling

mod

erat

e 0

30

00

00

58

40

80

Stro

ngly

aci

d sp

ring

boili

ng s

mal

l 0

30

40

00

04

46

80

Stro

ngly

aci

d sp

ring

hot l

arge

0

30

00

00

06

40

00

Stro

ngly

aci

d sp

ring

hot m

oder

ate

03

04

00

00

64

00

0S

trong

ly a

cid

sprin

g ho

t sm

all

03

04

00

00

64

60

0S

trong

ly a

cid

sprin

g w

arm

larg

e 0

30

49

00

00

40

00

Stro

ngly

aci

d sp

ring

war

m m

oder

ate

03

04

00

03

04

40

0S

trong

ly a

cid

sprin

g w

arm

sm

all

03

04

00

00

44

40

0S

trong

ly a

cid

sprin

g te

pid

larg

e 0

30

50

00

08

40

00

Stro

ngly

aci

d sp

ring

tepi

d m

oder

ate

03

05

00

00

65

40

0S

trong

ly a

cid

sprin

g te

pid

smal

l 0

30

40

00

06

54

00

Mix

ed w

ater

lake

boi

ling

00

00

00

00

00

00

0

Page 64: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

�4 Cody—Geodiversity of geothermal fields

TA

BL

e A

3.1

c

Geo

ther

mal

feat

ure

type

Waiotapu

Wairakei(excl.Tauhara)

Whakaari

Whangairoro-hea

Gey

ser (

alka

line-

neut

ral)

160

00

Gey

ser (

acid

wat

er)

200

00

Gey

ser (

mud

) 0

00

0A

lkal

ine-

neut

ral s

prin

g bo

iling

larg

e 9

00

0A

lkal

ine-

neut

ral s

prin

g bo

iling

mod

erat

e 6

00

0A

lkal

ine-

neut

ral s

prin

g bo

iling

sm

all

60

00

Alk

alin

e-ne

utra

l spr

ing

hot l

arge

9

00

0A

lkal

ine-

neut

ral s

prin

g ho

t mod

erat

e 6

00

0A

lkal

ine-

neut

ral s

prin

g ho

t sm

all

60

00

Alk

alin

e-ne

utra

l spr

ing

war

m la

rge

40

04

Alk

alin

e-ne

utra

l spr

ing

war

m m

oder

ate

00

04

Alk

alin

e-ne

utra

l spr

ing

war

m s

mal

l 4

00

4A

lkal

ine-

neut

ral s

prin

g te

pid

larg

e 4

00

6A

lkal

ine-

neut

ral s

prin

g te

pid

mod

erat

e 4

00

0A

lkal

ine-

neut

ral s

prin

g te

pid

smal

l 4

00

0W

eak-

mod

erat

e ac

id s

prin

g bo

iling

larg

e 0

20

0W

eak-

mod

erat

e ac

id s

prin

g bo

iling

mod

erat

e 8

20

0W

eak-

mod

erat

e ac

id s

prin

g bo

iling

sm

all

62

00

Wea

k-m

oder

ate

acid

spr

ing

hot l

arge

6

00

0W

eak-

mod

erat

e ac

id s

prin

g ho

t mod

erat

e 6

00

0W

eak-

mod

erat

e ac

id s

prin

g ho

t sm

all

60

00

Wea

k-m

oder

ate

acid

spr

ing

war

m la

rge

40

00

Wea

k-m

oder

ate

acid

spr

ing

war

m m

oder

ate

40

00

Wea

k-m

oder

ate

acid

spr

ing

war

m s

mal

l 4

00

0W

eak-

mod

erat

e ac

id s

prin

g te

pid

larg

e 4

20

0W

eak-

mod

erat

e ac

id s

prin

g te

pid

mod

erat

e 4

20

0W

eak-

mod

erat

e ac

id s

prin

g te

pid

smal

l 4

20

0S

trong

ly a

cid

sprin

g bo

iling

larg

e 0

38

0S

trong

ly a

cid

sprin

g bo

iling

mod

erat

e 6

36

0S

trong

ly a

cid

sprin

g bo

iling

sm

all

63

80

Stro

ngly

aci

d sp

ring

hot l

arge

6

28

0S

trong

ly a

cid

sprin

g ho

t mod

erat

e 6

26

0S

trong

ly a

cid

sprin

g ho

t sm

all

62

60

Stro

ngly

aci

d sp

ring

war

m la

rge

43

60

Stro

ngly

aci

d sp

ring

war

m m

oder

ate

42

40

Stro

ngly

aci

d sp

ring

war

m s

mal

l 4

24

0S

trong

ly a

cid

sprin

g te

pid

larg

e 6

20

0S

trong

ly a

cid

sprin

g te

pid

mod

erat

e 4

20

0S

trong

ly a

cid

sprin

g te

pid

smal

l 4

20

0M

ixed

wat

er la

ke b

oilin

g 0

00

0

Page 65: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

��DOC Research & Development Series 281

TA

BL

e A

3.2

a

Geo

ther

mal

feat

ure

type

Atiamuri

Horohoro

Kawerau

Mangakino

Mokai

Moutohora (Whale Is.)

Ngatamariki

Ohaaki/ Broadlands

Okataina

Ongaroto (Whakamaru)

Orakeikorako

Reporoa

Rotoiti

Mix

ed w

ater

lake

hot

0

00

00

00

00

04

20

Mix

ed w

ater

lake

war

m

00

00

00

00

00

43

0M

ixed

wat

er la

ke te

pid

00

20

00

00

00

43

0M

ixed

wat

er p

ool b

oilin

g 0

00

00

00

00

00

30

Mix

ed w

ater

poo

l hot

0

00

03

03

00

06

30

Mix

ed w

ater

poo

l war

m

00

20

30

00

00

43

0M

ixed

wat

er p

ool t

epid

0

02

03

00

00

04

20

Mud

lake

boi

ling

00

00

50

00

00

00

0M

ud la

ke h

ot

00

00

30

00

00

00

0M

ud la

ke w

arm

0

00

03

00

00

00

00

Mud

lake

tepi

d 0

00

03

00

00

00

00

Mud

poo

l boi

ling

30

30

30

53

00

04

0M

ud p

ool h

ot

00

30

30

53

00

44

0M

ud p

ool w

arm

0

00

03

05

00

04

40

Mud

poo

l tep

id

00

00

30

00

00

40

0M

ud p

ot b

oilin

g 0

03

03

00

00

04

40

Mud

pot

hot

0

00

03

05

40

04

40

Mud

pot

war

m

00

00

00

00

00

64

0M

ud p

ot te

pid

00

00

00

00

00

50

0M

ud c

one

boili

ng

00

00

40

00

00

00

0Fu

mar

ole

larg

e >

2 M

W

00

00

40

00

00

80

0Fu

mar

ole

mod

erat

e 2–

0.5

MW

0

00

00

00

00

08

00

Fum

arol

e sm

all <

0.5

MW

0

03

00

64

30

08

00

Sol

fata

ra la

rge

> 1

hect

are

00

00

00

00

00

00

0S

olfa

tara

mod

erat

e 0.

5–1

hect

are

00

00

05

00

00

00

0S

olfa

tara

sm

all <

0.5

hec

tare

0

05

00

50

30

00

00

Hot

gro

und

larg

e 0

05

00

04

30

06

40

Hot

gro

und

mod

erat

e 0

05

00

54

00

36

40

Hot

gro

und

smal

l 0

05

03

04

00

36

40

War

m g

roun

d la

rge

00

50

00

03

00

84

0W

arm

gro

und

mod

erat

e 0

05

03

54

00

38

40

War

m g

roun

d sm

all

00

50

30

40

40

84

0S

inte

r dep

osits

larg

e >

1 he

ctar

e 0

00

00

00

70

08

00

Sin

ter d

epos

its m

oder

ate

0.5–

1 he

ctar

e 0

00

00

00

00

00

00

Sin

ter d

epos

its s

mal

l < 0

.5 h

ecta

re

32

22

00

00

00

88

0H

ydro

ther

mal

Eru

ptio

n C

rate

r 2

57

05

04

00

06

46

Col

laps

e (D

olin

e) C

rate

r 0

00

00

00

00

06

00

Alti

tude

(met

res

rang

e di

vide

d by

100

) 0.

900.

251.

000.

652.

463.

534.

000.

430.

010.

450.

850.

400.

15

Feat

ures

Sco

re:

16.9

016

.25

121.

06.

6585

.86

58.5

311

4.0

30.4

38.

0115

.45

353.

8516

0.4

14.1

5

Page 66: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

�� Cody—Geodiversity of geothermal fields

TA

BL

e A

3.2

b

Geo

ther

mal

feat

ure

type

Rotokawau (Rotorua)

Rotokawa (Taupo)

Rotoma

Ruapehu

Taheke

Tarawera

Tauhara

Te Kopia

Tiketere

Tokaanu

Tongario

Waikite

Waimangu

Mix

ed w

ater

lake

hot

0

06

70

00

00

05

00

Mix

ed w

ater

lake

war

m

00

47

00

03

00

30

0M

ixed

wat

er la

ke te

pid

35

47

00

02

00

30

9M

ixed

wat

er p

ool b

oilin

g 0

00

00

00

00

00

00

Mix

ed w

ater

poo

l hot

0

34

50

00

00

20

07

Mix

ed w

ater

poo

l war

m

03

45

00

00

03

00

5M

ixed

wat

er p

ool t

epid

0

34

50

00

00

20

05

Mud

lake

boi

ling

00

07

00

00

80

00

0M

ud la

ke h

ot

00

07

00

00

60

00

0M

ud la

ke w

arm

0

00

70

00

06

00

00

Mud

lake

tepi

d 0

00

70

00

06

00

00

Mud

poo

l boi

ling

05

47

00

00

86

00

0M

ud p

ool h

ot

04

07

00

00

86

00

0M

ud p

ool w

arm

0

30

70

00

08

40

00

Mud

poo

l tep

id

03

07

00

00

84

00

0M

ud p

ot b

oilin

g 0

64

70

00

06

47

00

Mud

pot

hot

0

64

70

00

06

46

00

Mud

pot

war

m

05

07

00

00

65

60

0M

ud p

ot te

pid

00

07

00

00

65

60

0M

ud c

one

boili

ng

00

07

00

00

88

60

0Fu

mar

ole

larg

e >

2 M

W

00

00

90

00

106

09

0Fu

mar

ole

mod

erat

e 2–

0.5

MW

0

30

70

00

09

08

88

Fum

arol

e sm

all <

0.5

MW

0

36

70

66

36

68

56

Sol

fata

ra la

rge

> 1

hect

are

03

59

05

00

05

00

0S

olfa

tara

mod

erat

e 0.

5–1

hect

are

03

67

03

05

83

00

0S

olfa

tara

sm

all <

0.5

hec

tare

0

56

70

30

36

30

60

Hot

gro

und

larg

e 0

34

70

50

38

58

43

Hot

gro

und

mod

erat

e 0

34

70

36

38

54

45

Hot

gro

und

smal

l 0

34

70

30

38

54

45

War

m g

roun

d la

rge

03

46

95

83

65

60

3W

arm

gro

und

mod

erat

e 2

33

76

56

36

56

43

War

m g

roun

d sm

all

23

36

63

43

65

60

3S

inte

r dep

osits

larg

e >

1 he

ctar

e 0

00

00

00

00

03

05

Sin

ter d

epos

its m

oder

ate

0.5–

1 he

ctar

e 0

00

08

00

04

07

09

Sin

ter d

epos

its s

mal

l < 0

.5 h

ecta

re

00

07

00

60

60

50

8H

ydro

ther

mal

Eru

ptio

n C

rate

r 4

40

89

00

89

40

07

Col

laps

e (D

olin

e) C

rate

r 0

44

50

00

06

40

00

Alti

tude

(met

res

rang

e di

vide

d by

100

) 0.

151.

151.

301.

9011

.70

0.40

6.50

1.43

2.60

1.27

3.56

1.00

2.00

Fe

atur

es S

core

: 15

.15

156.

713

4.30

421.

975

.70

41.4

092

.50

72.4

331

4.60

215.

2722

1.56

79.0

019

2.00

Page 67: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

��DOC Research & Development Series 281

TA

BL

e A

3.2

c

Geo

ther

mal

feat

ure

type

Waiotapu

Wairakei(excl.Tauhara)

Whakaari

Whangairoro-hea

Mix

ed w

ater

lake

hot

6

50

0M

ixed

wat

er la

ke w

arm

6

30

0M

ixed

wat

er la

ke te

pid

83

00

Mix

ed w

ater

poo

l boi

ling

65

00

Mix

ed w

ater

poo

l hot

6

50

0M

ixed

wat

er p

ool w

arm

8

30

0M

ixed

wat

er p

ool t

epid

9

30

0M

ud la

ke b

oilin

g 9

30

0M

ud la

ke h

ot

83

00

Mud

lake

war

m

63

00

Mud

lake

tepi

d 6

30

0M

ud p

ool b

oilin

g 8

50

0M

ud p

ool h

ot

85

00

Mud

poo

l war

m

65

00

Mud

poo

l tep

id

65

00

Mud

pot

boi

ling

63

00

Mud

pot

hot

4

30

0M

ud p

ot w

arm

4

30

0M

ud p

ot te

pid

43

00

Mud

con

e bo

iling

9

30

0Fu

mar

ole

larg

e >

2 M

W

07

90

Fum

arol

e m

oder

ate

2–0.

5 M

W

87

90

Fum

arol

e sm

all <

0.5

MW

6

79

0S

olfa

tara

larg

e >

1 he

ctar

e 6

58

0S

olfa

tara

mod

erat

e 0.

5–1

hect

are

45

40

Sol

fata

ra s

mal

l < 0

.5 h

ecta

re

45

40

Hot

gro

und

larg

e 7

36

0H

ot g

roun

d m

oder

ate

43

40

Hot

gro

und

smal

l 4

34

0W

arm

gro

und

larg

e 4

34

0W

arm

gro

und

mod

erat

e 4

34

0W

arm

gro

und

smal

l 4

34

0S

inte

r dep

osits

larg

e >

1 he

ctar

e 10

20

0S

inte

r dep

osits

mod

erat

e 0.

5–1

hect

are

82

00

Sin

ter d

epos

its s

mal

l < 0

.5 h

ecta

re

62

00

Hyd

roth

erm

al E

rupt

ion

Cra

ter

95

60

Col

laps

e (D

olin

e) C

rate

r 9

36

0A

ltitu

de (m

etre

s ra

nge

divi

ded

by 1

00)

3.70

2.10

3.21

0.10

Fe

atur

es S

core

: 44

3.70

85.1

014

0.21

18.1

0

Page 68: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

�� Cody—Geodiversity of geothermal fields

TA

BL

e A

3.3

a

Geo

ther

mal

feat

ure

type

Atiamuri

Horohoro

Kawerau

Mangakino

Mokai

Moutohora (Whale Is.)

Ngatamariki

Ohaaki/ Broadlands

Okataina

Ongaroto (Whakamaru)

Orakeikorako

Reporoa

Rotoiti

Nat

ural

ness

/hum

an m

odifi

catio

n V

eget

atio

n in

tact

ness

0.

30.

30.

50.

30.

30.

80.

30.

31

0.3

0.3

0.3

1.0

Land

scap

e in

tact

ness

0.

70.

30.

20.

30.

30.

80.

80.

31

0.7

0.7

0.3

1.0

Feat

ure

type

inta

ctne

ss

0.8

0.8

0.2

0.3

0.8

0.8

0.7

0.1

10.

80.

10.

71.

0

Int

actn

ess

Sco

re (a

vera

ge o

f abo

ve th

ree)

0.

600.

470.

30.

30.

470.

80.

60.

231.

00.

60.

367

0.43

31.

0G

eoth

erm

al F

ield

Ran

king

10

.14

7.64

36.3

02.

0040

.35

46.8

268

.40

7.00

8.01

9.27

129.

8669

.45

14.1

5

(=

Feat

ures

sco

re x

Inta

ctne

ss s

core

)

Page 69: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

��DOC Research & Development Series 281

TA

BL

e A

3.3

b

Geo

ther

mal

feat

ure

type

Rotokawau (Rotorua)

Rotokawa (Taupo)

Rotoma

Ruapehu

Taheke

Tarawera

Tauhara

Te Kopia

Tiketere

Tokaanu

Tongario

Waikite

Waimangu

Nat

ural

ness

/hum

an m

odifi

catio

n V

eget

atio

n in

tact

ness

0.

30.

30.

80.

21.

00.

70.

90.

40.

90.

70.

91.

00.

3La

ndsc

ape

inta

ctne

ss

0.3

0.3

0.7

0.3

1.0

0.3

1.0

0.3

0.9

0.7

0.9

1.0

0.7

Feat

ure

type

inta

ctne

ss

0.3

0.7

0.8

0.4

1.0

0.7

1.0

0.2

1.0

0.7

0.9

1.0

0.7

I

ntac

tnes

s S

core

(ave

rage

of a

bove

thre

e)

0.3

0.43

0.76

70.

31.

00.

567

0.96

70.

300

0.93

30.

700

0.90

01.

000.

567

Geo

ther

mal

Fie

ld R

anki

ng

4.55

67.3

810

3.01

126.

675

.70

23.4

789

.45

21.7

329

3.52

150.

6919

9.40

79.0

010

8.86

(

= Fe

atur

es s

core

x In

tact

ness

sco

re)

Page 70: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

�0 Cody—Geodiversity of geothermal fields

TA

BL

e A

3.3

c

Geo

ther

mal

feat

ure

type

Waiotapu

Wairakei(excl.Tauhara)

Whakaari

Whangairoro-hea

Nat

ural

ness

/hum

an m

odifi

catio

n V

eget

atio

n in

tact

ness

0.

60.

21.

00.

7La

ndsc

ape

inta

ctne

ss

0.7

0.2

0.9

0.4

Feat

ure

type

inta

ctne

ss

1.0

0.1

1.0

0.7

I

ntac

tnes

s S

core

(ave

rage

of a

bove

thre

e)

0.76

70.

167

0.96

70.

600

Geo

ther

mal

Fie

ld R

anki

ng

340.

3214

.21

135.

5810

.86

(

= Fe

atur

es s

core

x In

tact

ness

sco

re)

Page 71: Geodiversity of geothermal fields in the Taupo …...Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC ReseaRCh & DevelOpment seRies 281 Published by

DOC Research & Development Series

DOC Research & Development Series is a published record of scientific research carried out, or advice given, by Department of Conservation staff or external contractors funded by DOC. It comprises reports and short communications that are peer-reviewed.

Individual contributions to the series are first released on the departmental website in pdf form. Hardcopy is printed, bound, and distributed at regular intervals. Titles are also listed in the DOC Science Publishing catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical.