37
Geodetske evidencije - Katastar nekretnina i zemljišna knjiga Katastar nekretnina Katastar nekretnina je skup grafičkih i pisanih dokumenata koji prikazuju oblik i položaja svake čestice zemljišta na katastarskim planovima i nepokretne objekte koji se nalaze na njoj, dok se u ostaloj dokumentaciji iskazuju površine, katastarska kultura, bonitet tla i vlasnik odnosno posjednik. Kako bi se omogućila identifikacija, svaka čestica zemljišta označena je svojim brojem. Nekretnina je zemljište s pripadajućim sastavnim dijelovima. Zemljište je čestica zemljine površine (zemljišna parcela) evidentirana u katastru zemljišta s pripadajućim zgradama i drugim građevinama ili djelovima građevina koji koje trajno leže na zemljinoj površini ili ispod nje a evidentirani su u katastru zgrada. Katastar nekretnina se sastoji od katastra zemljišta i katastra zgrada, a postoje još i katastar šuma, voda, vodova i katastar pomorskog dobra Za uspostavljanje, vođenje i održavanje evidencija zadužena je Državna geodetska uprava. Povijest Grad Milano povodom uređenja prava na zemljištu 1714. godine uspostavlja katastar zemljišta Grimani mletački namjesnik - 1756. godine izmjera većeg područja sjeverne Dalmacije (56 sela) - planovi s česticama zemljišta (Grimanijeve mape u Državnom arhivu u Zadru). Austrijski car Josipa II (Jozefinski katastar) radi oporezivanja zemljišta - izmjera 1785. do 1790. godine. Napoleon 1807. godine - izmjera i procjena zemljišta (svake čestice) - izrada parcelarnog katastra zemljišta - točni planovi čija je svrha da osiguraju međe vlasništva. Katastar nekretnina Katastar zemljišta i katastar zgrada osnova su evidentiranja nekretnina i zajedno čine KATASTARSKI OPERAT i ZEMLJIŠNU KNJIGU. KATASTAR ZEMLJIŠTA KATASTAR ZEMLJIŠTA KATASTAR ZGRADA KATASTAR ZGRADA KATASTARSKI OPERAT + ZEMLJIŠNA KNJIGA KATASTARSKI OPERAT + ZEMLJIŠNA KNJIGA

Geodezija 2

  • Upload
    ino

  • View
    361

  • Download
    16

Embed Size (px)

DESCRIPTION

geodezija

Citation preview

Geodetske evidencije- Katastar nekretnina i

zemljišna knjiga

Katastar nekretnina• Katastar nekretnina je skup grafičkih i pisanih dokumenata

koji prikazuju oblik i položaja svake čestice zemljišta na katastarskim planovima i nepokretne objekte koji se nalaze na njoj, dok se u ostaloj dokumentaciji iskazuju površine, katastarska kultura, bonitet tla i vlasnik odnosno posjednik. Kako bi se omogućila identifikacija, svaka čestica zemljišta označena je svojim brojem.

• Nekretnina je zemljište s pripadajućim sastavnim dijelovima. Zemljište je čestica zemljine površine (zemljišna parcela) evidentirana u katastru zemljišta s pripadajućim zgradama i drugim građevinama ili djelovima građevina koji koje trajno leže na zemljinoj površini ili ispod nje a evidentirani su u katastru zgrada.

• Katastar nekretnina se sastoji od katastra zemljišta i katastra zgrada, a postoje još i katastar šuma, voda, vodova i katastar pomorskog dobra

• Za uspostavljanje, vođenje i održavanje evidencija zadužena je Državna geodetska uprava.

Povijest

• Grad Milano povodom uređenja prava na zemljištu 1714. godine uspostavlja katastar zemljišta

• Grimani mletački namjesnik - 1756. godine izmjera većeg područja sjeverne Dalmacije (56 sela) - planovi s česticama zemljišta (Grimanijeve mape u Državnom arhivu u Zadru).

• Austrijski car Josipa II (Jozefinski katastar) radi oporezivanja zemljišta - izmjera 1785. do 1790. godine.

• Napoleon 1807. godine - izmjera i procjena zemljišta (svake čestice) - izrada parcelarnog katastra zemljišta - točni planovi čija je svrha da osiguraju međe vlasništva.

Katastar nekretninaKatastar zemljišta i katastar zgrada osnova su evidentiranja nekretnina i zajedno čine KATASTARSKI OPERAT i ZEMLJIŠNU KNJIGU.

KATASTAR ZEMLJIŠTAKATASTAR ZEMLJIŠTA KATASTAR ZGRADAKATASTAR ZGRADA

KATASTARSKI OPERAT +

ZEMLJIŠNA KNJIGA

KATASTARSKI OPERAT +

ZEMLJIŠNA KNJIGA

Katastar nekretninaKatastarska općina je katastarska prostorna jedinica za koju se izrađuje katastarski operat i u pravilu obuhvaća područje jednog naseljenog mjesta s pripadajućim zemljištem. Osnovna je prostorna jedinica i za vođenje zemljišnih knjiga.

http://www.katastar.hr/dgu/ind.php

Katastarski operat

• Katastarski operat izrađuje se za svaku katastarsku općinu na temelju podataka prikupljenih i obrađenih u katastarskoj izmjeri. Katastarski operat sastoji se od:• katastarskih planova, • drugih grafičkih grafičkih podataka (zbirka parcelacijskih i drugih

geodetskih elaborata), te • pisanih dijelova (posjedovni listovi, …).

• Parcelacijski elaborat izrađuje se za potrebe provedbe promjene broja, položaja, oblika, načina uporabe i površine katastarske čestice u katastarskom operatu.

• Geodetski elaborat izrađuje se za potrebe provedbe promjene položaja, oblika i načina uporabe zgrada i drugih građevina, kao i promjene glede položaja i površina dijelova zgrada i drugih građevina, u katastarskom operatu.

Osnovni pojmovi• Katastarska čestica je osnovna katastarska prostorna jedinica,

dio je katastarske općine omeđen međama i drugim granicama. U katastarskom se operatu vode podaci položaju čestica, obliku, površini, načinu uporabe, izgrađenosti i broju katastarske čestice.

• Posjedovni list sadrži podatke o ukupnom posjedu nekog posjednika u određenoj katastarskoj općini. Upisima u posjedovne listove ne stječe se pravo vlasništva.

• Katastarski plan je skup grafičkih prikaza s podacima o položaju, obliku, načinu korištenja i namjeni katastarskih čestica.

• Katastarska izmjera je postupak prikupljanja i obrade podataka o položaju, obliku, površini, načinu uporabe, te nositeljima prava na česticama zemljišta, zgradama, dijelovima zgrada i drugim građevinama, položaju u zgradi, te nositeljima prava i posebnih pravnih odnosa na zemljištu.

Katastarsko klasiranje zemljištaKulture se označavaju i upisuju u svaku česticu na

katastarskom planu skraćenicama:

• oranice, njive or, nj

• vrtovi vr

• voćnjaci vć

• maslinici msl

• vinogradi vg

• livade l

• pašnjaci pš

• šume š

• trstici t

• močvare m

Katastarska izmjeraKatastarskom se izmjerom prikupljaju i obrađuju svi podaci kojima je svrha osnivanje katastarskih čestica, evidentiranje zgrada i drugih građevina, evidentiranje posebnih pravnih režima na zemljištu i načina uporabe zemljišta te izrada katastarskog operata katastra nekretnina.

Uređenje i evidentiranje međe Osnovna prostorna jedinica katastra nekretnina je katastarska čestica

(parcela), a određena je brojem katastarske čestice i njezinim granicama.Vlasnik zemljišta dužan je provesti postupak evidentiranja međe (elaborat)

prilikom uknjižbe nekretnine (uplana) ili upisa u katastar nekretnina.

Geodetski radoviGeodetski radovi u katastru nekretnina:

• određivanje granice katastarske čestice,

• uređenje međe,

• parcelacija,

• komasacija,

• izravnanje međe,

• određivanje zemljišta pod zgradom,

• evidentiranje zgrada,

• određivanje vrste uporabe, kulture i razreda zemljišta,

• određivanje boniteta zemljišta,

• uređivanje međe između parcela i katastarskih područja,

• upis zgrada i njihovih dijelova u katastar zgrada,

• izrada tehničkog eleborata označavanja međe u prirodi,

• …….

Uknjižba neketnineUknjižba neketnine podrazumijeva ucrtavanje građevine u katastarski plan -ovlašteni geodeta izlazi na teren i geodetskim instrumentima izmjeri građevinu (tlocrtni gabarit objekta) te određuje njen položaj na parceli. Takvo mjerenje rezultira formiranje prijavnog lista - dokument formata A4, organiziran kao dvolist, u kojem se s jedne strane unose dosadašnji podaci (staro stanje) i nasuprot tome novo stanje. U sklopu prijavnog lista nalazi se i grafički dio u kojem je prikazana skica izvršenog premjeravanja, a temeljem koje se objekt ucrtava u planove.

Postupak evidentiranja parcelacije• Parcelacija je združivanje (oblikovanje jedne parcele iz dviju ili više

parcel,koje imaju jednako pravno stanje vlasništva) ili podjela parcele.

• U katastru se evidentira pomoću elaborata parcelacije. U postupku parcelacije nova parcela dobija novi broj.

• Preduvijet parcelacije je uređenje međa.

Evidentiranje vrste uporabe • Postupak pokreće vlasnik zemljišta kada želi evidentirati različne vrste

uporabe u zemljišni katastar i zemljišnu knjigu.

• Postupkom promjene vrste uporabe zemljište npr. građevno zemljište, zelena ili neplodna površina – klasifikacija zemljišta ulazi u katastarski eleborat čime se mijenja katastarski prihod.

Postupak uređenja dijela međe• Postupak uređenja dijela međe - vlasnici susjednih parcela su

sporazumni o promjenama i pri tom se površina manje parcele ne smije biti promijenjena za više 5% površine, odnosno ne više od 500 m2.

• Elaborat izravnanja međe sprema se u katastru zemljišta.

Komasacija• Okrupnjavanje i uređivanje poljoprivrednog zemljišta čija površina u prosjeku

iznosi između tri i pet hektara - pridonosi povećanju proizvodnje;• Problem je što se zemlja u unutrašnjosti zemlje tradicionalno ne prodaje, a

jedan od većih problema je i neriješeno pitanje zemljišnih knjiga, odnosno gruntovnice i katastra.

Katastarski operat katastra nekretnina

Geodetsko-tehnički dio katastarskog operata:• Katastarski plan,• Elaborat geodetske osnove (geodetske točke),• Digitalni ortofotoplan i digitalni model terena,• Zbirka parcelacijskih i drugih geodetskih elaborata.

Popisno-knjižni dio katastarskog operama:• Popisi (katastarskih čestica, zgrada i drugih građevina, područja pojedinih vrsta

uporabe, područja posebnih pravnih režima i adresa katastarskih čestica),• Posjedovni listovi,• Pomoćni popisi (popis kučnih brojeva, osoba upisanih u posjedovne listove i popis

promjena),• Zbirka isprava.

Pisani katastarski podaci su atributi elemenata katastarskog plana i temelj su zemljišne knjige:

• Broj i adresa katastarske čestice,• Način uporabe katastarske cestice i njezinih dijelova,• Podaci o zgradama i drugim građevinama,• Površina katastarske čestice i površine dijelova koji se upotrebljavaju na različiti način.

Katastarski plan - primjer

Kopija katastarskog planasadrži izvod iz digitalnoga katastarskog plana, izvod i prijepis posjedovnog lista te potvrde koje se izdaju na temelju podataka katastarskog operataKopije katastarskogplana su javne isprave kad su ovjerovljene pečatom i potpisom službene osobe.

Katastar vodovaKatastar vodova vodi evidencije o vodovima elektroenergetske,

telekomunikacijske, vodovodne, kanalizacijske, toplovodne, plinovodne i naftovodne mreže. Evidencije sadrže podatke o vrstama odnosno namjeni, osnovnim tehničkim osobinama i položaju izgrađenih vodova.

Svaki vod prikazan je u operatu položajnim i tehničkim podacima na geodetskim podlogama (katastarski plan, orto-foto, i dr.)

Zemljišnoknjižni sud (zemljišnik, gruntovnica)

Zemljišnoknjižni sud utvrđuje vlasništvo upisom u zemljišnu knjigu te izdaje nositelju prava na zemljište rješenja zemljišnoknjižnog suda (vlastovnica).

Zemljišna knjiga sastoji se od zemljišno-knjižnih uložaka:1/ popisni list A - nekretnina, broj zemljišno-knjižne čestice, površina, kultura

2/ vlastovnica (vlasnički list) B - vlasnik nekretnine

3/ teretovnica C - hipoteka, pravo zakupa, prvokupa, najma i sl.

Površina trokuta

neka s = ½ (a + b + c)

A

B

C

a

b

c

a1

a2

a3

a4 a5

Površina = ∑ai

Površina = √ (s(s-a)(s-b)(s-c))

ili

Površina = ½bc sin A

1. Podjela figure u jednostavne podfigure

RAČUNANJE POVRŠINA

• Računanje površina potrebno je radi:

• Određivanja katastarske čestice (porez)

• Analiza korištenja zemljišta (poljoprivreda, zaštićena područja, irigacija)

• Vode (volumen i evaporacija)

• Zemljani radovi kod izgradnje prometnica (volumen, površina, cijena)

• Metode računanja površine:

• Računanje površine se izvodi u CAD ili GIS programima te:

• Podjela figure u jednostavne podfigure

• Računanje površine niza trapezoida

• Pomoću koordinata

• Površine se izražavaju u: ar, ha, m2, km2 jedinicama

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

h0

h1 h2 h3 h4h5 h6

h7h8

h9 h10

Površina = ½[b1(h0+ h1) + b2(h1+ h2)+ b3(h2+ h3) + b4(h3+ h4)…+ b10(h9+ h10)]

Za jednake intervale b (npr. odstupanje se mjeri svakih 100 m):

Površina = b[h0/2 + h1 + h2 + h3 + h4 + h5 + h6 + h7 + h8 + h9 + h10/2]

Površina trapezoida = ½ b1(h0+ h1)

2. Računanje površine niza trapezoida

Površina = h/2 * (b1 + b2)

b2

hb1

Površina trapezoida

A

B

C

D

Površina ABCD=½(-X AYB-XBYC-XCYD-XDYA+YAXB+YBXC+YCXD+YDXA )

2xPovršina =[-X AYB-XBYC-XCYD-XDYA

+YAXB+YBXC+YCXD+YDXA]

ODUZIMANJE

ZBRAJANJE

(jednostavna metoda pamćenja formule)

3. Računanje površine pomoću koordinata

SVEMIRSKI SEGMENT24 satelita na 6 približno kružnih orbita (inklinacija 55° prema ekvatoru);24 satno pokrivanje između geografske širine 80°N i 80°SVisina cca 20 200km; Orbitalni period cca 12 h (brzina cca 14 000 km/h)Satelit opremljeni preciznim atomskim satovima - odašilju frekvencijski iznimno stabilne signale UKV

KONTROLNI SEGMENTPet kontrolnih stanica (C. Springs, Hawaii, Ascension, Diego Garcia, Kwajaleni) -praćenje i kontrola satelitaPodaci se prosljeđuju glavnoj kontrolnoj stanici (Colorado Springs)Orbitalni parameteri (precizne efemeride) i popravke sata korigiraju se i vračaju satelitima, a dalje korisnicima sustava

KORISNIČKI SEGMENTGPS prijamnici - pasivni uređaji koji bilježe i analiziraju satelitske signale za potrebe određivanja pozicije (pozicioniranja)Različite vrste prijamnika različite razine točnosti i uporabljivostiOpremljeni s manje preciznim satovima nego oni u satelitima

GPS - KOMPONENTEPotpuno operabilan od 1993

GPS MJERENJA

Svemirski segment

Kontrolni segment

Model orbitalnih podataka (efemerida) i korekcije satelitskih satova za svaki satelitGlavna kontrolna stanica šalje efemeride i korekcije sata satelitima

Sateliti tada šalju radio signalima podatke orbitalnih efemerida GPS prijamnicima

Struktura satelitskog signalaNoseći signal L1 L2Frekvencija 1575.42 MHz 1227.60MHzValna duljina 19cm 24cmModulacija koda C/A-code -

P(Y) kod P(Y) kodNAVDATA NAVDATA

Amplitudna Frekvencijska

modulacije

Fazna

Svaki satelit emitira dva noseća vala:L1 - frekvencija 1575.42 MHz i valna dužina cca 19cm

L2 - frekvencija 1227.60 MHz i valna dužina cca 24cm

Pseudosignali(pseudo random noise-PRN) kodovi modulirani na nosećem valu:Na L1: C/A (Coarse/Acquisition) kod λ cca 300m

Serije od 1023 bitova (chips) ponavlja se svake milisekundeP (precise) Y-kod kriptiran kod λ cca 30mNavigacijski podaci satelita svakih 12,5 minutaStanje satelita, korekcija satelitskog sata, i parameteri efemerida

Na L2: P samo kod

Korisnički segment: SignalKorisnički segment – GPS prijamnik

modul GPS prijamnika

SiRF III GPS prijamnik

s integriranom antenom

GPSMJERENJA

Zasnovan na osnovnoj fizikalnoj funkciji:

udaljenost (D)= brzina (c=ms-1) * vrijeme (s)

Opaženi pseudosignali sa 4 satelita osiguravaju 3 dimenzijonalnu poziciju

A

D=ρ+c∆t

PRINCIP GPS MJERENJA

Primljeni Signal

Kašnjenje satelit. signala

KAŠNJENJE

Uzorak poruke

Podudaranje uzorka

A

Z

X

Y

XP

YP

ZP

N

SEKVATOR

GREENWICHkimeridijan

SATELIT P

AP = √(XP-XA)2 + (YP-YA)2 + (ZP-ZA)2

Geocentrični kartezijevkoordinatni sustav

Koordinatni sustav ostvaren pomoću satelitskih orbita (efemerida) te koordinata lokacije kontrolnih i pratećih stanica.

Globalni sustav za pozicioniranje

Položaj:37o 23.323’ N

122o 02.162’ W

PRINCIP GPS MJERENJA

Trilaterateracija

Metode pozicioniranja

Metode pozicioniranja mogu biti:

• Statičke – za vrijeme mjerenja prijamnici su nepomični. Koordinate točaka se određuju apsolutno ili relativno.

• Kinematičke – prijamnik na referentnoj stanici je nepomičan, drugi se prijamnik kreće. Mogu se odrediti apsolutne ili relativne koordinate točaka.

Pri relativnom pozicioniranju položaj točke se može odrediti ili u realnom vremenu ili naknadnom obradom podataka.

Metode GPS mjerenjaPostoje dva osnovna principa GPS pozicioniranja:

• Apsolutno pozicioniranje je neovisno određivanje koordinata pojedinačnih točaka u odnosu na globalni koordinatni sustav (npr. WGS 84). Za primjenu ove metode dovoljan je jedan prijamnik.

• Relativno pozicioniranje je određivanje relativnog položaja između dva i više prijamnika koji istovremeno hvataju iste satelitske signale.

ECEF i WGS-84+Z

-Y

+X

ECEFX = -2691542.5437 mY = -4301026.4260 mZ = 3851926.3688 m

XY

Z

b

φ

H

WGS-84φ = 37o 23’ 26.38035” Nλ = 122o 02’ 16.62574” W

H = -5.4083 m

GPS visina i elevacija

h = Ortometrijska visinaH = Elipsoidna visina

N = Geoidna visina

h = H - N

NNN

h hh

H HH

GPS uređaji

Princip rada zasniva se na mjerenju vremena koje je potrebno elektromagnetskom valu da prijeđe udaljenost od satelita do prijemnika na Zemlji. Poznavajući točan položaj satelita i brzinu širenja elektromagnetskog vala možemo jednoznačno odrediti koordinatu točke ako nam je čisto nebo prema barem četiri satelita.

Metode određivanja koordinate točaka:

• statička

• kinematička

Prijemnike dijelimo na:

• jednofrekventni- potrebno je duže stajati na točci. Koordinate dobijemo u naknadnoj obradi uz pomoć računala i programa.

• dvofrekventni- omogućuju određivanje koordinata točaka u realnom vremenu.

Dilution of Precision GDOP-PDOPIonosferski efekt

1 m

mm

5 m

10 m

0.5 m

cm

100 m

20 m

RELATIVNO POZICIJONIRANJE

APSOLUTNO POZICIJONIRANJE

A B C D

A: Dvofrekventni; Geodetski, RTK (1cm)B: C/A kod & noseći signal + DGPS; post pocesiranje (10cm-1m)C: C/A kod + DGPS; (1-5m)D: C/A kod (10-15m)

PR

IBL

IŽN

A

T

NO

ST

Klasa za kartiranje

dm

KLASIFIKACIJA GPS URE ĐAJA

navigacijsko/rekreacijska

klasa

Bazne stanica na poznatoj točci Bazna stanica na slobodnoj točci

Diferencijalna korekcija odašilje se radiosignalom

“Kalibracija/Lokalna Transformacija”

Kinematika u realnom vremenu(Real Time Kinematic - RTK)

Izvori pogrešaka u GPSu

• ometanje signala

• Multipath

• Ionosferska pogreška

• Ljutska pogreška

1) Ometanje signalaAnti-Spoofing (AS)

Enkripcija P-kod signala????????

antena na nogarima

Prijamnik i računalo vezani na baznu mjernu stanicu

Premjeravanje granice na rijeciGPSom – Belize

Tirana, Albania

Primjena GPS mjerenja 2) Pogreška odbijanja signala

(Multipath)

3) Jonosferska pogreška Globalni navigacijski satelitski sustavi -

GNSSGLONASS GPS GALILEO

Broj satelita 24 (planirano) 30 (do 2004.) 30 (do 2010.)

Broj orbit.ravn. 3 6 3

Kut nagiba ravn. 64.8 stupnjeva 55 stupnjeva 56 stupnjeva

Orbitalna visina 19 130 km 20 180 km 23 222 km

Period revolucije 11 sati 15 min 11 sati 58 min 14 sati 21 min

Mjesto lansiranja Baikonur,Kazakhstan Cape Canaveral Florida

Baikonur,Kazakhstan

Datum I lansir. 02.10.1982. 22.02.1978. 26.06.2007.

Frekvencije L1

L21602.0–1614.94 MHz

7/9 L1

1575.42 MHz

60/77 L1

1575.42 MHz

40/90 L1

Datum PZ-90 WGS 84 ETRS

Referentno vrijeme

UTC (Rusija) UTC UTC

Prevencija i smanjivanje pogrešaka

• Vremenski smjestiti premjer unutar perioda dobre satelitske geometrije (nizak PDOP)

• Izbaciti satelite nisko na horizontu radi reduciranja duljine puta signal kroz atmosferu

• Izbjeći multipath prilike u blizini GPS antene

• Za precizno pozicioniranje koristiti diferencijalne korekcije i/ili fazno opažanje nosećeg vala

CROPOS

CROPOS sustav- 30 referentnih GNSS stanica

na udaljenosti od 70 km koje

prekrivaju cijelo područje RH

- Korekcijski parametri

dostupni putem mobilnog

Interneta (GPRS/GSM)

- Točnost određivanje položaja

±2 cm u realnom vremenu

- Nacionalna referentna GNSS

mreža - novi standardi

pozicioniranja i navigacije

FBIHPOSZadaća geodezije u građevinarstvuZadaci geodezije u građevinarstvu mogu se podijeliti u 3 faze:

• Zadaci u procesu izrade projekta: sakupljanje geodetskih podloga za potrebe idejnog projekta (<1:5 000), te izrada geodetskih podloga za potrebe glavnog projekta (>1:500);

• Zadaci tijekom gradnje objekta: Iskolčavanje objekta u horizontalnom i visinskom smislu; kontrola izvedenih građevinski radova, izmjera izvedenog stanja – katastarski eleborat;

• Zadaci tijekom eksploatacije objekta: probna ispitivanja opterećenja objekta i izmjera eventualnih pomaka i deformacija objekta.

Geodeti su prvi i zadnji na gradilištu!

ISKOLČAVANJE

Iskolčenje detaljnih točaka

Iskolčenje osi cesteVisinska iskolčenja

Iskolčenja

• Iskolčiti znači projektirani objekt prenijeti na teren.

• Iskolčenjem točaka objekta u prirodi određujemo:

• dimenzije,

• položaj i

• visinski odnosi;

• Rezultati iskolčenja su na različne načine fizički označene točke na terenu koje omogućavaju gradnju objekta ali i položaj i neometani rad građevinskih strojeva.

• Osnovne elemente iskolčenja zadani su projektom:

• horizontalni kut,

• duljina i

• visina (visinska razlika).

Metode iskolčenja točke• Iskolčenje se najčešće odvija u dvije faze:

• Iskolčenje osi projektiranog objekta

• Iskolčenje točaka objekta koje položajno i visinski obilježavaju objekt

• Os objekta se iskolčava s geodetske osnove, dok točke objekta koriste os objekta kao osnovu za iskolčenje.

• Metode iskolčenja:• Klasične:

• ortogonalna,

• polarna,

• presjek lukova i

• presijek pravaca;

• Satelitske - GPS RTK metoda;

• Kombinirane.

Iskolčenje osnovnih elemenataIskolčavanje kuta

Teodolitom - Jedan krak je zadan (A-B), a drugi trebamo odrediti (A-C) - Kut se iskolčava u jednom položaju durbina

Iskolčavanje duljine

Duljina predviđena projektom iskolčava se daljinomjerima ili vrpcom

Iskolčavanje visine (visinske razlike)

Geometrijskim nivelmanom - poznate su kota repera HR i projektirana kota HP traži se visinska razlika Δh= HP-HR

Ortogonalna metoda iskolčenjaElementi iskolčenja:

• Apscisa (x)

• Ordinata (y)

• Pravi kut

Instrumenti i pribor za iskolčenje:

• Pentagonalna prizma,

• tri trasirke,

• Dvije vrpce.

Elementi iskočenja dobiju se grafičkim očitanjem s plana.

Polarna metoda iskolčenja• Elementi iskolčenja:

• Duljina (d)

• Orijentacijski kut (φ)

• Instrumenti i pribor za iskolčenje:

• Mjerna (totalna) stanica,

• Prizma,

• Trasirka,

• Vrpca.

Elementi trase

Elementi trase u položajnom smislu

Elementi trase u vertikalnom smislu

GPS RTK metodaPrecizno određivanje koordinata velikog broja točaka u kratkom vremenu

Elementi iskolčenja:

• Duljina (d)

• Orijentacijski kut (φ)

Instrumenti i pribor za iskolčenje:

• GPS prijamnik,

• Rover.

KRIVINE - Vrste krivina:

R

R

Jednostavna krivina

Prijelazna krivina

R

R

spirala

spirala

Složena krivina

R

r

Reverzna krivina

R R

Definicija

“Stupanj krivine”Centralni kut koji zatvara luk od 100 m (autocesta)

D / 100m = 360 / 2p r = puni krug / opsegSo R = 5729.58 / D

“Stupanj krivine”Centralni kut koji zatvara tetivu od 100 m (željeznice)

100 m

RRD

Definicija luka

Definicija tetive

100 m

RRDR = 50 / sin D/2

FormuleLT = duljina tetiveM = središnja ordinataE = bisektrisaT = duljina tangentaα = središnji kutR = polumjer krivine

α

α/2R

R

E

M

LT

L

TT

α

PKKK

T = R tg α/2

L = 100 α0/D0 = R α rad

LT = 2 R sin α/2

R/ (R+E) = cos α/2 => E = R [(1/cos (α/2)) - 1]

(R - M)/R = cos α/2 => M = R [1 - (cos (α/2)]

α/2

ST = sjecište tangentiPK = početak krivineKK = kraj krivineL = duljina luka krivineLT = duljina tetive

TerminologijaST

PK

KK

L

LT

Stacijonaže (obično svakih 100 metara)

PIT

3+00

.00

L

PK sta = ST sta – TKK sta = PK sta + L

Polarna metoda

Iskolčavanje “stacionaže” (XX+00.00)odrediti početak krivine PK i sjecište tangenti ST kut otklona (d), izmjeriti duljinu tetive (c)

PK

ST

δ

c – duljina tetiva

PK KK

d1 DD D D d2

BVC

EVCXp

Yp

L/2 L/2L = duljina krivine

Y

X

Vertikalna geometrija krivine

V

Vertikalne krivine

“isbočenje” “ulegnuće”

Osiguravaju nesmetan prijelaz između različitih nagiba traseParabola – konstantni stupanj promjene nagiba

NAGIB:

4.00m

100m

Nagib = +4.00%+ rastući nagib- Padajući nagib

PRIJELAZNE KRIVINE• Brzo kretanja vozila prilikom neposrednog prijelaza iz pravca u kružni

luk, na vozilo i putnike iznenada nastupa djelovanje centrifugalne sile - za smanjivanje ovog djelovanja potrebno je postupno smanjivati polumjer zakrivljenosti (od beskonačnog – pravac - do vrijednosti polumjera kružnog luka) korištenjem odgovarajućihprijelaznih krivina.

• Prijelazne krivine su se, zbog većih brzina, prvo počele koristit kod željeznica, a kasnije i kod cesta.

• Kod željeznica se kao prijelazna krivina koristi kubna parabola, a kod cesta klotoida i lemniskata.

• Prijelaznica ima tri osnovne funkcije: • postupan prijelaz iz pravca u kružni luk• osiguravaju dovoljne duljine vitoperenja kolnika za prijelaz iz poprečnog

nagiba u pravcu na poprečni nagib u krivini• postupno proširenje kolnika iz širine potrebne u pravcu na širinu u

kružnom luku

Prijelazne krivine

R ∙ L= C klotoida

R ∙ Lx = C kubna parabola

R ∙ t = C lemniskata

Primjer normalnog cestovnog profila u nasipu

Normalni profil željezničkog nasipa

Računanje volumena

• Često se javlja potreba za računanjem volumena prilikom projektiranja:

• Volumen iskopanog materijala

• Volumen materijala potrebnog za nasipanje

• Volumen vode koja ispunjava depresiju (kod akomulacija)…

• Osnova za računanje volumena (zapremnina) je detaljno snimljen teren u horizontalnom i vertikalnom smislu. Pravilan izbor detaljnih točaka daje vjernije rezultate.

Računanje volumena iskopa do zadane kote

ha;hb; hc;hd - visine točaka iznad zadate kote

hsr = (ha+ hb + hc + hd) / 4

V = PA’B’C’D’ * hsr

Kod većih i nepravilnih površina čitavu površinu razbijemo na manje površine s približno jednakim padom.

Kada donja površina nije horizontalna ravnina tada za površinu svake figure računamo volumen od neke zamišljene ravnine do donje i gornje površine, a razlika volumena daje traženi volumen.

IZRAČUN MASA – KUBATURA

• Za izračun masa – kubatura kod gradnje prometnica, kao i drugih uzdužnih objekata posebno je pogodna metoda računanja masa iz poprečnih profila. Kod plošnih objekata, primjerice aerodroma, bazena, kamenoloma itd., koristi se metoda računanja masa iz mreže pravokutnika, kvadrata odnosno prizmi.

• Ako za projektirano područje postoji digitalni model reljefa, moguće je automatizirati izračun masa primjenom odgovarajućih računalnih programa. Metode računanja prvenstveno ovise o strukturi podataka u digitalnom modelu reljefa. Točke je moguće pohraniti na dva načina: uzduž profila –računanje masa iz poprečnih profila, pojedinačne točke, tj. u mreži kvadrata ili trokuta – računanjem masa iz prizmi.

• Površine se računaju iz koordinata točaka prema Gauss-ovoj trapeznoj formuli:

Računanje površine kod digitalnog modela terena

Geodezija u građevinarstvu

Geodetski radovi u građevinarstvu

• Prikupljanje postojećih i po potrebi izrada novih geodetskih podloga• Postavljanje normi za točnost građenja i iskolčenja objekta

(horizontalnog i vertikalnog)• Postavljanje geodetske osnove za iskolčavanje • Izbor metoda iskolčavanja (s obzirom na točnost)• Izbor instrumenata i pribora• Analiza točnosti izvršenog iskolčenja• Izmjera izvedenog stanja• Opažanje vertikalnog i horizontalnog pomaka – zaključci o stabilnosti

i sigurnosti objekta:• Mjerenje pomaka i deformacija najprije se počelo primjenjivati kod

oskultacija hidrotehničkih objekata (brana) 50tih godina prošlog stoljeća;• 70 tih godina – pojava preciznijih instrumenata i upotreba računala u

obradi podataka – pouzdanija ocjena točnosti;• GPS – nema stabilnih točaka – izjednačavaju se i točke osnovne mreže –

“deformacijska analiza”.

Geodezija u inženjerstvu

Projektiranje

Elaborat iskolčenja

Gradnja objekta

Preuzimanje objekta/Kontrolna mjerenja

Detaljna izmjera Katastarska izmjera

Iskolčavanje objekta Praćenje kvalitete izvedbe

Kontrola izgradnje Kontrolna mjerenja

Pomaci i deformacije

Deformacijska analizaKontrola kvalitete

Odstupanje

Mjerenje pomaka i deformacija

• Pomaci i deformacije nastaju zbog:

• Geološko hidrološke svojstva zemljišta te fizikalno mehaničkih svojstava zemljišta na kojem je objekt izgrađen (podloga za statički proračun građevinskog objekta);

• Stalnog ili povremenog opterećenja objekta (vozila, temperatura, vjetar…);

• Promjena mehaničkih svojstava materijala od kojih je objekt izgrađen.

• Geodetska mjerenja pomaka i deformacija obuhvaćaju sva mjerenja u određivanju promjene oblika objekta ili zemljišta pod utjecajem vanjskih ili unutarnjih sila;

• Geodetski radovi usmjereni su na:

• Određivanje pomaka i deformacija objekta i obližnjeg zemljišta na mikro lokaciji;

• Određivanje pomaka zemljišta na makro lokaciji.

Mreže posebnih namjena

• Kontrolna referentna i osnovna geodetska mreža

• Ove se mreže razvijaju za specijalne namjene kao što su mjerenja deformacija izgrađenih objekata

• Kod formiranja ovih mreža postavljaju se posebni uvjeti glede pogrešaka položaja točaka, odnosno potrebne točnosti mjerenja u ovakvim mrežama.

• Poseban način stabilizacije točaka (stupovi s prisilnim centriranjem, posebno fundirani reperi).

• Signalizacija posebnim signalima i markicama.

• Visoka točnost mjerenja preciznim instrumentima.

Pomak, deformacija i progib• Pomak je prostorna promjena položaja točke na objektu ili tlu.

Uslijed pomaka može doći do deformacije, ali i ne mora.

Dvije su komponente pomaka:

• horizontalnu (pomak u horizontalnom smislu)

• vertikalnu (slijeganje ili izdizanje)

• Deformacija je promjena oblika (obujma) tijela, odnosno iskrivljenje ili napuknuće koje nastaje uslijed nejednakih pomaka točaka. Ako je došlo do jednakih pomaka točaka, objekt se je pomakao ali ne i deformirao. Dakle, iskrivljenje ili pojave pukotina nastaje uslijed nejednakih pomaka točaka.

• Progib je reducirani pomak, tj. brojčana vrijednost koja se dobije za sredinu nosača (grede), kada se od veličine pomaka u sredini oduzme aritmetička sredina pomaka ležajeva.

Uspostava geodetske mreže

Geodetskih mreža posebnim namijena

Apsolutna mreža – sastoje se od dvije vrste točaka:• Osnovne - referentna mreža sa

koje se opaža

• Kontrolne – smještene na objektu

Relativna mreža – sve točke se nalaze na objektu – opažaju se relativni pomaci između točaka

Izvedba mreže• Rekognosciranje

• Stabilizacija i signalizacije

• Izmjera

Rekognosciranje – odabiranje najpovoljnijeg položaja točaka a da pri tom budu zadovoljeni određeni uvjeti (izbjegavati klizišta, sredinu parcele, obale rijeka, rub puta, izgrađene objekte, željezničke pruge, vodove itd).

Idealno projektirana referentna mreža za praćenje pomaka brane.

Vanjske referentne točke su nizvodno, a na akomulacijije čvrsta geodetska mreža

Apsolutna mreže za izgradnju i praćenje betonske brane (osnovne i

kontrolne točke)Praćenja pomaka ustava i brana

Načini praćenja pomaka i deformacija• Nakon izjednačavanja u mikrotrigonometrijskoj mreži dobiju

se koordinate (x, y) točaka na objektu, a nakon izjednačavanja nivelmanske mreže i visine točaka na objektu.

• Mjerenja se, uglavnom, obavljaju periodično (2 puta godišnje), a dobiveni podaci uspoređuju se sa nulto serijom (prvim mjerenjima)

• Razlike koordinata u odnosu na nultu seriju daju horizontalni pomak objekta, a razlike visina vertikalni daju pomak (slijeganje) objekta.

• Koordinate su u lokalnom koordinatnom sustavu (proizvoljan koordinatni početak).

Stabilizacija referentne točke

stabiliziranje čeličnim cijevima ili okruglim betonskim stupovima u čijem se centru postavlja instrument

Visina stupa 1,5 m

Signalna točkaOpažanje detajlnih točaka

Signalna točka

Vizirne marke za prisilno centriranje

Mjerenje pomaka i deformacija

Mjerenje vertikalnihpomaka invarskom žicom

Napuknuća objekatamjerno ravnalo

Lociranje podzemnih vodova

Poslijedice pomaka i deformacija objekata

Klizište

Progib

Vrste podzemnih vodova

FOTOGRAMETRIJA I DALJINSKA DETEKCIJA

FOTOGRAMETRIJA• Fotogrametrija izmjera je metoda mjerenja kojom se na temelju

fotografija ili scena elektromagnetskog zračenja dobivenih sa senzorskih sustava mogu rekonstruirati položaj i oblik objekata.

• Rezultati fotogrametrijske izmjere su fotokarte. • Kako snimak općenito nije strogo vertikalan, to će perspektivna slika

biti deformirana. Postupak spravljanja takve deformirane slike u ortogonalnu projekciju (ili neku drugu projekciju) određenog mjerila, naziva se redresiranjem.

• Upotreba snimaka snimljenih iz zraka ili svemira raznim tehnikama snimanja i mjerenja (fotografske, termalne, radarske snimke, radiometrijska mjerenja) bez dodira sa snimljenim objektom naziva se daljinskim istraživanjem (remote sensing). Primjenom metoda daljinskih istraživanja dobivaju se dodatne informacije o Zemlji (geomorfološke, geološke, pedološke, šumarske, hidrološke, arheološke i dr.).

Povijest fotogrametrije• Prva snimanja Zemlje iz zraka sredina 19. stoljeća:

• 1858. iz balona se snima područja Pariza, a

• 1862. zračni snimci Richmonda u Virginiji koriste se u Američkom građanskom ratu.

• Masovna primjena zračnih snimaka i fotointerpretacije započela je u I, a nastavljena je u II svjetskom ratu.

• Revoluciju - snimanja iz svemira; prvo snimanje 1959. godine - satelit Explorer 6.

• Do početka 1970-ih godina u razvoju satelitskih daljinskih istraživanja prednjačile su SAD i bivši SSSR (namjena –vojna) nakon toga priključuju se i ostale zemlje.

• Institucije: • NASA – National Aeropnautics and Space Administration (SAD)

• ESA - European Space Agency (EU).

Fotogrametrija

• Mjerenja sa fotomaterijala pomoću steroskopije (dvije snimke)!

Analogna →Digitalna (kamera - obrada)

Digitalna fotogrametrija:

• Automatizirano generiranje digitalnog modela terena (autokorelacija) i ortofotoobrada!

• Digitalna kamera sakuplja multispektralne podatke

• Visoka horizontalna točnost: u cm (ručnom stereoobradom)

• Prikladna za topografsko kartiranje velikih područja

Anaglifni stereopar (Pierre Gidon - Francuske

Alpe)

Trajektorija leta aviona

Fotogrametrijskekamere

Senzori u fotogrametriji : • Analogna foto kamera, • Digitalna foto kamera (CCD), • Laserski (LIDAR), • Interferometrijski radar

(InSAR ili IfSAR).

U fotogrametriju se rabe zrakoplovni senzori ali kako se povećava moć razlučivanja i točnost položaja objekata

na snimkama, raste uporaba satelitskih senzora.

FotogrametrijaVRSTE SNIMANJA• Terestrička ili blizu-predmetna fotogrametrija• Aerofotogrametrija

• Satelitska fotogrametrija (i-ili daljinska detekcija)TEHNOLOGIJA OBRADE• Analogna fotogrametrija koristi optičke, mehaničke i elektronske

komponente; snimci analogni; 3D model za mjerenje u prostoru• Analitička fotogrametrija – 3D modeliranje je matematičko – nema 3D

modela; sva mjerenja se izvode nad 2D analognim snimcima• Digitalna fotogrametrija –digitalni snimci; tehnike digitalne obrade slike.BROJ SNIMAKA• Pojedinačni snimak - ortoprojekcija• Par snimaka - stereorestitucija• Blok snimaka – blokaerotriangulacija• Niz (sekvenca snimaka) - film

Fotogrametrijski snimciPODJELA SNIMAKA prema:

• položaju kamere u prostoru: aero, terestrička, orbitalna.

• snimci u prostoru: vertikalna, približno vertikalna, kosa i horizontalna.

• načinu rekonstrukcije (obrade) modela: analogna, analtička i digitalna.

• vrsti snimki: analogna i digitalna.

• kameri koja se koristi: mjerna i nemjerna.

Klasifikacija u odnosu na položaj snimke u prostoru:

Aerofotografije• Slika određenoga područja; koja sadrži informacije o objektima na

terenu;

• Snimljena u centralnoj projekciji;

• Na pojedinačnim snimcima visinska predodžba je slaba / par snimaka daje vjernu predodžbu reljefa.

Orijentacijske i kontrolne točake

GeoregistracijaGeorektifikacija

Služe za orijentaciju pojedinih modela. To su unaprijed signalizirane točke iliprirodni dobro definirani detalji, određene geodetskim metodama (triangulacijom , poligonometrijom ili GPSom) ili fotogrametrijskim postupcima (aerotriangulacija).

Uzdužni i poprečni preklopDa bi se ostvarilo potpuno prekrivanje određenog područja snimanje je

potrebno izvršiti s određenim uzdužnim i poprečnim preklapanjem (usmjeru leta i između susjednih nizova) snimki.

Uzdužni preklop 60% - Poprečni preklop 20% - 30%

STEREOPAR

Orijentacije• Izmjera modela prethodi:

• Unutarnja orijentacija rekonstrukcije vanjskog snopa zraka (orijentacije snimke prema projekcijskom središtu).

OrijentacijeRelativna orijentacija je orijentacija jedne snimke prema drugoj

(međusobne orijentacije vanjskih snopova) kako bi na presjeku bio stvoren umanjeni nedeformirani model snimljenog područja.

Apsolutna orijentacija je orijentacije rekonstruiranog modela u odnosu na referentni koordinatni sustav.

Apsolutna orijentacija

Relativna orijentacija

DALJINSKA ISTRAŽIVANJA• Daljinska istraživanja (DI) (engl. remote sensing,) tehnologija

uporabe senzora elektromagnetskih zračenja za registriranje slika ili drugih vrsta podataka o objektu, koji se mogu interpretirati i tako dobiti korisne informacije o objektu. Podaci se dobivaju iz velike udaljenosti (od nekoliko stotina do nekoliko tisuća kilometara) instrumentima postavljenim u zračne ili svemirske letjelice.

• Teledetekcija - daljinsko istraživanje u užem smislu - prikupljanje informacija o Zemljinoj površini s uređajima smještenim u satelitima i njihova interpretaciju.

• Cilj daljinskih istraživanja - brzo i ekonomično dobivanje preciznih informacija o relativno velikim područjima. Sustavnim ponavljanjem snimanja moguće je pratiti i registrirati dnevne, sezonske i godišnje promjene neke pojave. Objekt daljinskih istraživanja su svi elementi Zemljine površine i atmosfere u vidnom polju senzora.

Stereoobrada snimakaTipi čna radna stanica

Platforme

Prostorno razlučivanje senzora za DI

Satelit senzor razlučivanje na Zemlji

Landsat MSS 80m

Landsat Thematic Mapper 30m

SPOT XS (Multispectral) 20m

SPOT pankromatski 10m

SPOT5 monospektralni 2.5 m

SPOT5 multispektralni 10 m

Ikonos multispektralni 4m

Ikonos pankromatski 1m

Quick Bird pankromatski 0.61-072 m

Quick Bird multispektralni 2.44-2.88 m

Primjer: razlučivanje nekih satelitskih senzora

Ortofotografija• Ortofoto snimak konstruiran je iz vertikalne ili blizu vertikalne aerofoto snimke, tako

da je efekt centralne perspektive te reljefnog pomaka i nagiba (praktično) uklonjen.

• Digitalna ortophoto snimka rektificirana su (ispravljena) prema tisućamageoprostornih (XYZ) točaka, a obilježja slike ortogonalno se usklađuju. To rezultiraortofotografijom. Ortofoto karta je ortofotografija sa dodanim kartografskim podacima. Obično su to kartografska mreža, linije posjeda, političke granice, geografski nazivi, planimetrijska obilježja i ostali odabrani podaci i linije.

Ortografska i perspectivna slika

Snimaku boji

Crno-bijelisnimak

Infracrveni snimak

Ortorektifikacija

Ortofoto snimak

Ortofotokarta

LIDAR• Lidar (Light Detection and Ranging)- Integracija lasera (aktiveni

senzor), GPS, INS (inercijalni navigacijski sustav)

• Skener smješten na avionu. Mjere se udaljenosti od aviona do terena pa se na osnovu tih udaljenosti i smjera zraka dobije izgled terena.

Vertikalna točnost (15 cm) horizontalna točnost (50 –100 cm)Nije dobar za kamenita područja, vode, zahtijeva dosta filtriranja vegetacije

GIS

Definicija GISa

“Geografski informacijski sustav (GIS) je sustav za

obuhvaćanje, spremanje, provjeru, integriranje, manipuliranje,

analizu i prikazivanje podataka na Zemlji koji su prostorno

referirani. U taj sustav obično je uključena baza prostornih

podataka i odgovarajući programi.“

Povijesni pregled GIS-a

Tehnologija GIS-a razvila se iz:

� CAD sustava

� sustava za upravljanje bazama podataka

GIS kao tehnologija - osnovni pojmovi• GIS (Geographic Information

System) se sastoji od programske, strojne i komunikacijske opreme, baze podatake (DBMS), korisnika i stručnih osoba, te poslovnog i organizacijskog modela.

• Informacijski sustav (IS) tvore u bazi spremljeni podaci, ljudski potencijal (znanje i

iskustvo) i oruđa (tehnička

pomagala), koji s nizom organizacijskih postupaka i financijskim izvorima proizvode informacije za potporu upravljanju, poslovanju i odlučivanju.

podaci informacije

GIS oruđe

Upravljanje i analiza podatakaDa bi GIS imao vrijednost mora omogućiti široki raspon funkcija za upravljanje i analizu podataka. Prema tome, svaki “dobar” GIS bi trebao moći odgovoriti na postavljena pitanja kao što su:

Što će se dogoditi ako........se kemikalije izliju u rijeku?

Gdje.......zeleni pojas stoji u odnosu na grad?

Je li.......se stanovništvo promijenilo u zadnjih 10 godina?

Postoji li prostorna povezanost uz.....vlasništvo automobila u našem području?

Postupci u GIS-u

Postupci u GIS-u načešće se mogu smatrati jednom od sljedećih radnji:

• unos podataka

• spremanje podataka

• upravljanje podacima

• analiza podataka

• ispis rezultata

131

Javne tvrtkeJavne tvrtke

Privatne tvrtkePrivatne tvrtke

Državna upravaDržavna uprava

InternetInternet

Podaci koje

kreira korisnik

Podaci koje

kreira korisnik

Digitalne karteDigitalne karte

FotogrametrijaFotogrametrija

Daljinska istraživanjaDaljinska istraživanja

GPSGPS

......

Izvori podataka za GIS

Sklopovlje u GIS-uRačunala:

Ručna

Terenska

Prijenosna

osobna računala

radne stanice

velika računala

Ostali se uređaji:Skeneri

Pisači

ploteri

mrežni uređaji itd.

Prikupljanje podataka - sekundarni izvori podataka

Skeniranje podataka:

• rezultat su rasterski podatci;

• geokodiranje.

Vektorska digitalizacija:

• rezultat su vektorski podatci;

• geokodiranje lokacije.

Zaslonska digitalizacija:

• vektorska digitalizacija na zaslonu (ručna ili

poluautomatska),

• geokodiranje lokacije.

SOFTVER U GIS-u

• sinonimi - računalni program, program

• naredbe (instrukcije) koje izvršava računalo može se podijeliti u dvije kategorije:

• softver sustava (operacijski sustavi)

• aplikacijski softver (obrada teksta; stolno nakladništvo; obradu slike; obradu baze podataka; obradu zvuka; tablično računanje).

• Softver za GIS (AutoCAD Map; Microstation MGE; Arc/Info; MapInfo; IDRISI; GeoMedia; GRASS...)

• Posjetite internet stranice ...

• www.autodesk.com

• www.esri.com

• www.mapinfo.com

• www.freegis.org

• www.bentley.com

• www.intergraph.com

Vektorski i rasterski model podataka

Vektorski model:• položaj - Kartezijeve koordinate

• vrijednost atributa se dodjeljuje preko identifikacijskog broja objekta u tablici

• diskretni fenomeni (npr. granice parcela, zgrade, administrativne granice, prometnice)

Rasterski model:• položaj - ćelija mreže (redak,

stupac)• vrijednost atributa se prikazuje

kao vrijednost ćelije• kontinuirani fenomeni (npr.

teren, temperatura, tipovi tala)

Organizacija i spremanje prostornih podataka

• Dva su (grafička) oblika prostornih podataka: vektorski i rasterski.

• Pored različnih tehnika spremanja za oba pristupa su ključne metode

i oruđa za prostorne analize rasterskih i vektorskih podateke.

STVARNOST VEKTORSKItočke, linije i površine)

VEKTORSKI(točke, linije i površine)

RASTERSKIRASTERSKI(mreža čelija)

MODEL PODATAKA U GIS-uRealni svijet se sastoji od diskretnih i kontinuiranih objekata.

Obje vrste objekata treba prikazati tako da ih je moguće analizirati računalom.

Model i prikaz GIS podataka

• Analogni prikaz geografskih objekata su karte na papiru. Njihov digitalni prikaz sastoji se od koordinata, grafičkih elemenata i atributa. GIS zahtijeva da i karte i podaci budu prikazani kao brojevi. GIS stavlja brojeve u memoriju ili datoteke - fizički model podataka.

• Logički model podataka jest organizacija podataka u GIS-u. GIS upotrebljava rasterske i vektorske podatke.

Formati podatakaBaza podataka GISa može sadržavati različite prostorne podatke iz različitih podatkovnih nizova.

Logički model podataka - organizacija podataka u GIS-u

Stvarnost je potrebno modelirati jer ju nije moguće prikazati u svoj njezinoj složenosti.

1. izbor objekata koji su od važnosti za pojedini zadatak ili projekt.

2. izbor prikaza pojedinog objekta u digitalnom modelu (točka, linija, poligon).

3. pripremanje kataloga objekata može - identifikacija objekata u stvarnosti i na njihovim prikazom u modelu.

4. svakom objektu se dodaju dodatne opisne informacije (atributi) kojima se on pobliže opisuje.

Izbor geometrijskog prikaza objekata

Identifikacija i model objekta

Dodatno opisivanje objekta atributima

Različiti modeli prostora (mjerila) u sustavu GISa

" makro" GIS - mjesto,općina, regija itd.

" mini" GIS - bolnica,hotel, pristanište itd.

Različita obrada modela prostora u sustavu GISa Što je geokodiranje?

Geokodiranje je određivanje položaja objekata i pojava u prostoru.

Pretpostavlja se postojanje referentnog sustava (koordinatnog):

• geocentrični koordinatni sustav (geografski, WGS, ESRS itd.),

• projekcijski koordinatni sustav (UTM, Gau β-Krüger itd.).

Kartografska obrada 2D modela prostora u GISu (još) prevladavaju

vektorska

rasterska

2D slojevi podataka

Prostorne veze među objektima

• TOPOLOGIJA (eng. Topology) je dio matematike koji proučava ona svojstva geometrijskih likova koja su nepromjenjiva pri neprekidnim deformacijama

blizina objekata (engl. proximity) udaljenosti objekata

povezanost objekata (engl. connectivity) objekti se spajaju

graničenje, susjedstvo (engl. adjacency) objekti imaju neku zajedničku granicu

sadržavanje (engl. containment) objekt unutar objekta ili se preklapaju

Grafička struktura vektorskih podataka i geometrijske komponenteU GIS-u, topološki odnosi, kao što su povezanost, susjedstvo i relativni položaji, obično se izražavaju kao odnosi među čvorovima, lukovima i

poligonima.

Budućnost ?!