29
Geochemistry Articles – April 2013 Analytical Chemistry Correlation of precursor and product ions in single-stage high resolution mass spectrometry. A tool for detecting diagnostic ions and improving the precursor elemental composition elucidation Borràs, S., Kaufmann, A., Companyó, R., 2013. Analytica Chimica Acta 772, 47–58. http://www.sciencedirect.com/science/article/pii/S0003267013002262 Analysis of petroleum aromatics by laser-induced acoustic desorption/tunable synchrotron vacuum ultraviolet photoionization mass spectrometry Chen, J., Jia, L., Zhao, L., Lu, X., Guo, W., Weng, J., Qi, F., 2013. Energy & Fuels 27, 2010–2017. http://dx.doi.org/10.1021/ef3018207 Monitoring the liquid/liquid extraction of naphthenic acids in brazilian crude oil using electrospray ionization FT-ICR mass spectro- metry (ESI FT-ICR MS) Colati, K.A.P., Dalmaschio, G.P., de Castro, E.V.R., Gomes, A.O., Vaz, B.G., Roma ˇo, W., 2013. Fuel 108, 647–655. http://www.sciencedirect.com/science/article/pii/S0016236113000951 Py-GC/MS as a powerful and rapid tool for determining lignin compositional and structural changes in biological processes Dey Laskar, D., Ke, J., Zeng, J., Gao, X., Chen, S., 2013. Current Analytical Chemistry 9, 335–351. http://eurekaselect.com/node/109048 Quantitative measurements of small molecule mixtures using laser electrospray mass spectrometry Flanigan, P.M., Perez, J.J., Karki, S., Levis, R.J., 2013. Analytical Chemistry 85, 3629–3637. http://dx.doi.org/10.1021/ac303443q High speed Deans switch for low duty cycle comprehensive two-dimensional gas chromatography Ghosh, A., Bates, C.T., Seeley, S.K., Seeley, J.V., 2013. Journal of Chromatography A 1291, 146–154. http://www.sciencedirect.com/science/article/pii/S0021967313005621 Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry characterization of tunable carbohydrate-based materials for sorption of oil sands naphthenic acids Headley, J.V., Peru, K.M., Mohamed, M.H., Wilson, L., McMartin, D.W., Mapolelo, M.M., Lobodin, V.V., Rodgers, R.P., Marshall, A.G., 2013. Energy & Fuels 47, 1772–1778. http://dx.doi.org/10.1021/ef3014713 Tutorial: Simulating chromatography with Microsoft Excel macros Kadjo, A., Dasgupta, P.K., 2013. Analytica Chimica Acta 773, 1–8. http://www.sciencedirect.com/science/article/pii/S0003267012017321 Structural characterization of bacterial lipopolysaccharides with mass spectrometry and on- and off-line separation techniques Kilár, A., Dörnyei, Á., Kocsis, B., 2013. Mass Spectrometry Reviews 32, 90–117. http://dx.doi.org/10.1002/mas.21352 Autophaser: An algorithm for automated generation of absorption mode spectra for FT-ICR MS Kilgour, D.P.A., Wills, R., Qi, Y., O’Connor, P.B., 2013. Analytical Chemistry 85, 3903–3911. http://dx.doi.org/10.1021/ac303289c http://dx.doi.org/10.1016/j.orggeochem.2013.05.001 Organic Geochemistry 60 (2013) e1–e29 Contents lists available at SciVerse ScienceDirect Organic Geochemistry journal homepage: www.elsevier.com/locate/orggeochem

Geochemistry articles – April 2013

Embed Size (px)

Citation preview

Page 1: Geochemistry articles – April 2013

Organic Geochemistry 60 (2013) e1–e29

Contents lists available at SciVerse ScienceDirect

Organic Geochemistry

journal homepage: www.elsevier .com/locate /orggeochem

Geochemistry Articles – April 2013

Analytical Chemistry

Correlation of precursor and product ions in single-stage high resolution mass spectrometry. A tool for detecting diagnostic ions andimproving the precursor elemental composition elucidationBorràs, S., Kaufmann, A., Companyó, R., 2013. Analytica Chimica Acta 772, 47–58.http://www.sciencedirect.com/science/article/pii/S0003267013002262

Analysis of petroleum aromatics by laser-induced acoustic desorption/tunable synchrotron vacuum ultraviolet photoionizationmass spectrometryChen, J., Jia, L., Zhao, L., Lu, X., Guo, W., Weng, J., Qi, F., 2013. Energy & Fuels 27, 2010–2017.http://dx.doi.org/10.1021/ef3018207

Monitoring the liquid/liquid extraction of naphthenic acids in brazilian crude oil using electrospray ionization FT-ICR mass spectro-metry (ESI FT-ICR MS)Colati, K.A.P., Dalmaschio, G.P., de Castro, E.V.R., Gomes, A.O., Vaz, B.G., Romao, W., 2013. Fuel 108, 647–655.http://www.sciencedirect.com/science/article/pii/S0016236113000951

Py-GC/MS as a powerful and rapid tool for determining lignin compositional and structural changes in biological processesDey Laskar, D., Ke, J., Zeng, J., Gao, X., Chen, S., 2013. Current Analytical Chemistry 9, 335–351.http://eurekaselect.com/node/109048

Quantitative measurements of small molecule mixtures using laser electrospray mass spectrometryFlanigan, P.M., Perez, J.J., Karki, S., Levis, R.J., 2013. Analytical Chemistry 85, 3629–3637.http://dx.doi.org/10.1021/ac303443q

High speed Deans switch for low duty cycle comprehensive two-dimensional gas chromatographyGhosh, A., Bates, C.T., Seeley, S.K., Seeley, J.V., 2013. Journal of Chromatography A 1291, 146–154.http://www.sciencedirect.com/science/article/pii/S0021967313005621

Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry characterization of tunablecarbohydrate-based materials for sorption of oil sands naphthenic acidsHeadley, J.V., Peru, K.M., Mohamed, M.H., Wilson, L., McMartin, D.W., Mapolelo, M.M., Lobodin, V.V., Rodgers, R.P., Marshall, A.G., 2013.Energy & Fuels 47, 1772–1778.http://dx.doi.org/10.1021/ef3014713

Tutorial: Simulating chromatography with Microsoft Excel macrosKadjo, A., Dasgupta, P.K., 2013. Analytica Chimica Acta 773, 1–8.http://www.sciencedirect.com/science/article/pii/S0003267012017321

Structural characterization of bacterial lipopolysaccharides with mass spectrometry and on- and off-line separation techniquesKilár, A., Dörnyei, Á., Kocsis, B., 2013. Mass Spectrometry Reviews 32, 90–117.http://dx.doi.org/10.1002/mas.21352

Autophaser: An algorithm for automated generation of absorption mode spectra for FT-ICR MSKilgour, D.P.A., Wills, R., Qi, Y., O’Connor, P.B., 2013. Analytical Chemistry 85, 3903–3911.http://dx.doi.org/10.1021/ac303289c

http://dx.doi.org/10.1016/j.orggeochem.2013.05.001

Page 2: Geochemistry articles – April 2013

e2 Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Monolithic column in gas chromatographyKurganov, A., 2013. Analytica Chimica Acta 775, 25–40.http://www.sciencedirect.com/science/article/pii/S0003267013002912

Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: Separating and assigning structures to ionsLapthorn, C., Pullen, F., Chowdhry, B.Z., 2013. Mass Spectrometry Reviews 32, 43–71.http://dx.doi.org/10.1002/mas.21349

Enhancing the sensitivity of molecular secondary ion mass spectrometry with C60+-O2

+ cosputteringLiao, H.-Y., Lin, K.-Y., Kao, W.-L., Chang, H.-Y., Huang, C.-C., Shyue, J.-J., 2013. Analytical Chemistry 85, 3781–3788.http://dx.doi.org/10.1021/ac400214t

Multidimensional gas chromatography using microfluidic switching and low thermal mass GC for the characterization of targetedvolatile organic compoundsLuong, J., Gras, R., Hawryluk, M., Shellie, R.A., Cortes, H.J., 2013. Journal of Chromatography A 1288, 105–110.http://www.sciencedirect.com/science/article/pii/S0021967313004020

Selectivity of bio-oils catalytic hydrotreatment assessed by petroleomic and GC*GC/MS-FID analysisOlcese, R., Carré, V., Aubriet, F., Dufour, A., 2013. Energy & Fuels 27, 2135–2145.http://dx.doi.org/10.1021/ef302145g

Oxygen speciation in upgraded fast pyrolysis bio-oils by comprehensive two-dimensional gas chromatographyOmais, B., Crepier, J., Charon, N., Courtiade, M., Quignard, A., Thiebaut, D., 2013. Analyst 138, 2258–2268.http://dx.doi.org/10.1039/C2AN35597C

OmniSpect: An open MATLAB-based tool for visualization and analysis of matrix-assisted laser desorption/ionization and desorptionelectrospray ionization mass spectrometry imagesParry, R.M., Galhena, A.S., Gamage, C.M., Bennett, R.V., Wang, M.D., Fernández, F.M., 2013. Journal of the American Society for Mass Spectro-metry 24, 646–649.http://dx.doi.org/10.1007/s13361-012-0572-y

MALDI TOF MS profiling of bacteria at the strain level: A reviewSandrin, T.R., Goldstein, J.E., Schumaker, S., 2013. Mass Spectrometry Reviews 32, 188–217.http://dx.doi.org/10.1002/mas.21359

Large scale MALDI-TOF MS based taxa identification to identify novel pigment producers in a marine bacterial culture collectionStafsnes, M.H., Dybwad, M., Brunsvik, A., Bruheim, P., 2013. Antonie van Leeuwenhoek 103, 603–615.http://dx.doi.org/10.1007/s10482-012-9844-6

Directly coupled high-performance liquid chromatography–accelerator mass spectrometry measurement of chemically modifiedprotein and peptidesThomas, A.T., Stewart, B.J., Ognibene, T.J., Turteltaub, K.W., Bench, G., 2013. Analytical Chemistry 85, 3644–3650.http://dx.doi.org/10.1021/ac303609n

Isotope cluster-based compound matching in gas chromatography/mass spectrometry for non-targeted metabolomicsWegner, A., Sapcariu, S.C., Weindl, D., Hiller, K., 2013. Analytical Chemistry 85, 4030–4037.http://dx.doi.org/10.1021/ac303774z

Mass spectrometry imaging under ambient conditionsWu, C., Dill, A.L., Eberlin, L.S., Cooks, R.G., Ifa, D.R., 2013. Mass Spectrometry Reviews 32, 218–243.http://dx.doi.org/10.1002/mas.21360

Archaeological/Art Organic Chemistry

A preliminary carbon and nitrogen isotopic investigation of bone collagen from skeletal remains recovered from a Pre-Columbianburial site, Matanzas Province, CubaBuhay, W.M., Chinique de Armas, Y., Rodriguez Suárez, R., Arredondo, C., Smith, D.G., Armstrong, S.D., Roksandic, M., 2013. AppliedGeochemistry 32, 76–84.http://www.sciencedirect.com/science/article/pii/S0883292712002454

Page 3: Geochemistry articles – April 2013

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29 e3

Earliest evidence for the use of potteryCraig, O.E., Saul, H., Lucquin, A., Nishida, Y., Tache, K., Clarke, L., Thompson, A., Altoft, D.T., Uchiyama, J., Ajimoto, M., Gibbs, K., Isaksson, S.,Heron, C.P., Jordan, P., 2013. Nature 496, 351–354.http://dx.doi.org/10.1038/nature12109

Illuminating the Late Mesolithic: Residue analysis of ’blubber’ lamps from northern EuropeHeron, C., Andersen, S., Fischer, A., Glykou, A., Hartz, S., Saul, H., Steele, V., Craig, O., 2013. Antiquity 87, 178–188.http://antiquity.ac.uk/ant/087/ant0870178.htm

Palaeodiet, horticultural transitions and human health during the Lapita and post-Lapita periods on Uripiv island, northeastMalekula, Vanuatu (3000-2300 BP)Kinaston, R., Buckley, H., Bedford, S., Hawkins, S., 2013. HOMO - Journal of Comparative Human Biology 64, 151.http://www.sciencedirect.com/science/article/pii/S0018442X13000383

Paleolithic human exploitation of plant foods during the last glacial maximum in North ChinaLiu, L., Bestel, S., Shi, J., Song, Y., Chen, X., 2013. Proceedings of the National Academy of Sciences 110, 5380–5385.http://www.pnas.org/content/110/14/5380.abstract

Stable isotopes and diet: Their contribution to Romano-British researchMüldner, G., 2013. Antiquity 87, 137–149.http://antiquity.ac.uk/ant/087/ant0870137.htm

Dead Sea asphalt in ancient Egyptian mummies—Why?Nissenbaum, A., Buckley, S., 2013. Archaeometry 55, 563–568.http://dx.doi.org/10.1111/j.1475-4754.2012.00713.x

Role of the microboring marine organisms in the deterioration of archaeological submerged lapideous artifacts (Baia, Naples, Italy)Ricci, S., Pietrini, A.M., Bartolini, M., Perasso, C.S., 2013. International Biodeterioration & Biodegradation 82, 199–206.http://www.sciencedirect.com/science/article/pii/S0964830513001030

Palaeodietary reconstruction at An SonWillis, A., Oxenham, M., 2013. HOMO - Journal of Comparative Human Biology 64, 161.http://www.sciencedirect.com/science/article/pii/S0018442X13000632

Astrobiology

The sample handling system for the Mars Icebreaker Life mission: From dirt to dataDavé, A., Thompson, S.J., McKay, C.P., Stoker, C.R., Zacny, K., Paulsen, G., Mellerowicz, B., Glass, B.J., Willson, D., Bonaccorsi, R., Rask, J., 2013.Astrobiology 13, 354–369.http://dx.doi.org/10.1089/ast.2012.0911

The Icebreaker Life mission to Mars: A search for biomolecular evidence for lifeMcKay, C.P., Stoker, C.R., Glass, B.J., Davé, A.I., Davila, A.F., Heldmann, J.L., Marinova, M.M., Fairen, A.G., Quinn, R.C., Zacny, K.A., Paulsen, G.,Smith, P.H., Parro, V., Andersen, D.T., Hecht, M.H., Lacelle, D., Pollard, W.H., 2013. Astrobiology 13, 334–353.http://dx.doi.org/10.1089/ast.2012.0878

Selecting samples for Mars sample return: Triage by pyrolysis-FTIRSephton, M.A., Court, R.W., Lewis, J.M., Wright, M.C., Gordon, P.R., 2013. Planetary and Space Science 78, 45–51.http://www.sciencedirect.com/science/article/pii/S0032063313000068

Biochemistry

Fractionation and purification of membrane lipids from the archaeon Thermoplasma acidophilum DSM 1728/10217Antonopoulos, E., Freisleben, H.J., Krisnamurti, D.G.B., Estuningtyas, A., Mulyanto, C., Ridwan, R., Freisleben, S.K.U., 2013. Separation andPurification Technology 110, 119–126.http://www.sciencedirect.com/science/article/pii/S1383586613001524

Distribution and origin of oxygen-dependent and oxygen-independent forms of Mg-protoporphyrin monomethylester cyclaseamong phototrophic proteobacteriaBoldareva-Nuianzina, E.N., Bláhová, Z., Sobotka, R., Koblízek, M., 2013. Applied and Environmental Microbiology 79, 2596–2604.http://aem.asm.org/content/79/8/2596.abstract

Page 4: Geochemistry articles – April 2013

e4 Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Bacterial flagella explore microscale hummocks and hollows to increase adhesionFriedlander, R.S., Vlamakis, H., Kim, P., Khan, M., Kolter, R., Aizenberg, J., 2013. Proceedings of the National Academy of Sciences 110,5624–5629.http://www.pnas.org/content/110/14/5624.abstract

Squalene hopene cyclases: Highly promiscuous and evolvable catalysts for stereoselective CAC and CAX bond formationHammer, S.C., Syrén, P.-O., Seitz, M., Nestl, B.M., Hauer, B., 2013. Current Opinion in Chemical Biology 17, 293–300.http://www.sciencedirect.com/science/article/pii/S1367593113000215

Extractable liquid, its energy and hydrocarbon content in the green alga Botryococcus brauniiLi, Y., Moore, R.B., Qin, J.G., Scott, A., Ball, A.S., 2013. Biomass and Bioenergy 52, 103–112.http://www.sciencedirect.com/science/article/pii/S0961953413001281

Adjusting membrane lipids under salt stress: The case of the moderate halophilic organism Halobacillus halophilusLopalco, P., Angelini, R., Lobasso, S., Köcher, S., Thompson, M., Müller, V., Corcelli, A., 2013. Environmental Microbiology 15, 1078–1087.http://dx.doi.org/10.1111/j.1462-2920.2012.02870.x

Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteriaOstroumov, E.E., Mulvaney, R.M., Cogdell, R.J., Scholes, G.D., 2013. Science 340, 52–56.http://www.sciencemag.org/content/340/6128/52.abstract

The carotenoid biosynthetic pathway: Thinking in all dimensionsShumskaya, M., Wurtzel, E.T., 2013. Plant Science 208, 58–63.http://www.sciencedirect.com/science/article/pii/S016894521300068X

High-rate, high-yield production of methanol by ammonia-oxidizing bacteriaTaher, E., Chandran, K., 2013. Environmental Science & Technology 47, 3167–3173.http://dx.doi.org/10.1021/es3042912

Prokaryotic responses to hydrostatic pressure in the ocean – a reviewTamburini, C., Boutrif, M., Garel, M., Colwell, R.R., Deming, J.W., 2013. Environmental Microbiology 15, 1262–1274.http://dx.doi.org/10.1111/1462-2920.12084

Release of dissolved carbohydrates by Emiliania huxleyi and formation of transparent exopolymer particles depend on algal life cycleand bacterial activityVan Oostende, N., Moerdijk-Poortvliet, T.C.W., Boschker, H.T.S., Vyverman, W., Sabbe, K., 2013. Environmental Microbiology 15, 1514–1531.http://dx.doi.org/10.1111/j.1462-2920.2012.02873.x

Biodegradation

Biodegradation of crude oil by Scenedesmus obliquus and Chlorella vulgaris growing under heterotrophic conditionsEl-Sheekh, M.M., Hamouda, R.A., Nizam, A.A., 2013. International Biodeterioration & Biodegradation 82, 67–72.http://www.sciencedirect.com/science/article/pii/S0964830513000516

Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seepsJaekel, U., Musat, N., Adam, B., Kuypers, M., Grundmann, O., Musat, F., 2013. ISME Journal 7, 885–895.http://dx.doi.org/10.1038/ismej.2012.159

Biodegradation of alkyl branched aromatic alkanoic naphthenic acids by Pseudomonas putida KT2440Johnson, R.J., Smith, B.E., Rowland, S.J., Whitby, C., 2013. International Biodeterioration & Biodegradation 81, 3–8.http://www.sciencedirect.com/science/article/pii/S0964830511002368

Microbial contamination and its control in fuels and fuel systems since 1980 – a reviewPassman, F.J., 2013. International Biodeterioration & Biodegradation 81, 88–104.http://www.sciencedirect.com/science/article/pii/S0964830512002120

Biological degradation and solubilisation of coalSekhohola, L.M., Igbinigie, E.E., Cowan, A.K., 2013. Biodegradation 24, 305–318.http://dx.doi.org/10.1007/s10532-012-9594-1

Page 5: Geochemistry articles – April 2013

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29 e5

Carrier mounted bacterial consortium facilitates oil remediation in the marine environmentSimons, K.L., Sheppard, P.J., Adetutu, E.M., Kadali, K., Juhasz, A.L., Manefield, M., Sarma, P.M., Lal, B., Ball, A.S., 2013. Bioresource Technology134, 107–116.http://www.sciencedirect.com/science/article/pii/S0960852413001843

Simultaneous biodegradation of phenanthrene and oxidation of arsenite by a dual-functional bacterial consortiumTang, J., Feng, T., Cui, C., Feng, Y., 2013. International Biodeterioration & Biodegradation 82, 173–179.http://www.sciencedirect.com/science/article/pii/S0964830513000838

Analysis of the microbial gene landscape and transcriptome for aromatic pollutants and alkane degradation using a novel internallycalibrated microarray systemVilchez-Vargas, R., Geffers, R., Suárez-Diez, M., Conte, I., Waliczek, A., Kaser, V.S., Kralova, M., Junca, H., Pieper, D.H., 2013. EnvironmentalMicrobiology 15, 1016–1039.http://dx.doi.org/10.1111/j.1462-2920.2012.02752.x

Microbial functioning on crude oil in a gas-permeable single microfluidic channelWang, L., Tang, Y.-Q., Guo, P., Luo, Y.-j., Wu, X.-L., Wang, H., 2013. Journal of Petroleum Science and Engineering 104, 38–48.http://www.sciencedirect.com/science/article/pii/S0920410513000661

Biodegradation of waste water-based drilling fluid from an offshore drilling operationYang, Z.X., Zhou, Y.B., Xiang, X.Z., Zhu, Z.B., Pen, L., Luo, Y.W., Lu, J., 2013. Petroleum Science and Technology 31, 1001–1007.http://dx.doi.org/10.1080/10916466.2011.626007

Biodegradation pathways/genomics

Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromaticcompound-degrading, sulfate-reducing bacteriumWöhlbrand, L., Jacob, J.H., Kube, M., Mussmann, M., Jarling, R., Beck, A., Amann, R., Wilkes, H., Reinhardt, R., Rabus, R., 2013. EnvironmentalMicrobiology 15, 1334–1355.http://dx.doi.org/10.1111/j.1462-2920.2012.02885.x

Biogeochemistry

Impact of protist grazing on a key bacterial group for biogeochemical cycling in Baltic Sea pelagic oxic/anoxic interfacesAnderson, R., Wylezich, C., Glaubitz, S., Labrenz, M., Jürgens, K., 2013. Environmental Microbiology 15, 1580–1594.http://dx.doi.org/10.1111/1462-2920.12078

Chemolithoautotrophic denitrification of epsilonproteobacteria in marine pelagic redox gradientsBruckner, C.G., Mammitzsch, K., Jost, G., Wendt, J., Labrenz, M., Jürgens, K., 2013. Environmental Microbiology 15, 1505–1513.http://dx.doi.org/10.1111/j.1462-2920.2012.02880.x

Influence of hydrogen in the presence of organic matter on bacterial activity under radioactive waste disposal conditionsChautard, C., Ritt, A., Libert, M., De Windt, L., 2013. Procedia Earth and Planetary Science 7, 147–150.http://www.sciencedirect.com/science/article/pii/S1878522013003020

Activity of sulfur reducing bacteria in deep bedrock fractures revealed by variability of d34S in pyrite and dissolved sulfateDrake, H., Åström, M.E., Tullborg, E.-L., Whitehouse, M., 2013. Procedia Earth and Planetary Science 7, 228–231.http://www.sciencedirect.com/science/article/pii/S1878522013001707

Assessment of microbiological development in nuclear waste geological disposal: A geochemical modeling approachEsnault, L., Libert, M., Bildstein, O., 2013. Procedia Earth and Planetary Science 7, 244–247.http://www.sciencedirect.com/science/article/pii/S1878522013002828

Competition for inorganic carbon between oxygenic and anoxygenic phototrophs in a hypersaline microbial mat, Guerrero Negro,MexicoFinke, N., Hoehler, T.M., Polerecky, L., Buehring, B., Thamdrup, B., 2013. Environmental Microbiology 15, 1532–1550.http://dx.doi.org/10.1111/1462-2920.12032

Internal wave-induced redox shifts affect biogeochemistry and microbial activity in sediments: A simulation experimentFrindte, K., Eckert, W., Attermeyer, K., Grossart, H.-P., 2013. Biogeochemistry 113, 423–434.http://dx.doi.org/10.1007/s10533-012-9769-1

Page 6: Geochemistry articles – April 2013

e6 Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Biogeochemical carbon coupling influences global precipitation in geoengineering experimentsFyfe, J.C., Cole, J.N.S., Arora, V.K., Scinocca, J.F., 2013. Geophysical Research Letters 40, 651–655.http://dx.doi.org/10.1002/grl.50166

Diversity of cyanobacterial biomarker genes from the stromatolites of Shark Bay, Western AustraliaGarby, T.J., Walter, M.R., Larkum, A.W.D., Neilan, B.A., 2013. Environmental Microbiology 15, 1464–1475.http://dx.doi.org/10.1111/j.1462-2920.2012.02809.x

Biosynthesis of extracellular and intracellular gold nanoparticles by Aspergillus fumigatus and A. flavusGupta, S., Bector, S., 2013. Antonie van Leeuwenhoek 103, 1113–1123.http://dx.doi.org/10.1007/s10482-013-9892-6

Water-rock interaction and lifeHinman, N.W., 2013. Procedia Earth and Planetary Science 7, 354–359.http://www.sciencedirect.com/science/article/pii/S1878522013003093

Characterisation and isotopic evolution of saline waters of the Outokumpu Deep Drill Hole, Finland – Implications for water originand deep terrestrial biosphereKietdvdinen, R., Ahonen, L., Kukkonen, I.T., Hendriksson, N., Nyyssönen, M., Itdvaara, M., 2013. Applied Geochemistry 32, 37–51.http://www.sciencedirect.com/science/article/pii/S0883292712002867

Biological carbon precursor to diagenetic siderite with spherical structures in iron formationsKöhler, I., Konhauser, K.O., Papineau, D., Bekker, A., Kappler, A., 2013. Nature Communications 4, Article No.: 1741.http://dx.doi.org/10.1038/ncomms2770

Biogeochemistry of encrusting sponges of the family Lubomirskiidae in southern Lake BaikalKulikova, N.N., Saibatalova, E.V., Boiko, S.M., Semiturkina, N.A., Belozerova, O.Y., Mekhonoshin, A.S., Timoshkin, O.A., Suturin, A.N., 2013.Geochemistry International 51, 326–337.http://dx.doi.org/10.1134/S0016702913040046

Influence of sulfate-reducing bacteria, sulfide and molybdate on hydrogen photoproduction by purple nonsulfur bacteriaLaurinavichene, T.V., Laurinavichius, K.S., Belokopytov, B.F., Laurinavichyute, D.K., Tsygankov, A.A., 2013. International Journal of HydrogenEnergy 38, 5545–5554.http://www.sciencedirect.com/science/article/pii/S0360319913005296

Archaeal (per)chlorate reduction at high temperature: An interplay of biotic and abiotic reactionsLiebensteiner, M.G., Pinkse, M.W.H., Schaap, P.J., Stams, A.J.M., Lomans, B.P., 2013. Science 340, 85–87.http://www.sciencemag.org/content/340/6128/85.abstract

STXM and nanoSIMS investigations on EPS fractions before and after adsorption to goethiteLiu, X., Eusterhues, K., Thieme, J., Ciobota, V., Höschen, C., Mueller, C.W., Küsel, K., Kögel-Knabner, I., Rösch, P., Popp, J., Totsche, K.U., 2013.Environmental Science & Technology 47, 3158–3166.http://dx.doi.org/10.1021/es3039505

The carbon stable isotope biogeochemistry of streams, Taylor Valley, AntarcticaLyons, W.B., Leslie, D.L., Harmon, R.S., Neumann, K., Welch, K.A., Bisson, K.M., McKnight, D.M., 2013. Applied Geochemistry 32, 26–36.http://www.sciencedirect.com/science/article/pii/S0883292712002430

Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwaterMailloux, B.J., Trembath-Reichert, E., Cheung, J., Watson, M., Stute, M., Freyer, G.A., Ferguson, A.S., Ahmed, K.M., Alam, M.J., Buchholz, B.A.,Thomas, J., Layton, A.C., Zheng, Y., Bostick, B.C., van Geen, A., 2013. Proceedings of the National Academy of Sciences 110, 5331–5335.http://www.pnas.org/content/110/14/5331.abstract

Virus and virus-sized microsphere transport in a dolomite rock fractureMondal, P.K., Sleep, B.E., 2013. Water Resources Research 49, 808–824.http://dx.doi.org/10.1002/wrcr.20086

Geobacillus thermoglucosidasius endospores function as nuclei for the formation of single calcite crystalsMurai, R., Yoshida, N., 2013. Applied and Environmental Microbiology 79, 3085–3090.http://aem.asm.org/content/79/9/3085.abstract

Page 7: Geochemistry articles – April 2013

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29 e7

The role of microorganisms on the formation of a stalactite in Botovskaya Cave, Siberia – palaeoenvironmental implicationsPacton, M., Breitenbach, S.F.M., Lechleitner, F.A., Vaks, A., Rollion-Bard, C., Gutareva, O.S., Osinzev, A.V., Vasconcelos, C., 2013. Biogeos-ciences Discussions 10, 6563–6603.http://www.biogeosciences-discuss.net/10/6563/2013/

Impact of microbial Mn oxidation on the remobilization of bioreduced U(IV)Plathe, K.L., Lee, S.-W., Tebo, B.M., Bargar, J.R., Bernier-Latmani, R., 2013. Environmental Science & Technology 47, 3606–3613.http://dx.doi.org/10.1021/es3036835

The effect of Aeromonas eucrenophila on microbiologically induced corrosion of nickel–zinc alloySan, N.O., Nazyr, H., Dönmez, G., 2013. International Biodeterioration & Biodegradation 80, 34–40.http://www.sciencedirect.com/science/article/pii/S0964830513000632

Anaerobic biodegradation of crude oil under sulphate-reducing conditions leads to only modest enrichment of recognized sulphate-reducing taxaSherry, A., Gray, N.D., Ditchfield, A.K., Aitken, C.M., Jones, D.M., Röling, W.F.M., Hallmann, C., Larter, S.R., Bowler, B.F.J., Head, I.M., 2013.International Biodeterioration & Biodegradation 81, 105–113.http://www.sciencedirect.com/science/article/pii/S0964830512000959

Biogeochemistry of organic carbon, CO2, CH4, and trace elements in thermokarst water bodies in discontinuous permafrost zones ofwestern SiberiaShirokova, L.S., Pokrovsky, O.S., Kirpotin, S.N., Desmukh, C., Pokrovsky, B.G., Audry, S., Viers, J., 2013. Biogeochemistry 113, 573–593.http://dx.doi.org/10.1007/s10533-012-9790-4

Effects of intracellular Mn on the radiation resistance of the halophilic archaeon Halobacterium salinarumWebb, K.M., Yu, J., Robinson, C.K., Noboru, T., Lee, Y.C., DiRuggiero, J., 2013. Extremophiles 17, 485–497.http://dx.doi.org/10.1007/s00792-013-0533-9

Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) mineralsWhite, G.F., Shi, Z., Shi, L., Wang, Z., Dohnalkova, A.C., Marshall, M.J., Fredrickson, J.K., Zachara, J.M., Butt, J.N., Richardson, D.J., Clarke, T.A.,2013. Proceedings of the National Academy of Sciences 110, 6346–6351.http://www.pnas.org/content/110/16/6346.abstract

Isotopic and chemical constraints on the biogeochemistry of dissolved inorganic carbon and chemical weathering in the karstwatershed of Krka River (Slovenia)Zavadlav, S., Kanduc, T., McIntosh, J., Lojen, S., 2013. Aquatic Geochemistry 19, 209–230.http://dx.doi.org/10.1007/s10498-013-9188-5

Carbon Cycle

Global ocean storage of anthropogenic carbonKhatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M., Doney, S.C., Graven, H.D., Gruber, N., McKinley, G.A., Murata, A., Ríos, A.F., Sabine,C.L., 2013. Biogeosciences 10, 2169–2191.http://www.biogeosciences.net/10/2169/2013/

Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatlandOlson, D.M., Griffis, T.J., Noormets, A., Kolka, R., Chen, J., 2013. Journal of Geophysical Research: Biogeosciences 118, 226–238.http://dx.doi.org/10.1002/jgrg.20031

Carbon Sequestration

Preliminary results from the experimental study of CO2-brine-rock interactions at elevated T & P: Implications for the pilot plant forCO2 storage in SpainGalarza, C., Buil, B., Peña, J., Martín, P.L., Gómez, P., Garralón, A., 2013. Procedia Earth and Planetary Science 7, 272–275.http://www.sciencedirect.com/science/article/pii/S1878522013001781

Impact of supercritical CO2/water interaction on the caprock nanoporous structureGarrido, D.R.R., Lafortune, S., Souli, H., Dubujet, P., 2013. Procedia Earth and Planetary Science 7, 738–741.http://www.sciencedirect.com/science/article/pii/S187852201300204X

Page 8: Geochemistry articles – April 2013

e8 Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Water-rock interaction in CO2 sequestration in a depleted oil reservoir pilot testPang, Z., Kong, Y., Li, Y., Li, J., 2013. Procedia Earth and Planetary Science 7, 656–659.http://www.sciencedirect.com/science/article/pii/S1878522013001793

Feasibility of CO2 geological storage in the Xingou oil field, Jianghan Basin, ChinaPeng, S., Shan, H., Li, Y., Yang, Z., Zhong, Z., 2013. Procedia Earth and Planetary Science 7, 669–672.http://www.sciencedirect.com/science/article/pii/S1878522013002415

Carbon sequestration via carbonic anhydrase facilitated magnesium carbonate precipitationPower, I.M., Harrison, A.L., Dipple, G.M., Southam, G., 2013. International Journal of Greenhouse Gas Control 16, 145–155.http://www.sciencedirect.com/science/article/pii/S175058361300131X

CO2 mineral trapping: An experimental study on the carbonation of basalts from the eastern Deccan Volcanic Province, IndiaRani, N., Pathak, V., Shrivastava, J.P., 2013. Procedia Earth and Planetary Science 7, 806–809.http://www.sciencedirect.com/science/article/pii/S1878522013001501

Still needed data for successful deep CO2 sequestrationUlmer, G.C., 2013. Procedia Earth and Planetary Science 7, 850–854.http://www.sciencedirect.com/science/article/pii/S1878522013000799

Coal/Peat/Lignite Geochemistry

CH4 and CO2 sorption isotherms and kinetics for different size fractions of two coalsHan, F., Busch, A., Krooss, B.M., Liu, Z., Yang, J., 2013. Fuel 108, 137–142.http://www.sciencedirect.com/science/article/pii/S001623611100768X

The lower and upper coal seams of the Candiota Coalfield, Brazil — Geological setting, petrological and chemical characterization,and studies on reactivity and beneficiation related to their combustion potentialKalkreuth, W., Lunkes, M., Oliveira, J., Ghiggi, M.L., Osório, E., Souza, K., Sampaio, C.H., Hidalgo, G., 2013. International Journal of CoalGeology 111, 53–66.http://www.sciencedirect.com/science/article/pii/S016651621200225X

Reservoir parameters and maceral composition of coal in different Carboniferous lithostratigraphical series of the Upper SilesianCoal Basin, PolandKedzior, S., Jelonek, I., 2013. International Journal of Coal Geology 111, 98–105.http://www.sciencedirect.com/science/article/pii/S0166516212002091

Permeability prediction of coalbed methane reservoirs during primary depletionLiu, S., Harpalani, S., 2013. International Journal of Coal Geology 113, 1–10.http://www.sciencedirect.com/science/article/pii/S0166516213000979

Determination of sulfur in coal using direct solid sampling and high-resolution continuum source molecular absorption spectrome-try of the CS molecule in a graphite furnaceMior, R., Morés, S., Welz, B., Carasek, E., de Andrade, J.B., 2013. Talanta 106, 368–374.http://www.sciencedirect.com/science/article/pii/S0039914013000143

Sobol’ sensitivity analysis of the Holocene Peat Model: What drives carbon accumulation in peatlands?Quillet, A., Garneau, M., Frolking, S., 2013. Journal of Geophysical Research: Biogeosciences 118, 203–214.http://dx.doi.org/10.1029/2012JG002092

Molecular oriented domains (MOD) and their effect on technological parameters within the structure of cokes produced from binaryand ternary coal blendsSmedowski, Ł., Krzesinska, M., 2013. International Journal of Coal Geology 111, 90–97.http://www.sciencedirect.com/science/article/pii/S0166516212002108

Investigating dissolved organic matter decomposition in northern peatlands using complimentary analytical techniquesTfaily, M.M., Hamdan, R., Corbett, J.E., Chanton, J.P., Glaser, P.H., Cooper, W.T., 2013. Geochimica et Cosmochimica Acta 112, 116–129.http://www.sciencedirect.com/science/article/pii/S0016703713001440

Relationships between the optical properties of coal macerals and the chars resulting from fluidized bed pyrolysisValentim, B., Rodrigues, S., Ribeiro, S., Pereira, G., Guedes, A., Suárez-Ruiz, I., 2013. International Journal of Coal Geology 111, 80–89.http://www.sciencedirect.com/science/article/pii/S0166516212002819

Page 9: Geochemistry articles – April 2013

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29 e9

Development of web-based organic petrology photomicrograph atlases and internet resources for professionals and studentsValentine, B.J., Morrissey, E.A., Park, A.J., Reidy, M.E., Hackley, P.C., 2013. International Journal of Coal Geology 111, 106–111.http://www.sciencedirect.com/science/article/pii/S0166516212002248

The effect of supercritical water on coal pyrolysis and hydrogen production: A combined ReaxFF and DFT studyZhang, J., Weng, X., Han, Y., Li, W., Cheng, J., Gan, Z., Gu, J., 2013. Fuel 108, 682–690.http://www.sciencedirect.com/science/article/pii/S0016236113000732

Petrological and geochemical composition of lignite from the D field, Kolubara basin (Serbia)Zivotic, D., Stojanovic, K., Grzetic, I., Jovancicevic, B., Cvetkovic, O., Šajnovic, A., Simic, V., Stojakovic, R., Scheeder, G., 2013. InternationalJournal of Coal Geology 111, 5–22.http://www.sciencedirect.com/science/article/pii/S0166516212002583

Cosmochemistry

Far- and mid-infrared spectroscopy of complex organic matter of astrochemical interest: Coal, heavy petroleum fractions andasphaltenesCataldo, F., García-Hernández, D.A., Manchado, A., 2013. Monthly Notices of the Royal Astronomical Society 429, 3025–3039.http://mnras.oxfordjournals.org/content/429/4/3025.abstract

Photochemical activity of Titan’s low-altitude condensed hazeGudipati, M.S., Jacovi, R., Couturier-Tamburelli, I., Lignell, A., Allen, M., 2013. Nature Communications 4, Article number: 1648.http://dx.doi.org/10.1038/ncomms2649

Cryovolcanism on Titan: New results from Cassini RADAR and VIMSLopes, R.M.C., Kirk, R.L., Mitchell, K.L., LeGall, A., Barnes, J.W., Hayes, A., Kargel, J., Wye, L., Radebaugh, J., Stofan, E.R., Janssen, M.A., Neish,C.D., Wall, S.D., Wood, C.A., Lunine, J.I., Malaska, M.J., 2013. Journal of Geophysical Research: Planets 118, 416–435.http://dx.doi.org/10.1002/jgre.20062

Type IV kerogens as analogues for organic macromolecular materials in aqueously altered carbonaceous chondritesMatthewman, R., Martins, Z., Sephton, M.A., 2013. Astrobiology 13, 324–333.http://dx.doi.org/10.1089/ast.2012.0820

Cosmic spherules from the Ordovician of ArgentinaVoldman, G.G., Genge, M.J., Albanesi, G.L., Barnes, C.R., Ortega, G., 2013. Geological Journal 48, 222–235.http://dx.doi.org/10.1002/gj.2418

Capture of terrestrial-sized moons by gas giant planetsWilliams, D.M., 2013. Astrobiology 13, 315–323.http://dx.doi.org/10.1089/ast.2012.0892

Environmental Geochemistry

Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Ara-bian Gulf coastsAl-Mailem, D.M., Eliyas, M., Radwan, S.S., 2013. Extremophiles 17, 463–470.http://dx.doi.org/10.1007/s00792-013-0530-z

Biodegradation of petroleum hydrocarbons in contaminated clayey soils from a sub-arctic site: The role of aggregate size andmicrostructureChang, W., Akbari, A., Snelgrove, J., Frigon, D., Ghoshal, S., 2013. Chemosphere 91, 1620–1626.http://www.sciencedirect.com/science/article/pii/S0045653513000064

Novel and nontraditional use of stable isotope tracers to study metal bioavailability from natural particlesCroteau, M.-N., Cain, D.J., Fuller, C.C., 2013. Environmental Science & Technology 47, 3424–3431.http://dx.doi.org/10.1021/es400162f

Assessment of effluent contaminants from three facilities discharging Marcellus shale wastewater to surface waters in PennsylvaniaFerrar, K.J., Michanowicz, D.R., Christen, C.L., Mulcahy, N., Malone, S.L., Sharma, R.K., 2013. Environmental Science & Technology 47, 3158–3166.http://dx.doi.org/10.1021/es301411q

Page 10: Geochemistry articles – April 2013

e10 Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Analysis of BTEX groundwater concentrations from surface spills associated with hydraulic fracturing operationsGross, S.A., Avens, H.J., Banducci, A.M., Sahmel, J., Panko, J.M., Tvermoes, B.E., 2013. Journal of the Air & Waste Management Association 63,424–432.http://dx.doi.org/10.1080/10962247.2012.759166

Evaluation of the application potential of bentonites in phenanthrene bioremediation by characterizing the biofilm communityHuang, Y., Zhang, J., Zhu, L., 2013. Bioresource Technology 134, 17–23.http://www.sciencedirect.com/science/article/pii/S096085241300223X

Generation, transport, and disposal of wastewater associated with Marcellus Shale gas developmentLutz, B.D., Lewis, A.N., Doyle, M.W., 2013. Water Resources Research 49, 647–656.http://dx.doi.org/10.1002/wrcr.20096

Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater con-taminated with a biodiesel blend (B20)Ramos, D.T., da Silva, M.L.B., Chiaranda, H.S., Alvarez, P.J.J., Corseuil, H.X., 2013. Biodegradation 24, 333–341.http://dx.doi.org/10.1007/s10532-012-9589-y

Evaluation of anthropogenic inputs of hydrocarbons in sediment cores from a tropical Brazilian estuarine systemSilva, T.R., Lopes, S.R.P., Spörl, G., Knoppers, B.A., Azevedo, D.A., 2013. Microchemical Journal 109, 178–188.http://www.sciencedirect.com/science/article/pii/S0026265X1200046X?v=s5

Chemical and biological assessment of two offshore drilling sites in the Alaskan ArcticTrefry, J.H., Dunton, K.H., Trocine, R.P., Schonberg, S.V., McTigue, N.D., Hersh, E.S., McDonald, T.J., 2013. Marine Environmental Research 86,35–45.http://www.sciencedirect.com/science/article/pii/S0141113613000378

The effects of shale gas exploration and hydraulic fracturing on the quality of water resources in the United StatesVengosh, A., Warner, N., Jackson, R., Darrah, T., 2013. Procedia Earth and Planetary Science 7, 863–866.http://www.sciencedirect.com/science/article/pii/S1878522013002944

Evolution/Paleontology/Palynology

The African coelacanth genome provides insights into tetrapod evolutionAmemiya, C.T., et al., 2013. Nature 496, 311–316.http://dx.doi.org/10.1038/nature12027

The oldest evidence of bioturbation on Earth: CommentBrasier, M.D., McIlroy, D., Liu, A.G., Antcliffe, J.B., Menon, L.R., 2013. Geology 41, e289.http://geology.gsapubs.org/content/41/5/e289.short

Periodicities in the emplacement of large igneous provinces through the Phanerozoic: Relations to ocean chemistry and marinebiodiversity evolutionProkoph, A., El Bilali, H., Ernst, R., 2013. Geoscience Frontiers 4, 263–276.http://www.sciencedirect.com/science/article/pii/S1674987112001041

Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remainsReisz, R.R., Huang, T.D., Roberts, E.M., Peng, S., Sullivan, C., Stein, K., LeBlanc, A.R.H., Shieh, D., Chang, R., Chiang, C., Yang, C., Zhong, S., 2013.Nature 496, 210–214.http://dx.doi.org/10.1038/nature11978

The oldest evidence of bioturbation on Earth: ReplyRogov, V., Marusin, V., Bykova, N., Goy, Y., Nagovitsin, K., Kochnev, B., Karlova, G., Grazhdankin, D., 2013. Geology 41, e290.http://geology.gsapubs.org/content/41/5/e290.short

A terrestrial vegetation turnover in the middle of the Early TriassicSaito, R., Kaiho, K., Oba, M., Takahashi, S., Chen, Z.-Q., Tong, J., 2013. Global and Planetary Change 105, 152–159.http://www.sciencedirect.com/science/article/pii/S0921818112001488?v=s5

Page 11: Geochemistry articles – April 2013

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29 e11

Evolution: Origins of Life/Microbial Genomics

Gene similarity networks provide tools for understanding eukaryote origins and evolutionAlvarez-Ponce, D., Lopez, P., Bapteste, E., McInerney, J.O., 2013. Proceedings of the National Academy of Sciences 110, E1594–E1603.http://www.pnas.org/content/110/17/E1594.abstract

Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylationBowler, F.R., Chan, C.K.W., Duffy, C.D., Gerland, B., Islam, S., Powner, M.W., Sutherland, J.D., Xu, J., 2013. Nature Chemistry 5, 383–389.http://dx.doi.org/10.1038/nchem.1626

Catalytic DNA with phosphatase activityChandrasekar, J., Silverman, S.K., 2013. Proceedings of the National Academy of Sciences 110, 5315–5320.http://www.pnas.org/content/110/14/5315.abstract

Functional RNAs exhibit tolerance for non-heritable 2’–5’ versus 3’–5’ backbone heterogeneityEngelhart, A.E., Powner, M.W., Szostak, J.W., 2013. Nature Chemistry 5, 390–394.http://dx.doi.org/10.1038/nchem.1623

Coevolution of bacteria and their virusesGolais, F., Holly, J., Vítkovská, J., 2013. Folia Microbiologica 58, 177–186.http://dx.doi.org/10.1007/s12223-012-0195-5

Chemical origins of life: Prebiotic RNA unstuckHernandez, A.R., Piccirilli, J.A., 2013. Nature Chemistry 5, 360–362.http://dx.doi.org/10.1038/nchem.1636

Broad nucleotide cofactor specificity of DNA ligase from the hyperthermophilic crenarchaeon Hyperthermus butylicus and itsevolutionary significanceKim, J.-H., Lee, K.-K., Sun, Y., Seo, G.-J., Cho, S., Kwon, S., Kwon, S.-T., 2013. Extremophiles 17, 515–522.http://dx.doi.org/10.1007/s00792-013-0536-6

Genomes of marine cyanopodoviruses reveal multiple origins of diversityLabrie, S.J., Frois-Moniz, K., Osburne, M.S., Kelly, L., Roggensack, S.E., Sullivan, M.B., Gearin, G., Zeng, Q., Fitzgerald, M., Henn, M.R., Chisholm,S.W., 2013. Environmental Microbiology 15, 1356–1376.http://dx.doi.org/10.1111/1462-2920.12053

The ‘‘strong’’ RNA World Hypothesis: Fifty years oldNeveu, M., Kim, H.-J., Benner, S.A., 2013. Astrobiology 13, 391–403.http://dx.doi.org/10.1089/ast.2012.0868

The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea andtheir evolutionary implicationsSchut, G.J., Boyd, E.S., Peters, J.W., Adams, M.W.W., 2013. FEMS Microbiology Reviews 37, 182–203.http://dx.doi.org/10.1111/j.1574-6976.2012.00346.x

Emergence of life from multicomponent mixtures of chemicals: The case for experiments with cycling physicochemical gradientsSpitzer, J., 2013. Astrobiology 13, 404–413.http://dx.doi.org/10.1089/ast.2012.0924

Fluid Inclusions

An activity model for phase equilibria in the H2O–CO2–NaCl systemDubacq, B., Bickle, M.J., Evans, K.A., 2013. Geochimica et Cosmochimica Acta 110, 229–252.http://www.sciencedirect.com/science/article/pii/S0016703713000938

Hydrocarbon charge history of the Tazhong Ordovician reservoirs, Tarim Basin as revealed from an integrated fluid inclusion studyLiu, K., Bourdet, J., Zhang, B., Zhang, N., Lu, X., Liu, S., Pang, H., Li, Z., Guo, X., 2013. Petroleum Exploration and Development 40, 183–193.http://www.sciencedirect.com/science/article/pii/S187638041360021X

Page 12: Geochemistry articles – April 2013

e12 Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Choosing the best ancient analogue for projected future temperatures: A case using data from fluid inclusions of middle-late EocenehalitesMeng, F.-W., Ni, P., Yuan, X.-L., Zhou, C.-M., Yang, C.-H., Li, Y.-P., 2013. Journal of Asian Earth Sciences 67–68, 46–50.http://www.sciencedirect.com/science/article/pii/S1367912013000953

Thermodynamic modeling of petroleum inclusions: Composition modeling and prediction of the trapping pressure ofcrude oilsPing, H., Chen, H., Thiéry, R., 2013. Fluid Phase Equilibria 346, 33–44.http://www.sciencedirect.com/science/article/pii/S0378381213001064

Geology

Ries crater and suevite revisited—Observations and modeling Part II: ModelingArtemieva, N.A., Wünnemann, K., Krien, F., Reimold, W.U., Stöffler, D., 2013. Meteoritics & Planetary Science 48, 590–627.http://dx.doi.org/10.1111/maps.12085

Boron, lithium and methane isotope composition of hyperalkaline waters (northern Apennines, Italy): Terrestrial serpentinizationor mixing with brine?Boschetti, T., Etiope, G., Pennisi, M., Romain, M., Toscani, L., 2013. Applied Geochemistry 32, 17–25.http://www.sciencedirect.com/science/article/pii/S0883292712002429

The sedimentary record of Carboniferous rivers: Continuing influence of land plant evolution on alluvial processes and PalaeozoicecosystemsDavies, N.S., Gibling, M.R., 2013. Earth-Science Reviews 120, 40–79.http://www.sciencedirect.com/science/article/pii/S0012825213000378

Microstructural investigations of natural and synthetic graphites and semi-graphitesRodrigues, S., Marques, M., Suárez-Ruiz, I., Camean, I., Flores, D., Kwiecinska, B., 2013. International Journal of Coal Geology 111, 67–79.http://www.sciencedirect.com/science/article/pii/S0166516212001784

Implications of sulfur isotope fractionation in fracture-filling sulfides in crystalline bedrock, Olkiluoto, FinlandSahlstedt, E., Karhu, J.A., Pitkdnen, P., Whitehouse, M., 2013. Applied Geochemistry 32, 52–69.http://www.sciencedirect.com/science/article/pii/S0883292712002958

The formation of PangeaStampfli, G.M., Hochard, C., Vérard, C., Wilhem, C., von Raumer, J., 2013. Tectonophysics 593, 1–19.http://www.sciencedirect.com/science/article/pii/S0040195113001479

Ries crater and suevite revisited—Observations and modeling Part I: ObservationsStöffler, D., Artemieva, N.A., Wünnemann, K., Reimold, W.U., Jacob, J., Hansen, B.K., Summerson, I.A.T., 2013. Meteoritics & Planetary Science48, 515–589.http://dx.doi.org/10.1111/maps.12086

The Ries impact, a double-layer rampart crater on EarthSturm, S., Wulf, G., Jung, D., Kenkmann, T., 2013. Geology 41, 531–534.http://geology.gsapubs.org/content/41/5/531.abstract

Expanding-contracting EarthTsuchiya, T., Kawai, K., Maruyama, S., 2013. Geoscience Frontiers 4, 341–347.http://www.sciencedirect.com/science/article/pii/S167498711200148X

Geochemical controls on shale microstructureValenza, J.J., Drenzek, N., Marques, F., Pagels, M., Mastalerz, M., 2013. Geology 41, 611–614.http://geology.gsapubs.org/content/41/5/611.abstract

Detecting sedimentary cycles using autocorrelation of grain sizeXiao, S., Li, R., Chen, M., 2013. Scientific Reports 3, Article number:1653.http://dx.doi.org/10.1038/srep01653

Page 13: Geochemistry articles – April 2013

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29 e13

Hydrates

The effect of methane hydrate morphology and water saturation on seismic wave attenuation in sand under shallow sub-seafloorconditionsBest, A.I., Priest, J.A., Clayton, C.R.I., Rees, E.V.L., 2013. Earth and Planetary Science Letters 368, 78–87.http://www.sciencedirect.com/science/article/pii/S0012821X13001076

Influence of water flow on gas hydrate accumulation at cold ventsCao, Y., Su, Z., Chen, D., 2013. Science China Earth Sciences 56, 568–578.http://dx.doi.org/10.1007/s11430-012-4553-6

In situ observation for formation and dissociation of carbon dioxide hydrate in porous media by magnetic resonance imagingCheng, C., Zhao, J., Song, Y., Zhu, Z., Liu, W., Zhang, Y., Yang, M., Yu, X., 2013. Science China Earth Sciences 56, 611–617.http://dx.doi.org/10.1007/s11430-012-4570-5

Short migration of methane into a gas hydrate-bearing sand layer at Walker Ridge, Gulf of MexicoCook, A.E., Malinverno, A., 2013. Geochemistry, Geophysics, Geosystems 14, 283–291.http://dx.doi.org/10.1002/ggge.20040

Factors influencing the porosity of gas hydrate bearing sedimentsHe, J., Liu, X., Yu, Z., Xie, C., Li, Z., 2013. Science China Earth Sciences 56, 557–567.http://dx.doi.org/10.1007/s11430-012-4452-x

Numerical simulation of bubble plumes in overlying water of gas hydrate in the cold seepage active regionLi, C., Liu, X., Gou, L., Wang, X., Yin, J., Xie, C., 2013. Science China Earth Sciences 56, 579–587.http://dx.doi.org/10.1007/s11430-012-4508-y

Experimental studies on the P-T stability conditions and influencing factors of gas hydrate in different systemsLiu, C., Ye, Y., Sun, S., Chen, Q., Meng, Q., Hu, G., 2013. Science China Earth Sciences 56, 594–600.http://dx.doi.org/10.1007/s11430-012-4564-3

Gas source for gas hydrate and its significance in the Qilian Mountain permafrost, QinghaiLu, Z., Zhu, Y., Liu, H., Zhang, Y., Jin, C., Huang, X., Wang, P., 2013. Marine and Petroleum Geology 43, 341–348.http://www.sciencedirect.com/science/article/pii/S0264817213000081

Gas hydrates as a potential energy source: State of knowledge and challengesMoridis, G.J., Collett, T.S., Boswell, R., Hancock, S., Rutqvist, J., Santamarina, C., Kneafsey, T., Reagan, M.T., Pooladi-Darvish, M., Kowalsky, M.,Sloan, E.D., Coh, C., 2013. In: Lee, J.W. (Ed.), Advanced Biofuels and Bioproducts, Springer New York, 977–1033.http://dx.doi.org/10.1007/978-1-4614-3348-4_37

Heat flow and gas hydrate saturation estimates from Andaman Sea, IndiaShankar, U., Riedel, M., 2013. Marine and Petroleum Geology 43, 434–449.http://www.sciencedirect.com/science/article/pii/S0264817212002620

Effect of thermal stimulation on gas production from hydrate deposits in Shenhu area of the South China SeaSu, Z., Huang, L., Wu, N., Yang, S., 2013. Science China Earth Sciences 56, 601–610.http://dx.doi.org/10.1007/s11430-013-4587-4

Controlling factors for gas hydrate occurrence in Shenhu area on the northern slope of the South China SeaWang, H., Yang, S., Wu, N., Zhang, G., Liang, J., Chen, D., 2013. Science China Earth Sciences 56, 513–520.http://dx.doi.org/10.1007/s11430-013-4596-3

Variations of pore water sulfate gradients in sediments as indicator for underlying gas hydrate in Shenhu area, the South China SeaWu, L., Yang, S., Liang, J., Su, X., Fu, S., Sha, Z., Yang, T., 2013. Science China Earth Sciences 56, 530–540.http://dx.doi.org/10.1007/s11430-012-4545-6

Geochemistry of pore waters from HQ-1PC of the Qiongdongnan Basin, northern South China Sea, and its implications for gashydrate explorationYang, T., Jiang, S., Ge, L., Yang, J., Wu, N., Zhang, G., Liu, J., Chen, D., 2013. Science China Earth Sciences 56, 521–529.http://dx.doi.org/10.1007/s11430-012-4560-7

Page 14: Geochemistry articles – April 2013

e14 Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Experimental simulation of gas hydrate decomposition in porous sedimentYu, X., Li, G., Li, Q., Li, X., Zhang, Y., Pang, W., Bai, Y., 2013. Science China Earth Sciences 56, 588–593.http://dx.doi.org/10.1007/s11430-012-4549-2

Gas hydrate formation in fine sandZang, X., Liang, D., Wu, N., 2013. Science China Earth Sciences 56, 549–556.http://dx.doi.org/10.1007/s11430-012-4546-5

Isotope Geochemistry

Stable isotope deltas: Tiny, yet robust signatures in natureBrand, W.A., Coplen, T.B., 2012. Isotopes in Environmental and Health Studies 48, 393–409.http://dx.doi.org/10.1080/10256016.2012.666977

Stable isotope terminologyKrumbiegel, P., 2012. Isotopes in Environmental and Health Studies 48, 384-390.http://dx.doi.org/10.1080/10256016.2012.705839

Stable-isotope geochemistry of vertisols formed on marine limestone and implications for deep-time paleoenvironmentalreconstructionsMichel, L.A., Driese, S.G., Nordt, L.C., Breecker, D.O., Labotka, D.M., Dworkin, S.I., 2013. Journal of Sedimentary Research 83, 300–308.http://jsedres.sepmonline.org/content/83/4/300.abstract

Contribution of isotopologue self-shielding to sulfur mass-independent fractionation during sulfur dioxide photolysisOno, S., Whitehill, A.R., Lyons, J.R., 2013. Journal of Geophysical Research: Atmospheres 118, 2444–2454.http://dx.doi.org/10.1002/jgrd.50183

Environmental factors controlling the d13C and d18O variations of recent fluvial tufas: A 12-year record from the Monasterio de Pie-dra Natural Park (NE Iberian Peninsula)Osácar, M.C., Arenas, C., Vázquez-Urbez, M., Sancho, C., Auqué, L.F., Pardo, G., 2013. Journal of Sedimentary Research 83, 309–322.http://jsedres.sepmonline.org/content/83/4/309.abstract

Cenozoic boron isotope variations in benthic foraminifersRaitzsch, M., Hönisch, B., 2013. Geology 41, 591–594.http://geology.gsapubs.org/content/41/5/591.abstract

Differing source water inputs, moderated by evaporative enrichment, determine the contrasting d18OCELLULOSE signals in maritimeAntarctic moss peat banksRoyles, J., Sime, L.C., Hodgson, D.A., Convey, P., Griffiths, H., 2013. Journal of Geophysical Research: Biogeosciences 118, 184–194.http://dx.doi.org/10.1002/jgrg.20021

Estimating changes of isotopic fractionation based on chemical kinetics and microbial dynamics during anaerobic methane oxida-tion: Apparent zero- and first-order kinetics at high and low initial methane concentrationsVavilin, V.A., 2013. Antonie van Leeuwenhoek 103, 375–383.http://dx.doi.org/10.1007/s10482-012-9818-8

Isotope tracers for deep-seated fluids and noble gasesWang, B., Niu, S., Sun, A., Zhang, J., Wang, X., Wang, C., 2013. Chinese Journal of Geochemistry 32, 195–202.http://dx.doi.org/10.1007/s11631-013-0622-6

Analysis of carbon and oxygen stable isotopes in carbonate rocks by the laser micro-sampling techniqueZheng, P., Wang, L., Yang, Y., Gao, X., Zhang, Z., 2013. Chinese Journal of Geochemistry 32, 235–240.http://dx.doi.org/10.1007/s11631-013-0627-1

Microbiology/Extremophiles - Microbial Ecology

Microbial community structure and microbial activities related to CO2 storage capacities of a salt cavernBordenave, S., Chatterjee, I., Voordouw, G., 2013. International Biodeterioration & Biodegradation 81, 82–87.http://www.sciencedirect.com/science/article/pii/S0964830512002090

Page 15: Geochemistry articles – April 2013

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29 e15

Isolation and physiological characterization of psychrophilic denitrifying bacteria from permanently cold Arctic fjord sediments(Svalbard, Norway)Canion, A., Prakash, O., Green, S.J., Jahnke, L., Kuypers, M.M.M., Kostka, J.E., 2013. Environmental Microbiology 15, 1606-1618.http://dx.doi.org/10.1111/1462-2920.12110

Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in RomaniaComan, C., Druga, B., Hegedus, A., Sicora, C., Dragos�, N., 2013. Extremophiles 17, 523–534.http://dx.doi.org/10.1007/s00792-013-0537-5

Molecular characterisation of high-strength polycyclic aromatic hydrocarbon (PAH)-degrading and phenol-tolerant bacteriaobtained from thermal power plant wastewaterDalal, S., Panigrahi, D.P., Randhawa, G.S., Dubey, R.C., 2012. Chemistry and Ecology 28, 187–192.http://dx.doi.org/10.1080/02757540.2011.650166

Microbial colonisation of chasmoendolithic habitats in the hyper-arid zone of the Atacama DesertDiRuggiero, J., Wierzchos, J., Robinson, C.K., Souterre, T., Ravel, J., Artieda, O., Souza-Egipsy, V., Ascaso, C., 2013. Biogeosciences 10,2439–2450.http://www.biogeosciences.net/10/2439/2013/

Methyloligella halotolerans gen. nov., sp. nov. and Methyloligella solikamskensis sp. nov., two non-pigmented halotolerant obligatelymethylotrophic bacteria isolated from the Ural saline environmentsDoronina, N.V., Poroshina, M.N., Kaparullina, E.N., Ezhov, V.A., Trotsenko, Y.A., 2013. Systematic and Applied Microbiology 36, 148–154.http://www.sciencedirect.com/science/article/pii/S0723202012001634

Bacterial and extracellular polysaccharide content of brine-wetted snow over Arctic winter first-year sea iceEwert, M., Carpenter, S.D., Colangelo-Lillis, J., Deming, J.W., 2013. Journal of Geophysical Research: Oceans 118, 726–735.http://dx.doi.org/10.1002/jgrc.20055

Ecology of marine Bacteroidetes: A comparative genomics approachFernández-Gómez, B., Richter, M., Schüler, M., Pinhassi, J., Acinas, S.G., González, J.M., Pedrós-Alió, C., 2013. ISME Journal 7, 1026–1037.http://dx.doi.org/10.1038/ismej.2012.169

Marinobacter nanhaiticus sp. nov., polycyclic aromatic hydrocarbon-degrading bacterium isolated from the sediment of the SouthChina SeaGao, W., Cui, Z., Li, Q., Xu, G., Jia, X., Zheng, L., 2013. Antonie van Leeuwenhoek 103, 485–491.http://dx.doi.org/10.1007/s10482-012-9830-z

SUP05 dominates the gammaproteobacterial sulfur oxidizer assemblages in pelagic redoxclines of the central Baltic and Black SeasGlaubitz, S., Kießlich, K., Meeske, C., Labrenz, M., Jürgens, K., 2013. Applied and Environmental Microbiology 79, 2767–2776.http://aem.asm.org/content/79/8/2767.abstract

Novel acid resistance genes from the metagenome of the Tinto River, an extremely acidic environmentGuazzaroni, M.-E., Morgante, V., Mirete, S., González-Pastor, J.E., 2013. Environmental Microbiology 15, 1088–1102.http://dx.doi.org/10.1111/1462-2920.12021

Comparative community gene expression analysis of Aquificales-dominated geothermal springsHamamura, N., Meneghin, J., Reysenbach, A.-L., 2013. Environmental Microbiology 15, 1226–1237.http://dx.doi.org/10.1111/1462-2920.12061

The limits for life under multiple extremesHarrison, J.P., Gheeraert, N., Tsigelnitskiy, D., Cockell, C.S., 2013. Trends in Microbiology 21, 204–212.http://www.sciencedirect.com/science/article/pii/S0966842X13000206

How bacteria survive an acid tripHingorani, K.S., Gierasch, L.M., 2013. Proceedings of the National Academy of Sciences 110, 5279–5280.http://www.pnas.org/content/110/14/5279.short

Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomicsHurwitz, B.L., Deng, L., Poulos, B.T., Sullivan, M.B., 2013. Environmental Microbiology 15, 1428–1440.http://dx.doi.org/10.1111/j.1462-2920.2012.02836.x

Page 16: Geochemistry articles – April 2013

e16 Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Use of Raman spectroscopy for identification of compatible solutes in halophilic bacteriaJehlicka, J., Oren, A., tek, P., 2012. Extremophiles 16, 507–514.http://dx.doi.org/10.1007/s00792-012-0450-3

A global perspective on marine photosynthetic picoeukaryote community structureKirkham, A.R., Lepere, C., Jardillier, L.E., Not, F., Bouman, H., Mead, A., Scanlan, D.J., 2013. ISME Journal 7, 922–936.http://dx.doi.org/10.1038/ismej.2012.166

Clone libraries and single cell genome amplification reveal extended diversity of uncultivated magnetotactic bacteria from marineand freshwater environmentsKolinko, S., Wanner, G., Katzmann, E., Kiemer, F., M. Fuchs, B., Schüler, D., 2013. Environmental Microbiology 15, 1290–1301.http://dx.doi.org/10.1111/1462-2920.12004

Contemporary environmental variation determines microbial diversity patterns in acid mine drainageKuang, J.-L., Huang, L.-N., Chen, L.-X., Hua, Z.-S., Li, S.-J., Hu, M., Li, J.-T., Shu, W.-S., 2013. ISME Journal 7, 1038-1050.http://dx.doi.org/10.1038/ismej.2012.139

Integrating niche-based process and spatial process in biogeography of magnetotactic bacteriaLin, W., Wang, Y., Gorby, Y., Nealson, K., Pan, Y., 2013. Scientific Reports 3, Article number:1643.http://dx.doi.org/10.1038/srep01643

Biogeography of bacterial communities exposed to progressive long-term environmental changeLogares, R., Lindström, E.S., Langenheder, S., Logue, J.B., Paterson, H., Laybourn-Parry, J., Rengefors, K., Tranvik, L., Bertilsson, S., 2013. ISMEJournal 7, 937–948.http://dx.doi.org/10.1038/ismej.2012.168

New insights into the archaeal diversity of a hypersaline microbial mat obtained by a metagenomic approachLópez-López, A., Richter, M., Peña, A., Tamames, J., Rosselló-Móra, R., 2013. Systematic and Applied Microbiology 36, 205–214.http://www.sciencedirect.com/science/article/pii/S072320201200166X

Marine cyanophages exhibit local and regional biogeographyMarston, M.F., Taylor, S., Sme, N., Parsons, R.J., Noyes, T.J.E., Martiny, J.B.H., 2013. Environmental Microbiology 15, 1452–1463.http://dx.doi.org/10.1111/1462-2920.12062

Eukaryotic versus prokaryotic marine picoplankton ecologyMassana, R., Logares, R., 2013. Environmental Microbiology 15, 1254–1261.http://dx.doi.org/10.1111/1462-2920.12043

High abundances of cyanomyoviruses in marine ecosystems demonstrate ecological relevanceMatteson, A.R., Rowe, J.M., Ponsero, A.J., Pimentel, T.M., Boyd, P.W., Wilhelm, S.W., 2013. FEMS Microbiology Ecology 84, 223–234.http://dx.doi.org/10.1111/1574-6941.12060

Immunological detection of enzymes for sulfate reduction in anaerobic methane-oxidizing consortiaMilucka, J., Widdel, F., Shima, S., 2013. Environmental Microbiology 15, 1561–1571.http://dx.doi.org/10.1111/1462-2920.12003

Geodermatophilus tzadiensis sp. nov., a UV radiation-resistant bacterium isolated from sand of the Saharan desertMontero-Calasanz, M.d.C., Göker, M., Broughton, W.J., Cattaneo, A., Favet, J., Pötter, G., Rohde, M., Spröer, C., Schumann, P., Klenk, H.-P.,Gorbushina, A.A., 2013. Systematic and Applied Microbiology 36, 177–182.http://www.sciencedirect.com/science/article/pii/S0723202013000039

Dominance of green sulfur bacteria in the chemocline of the meromictic Lake Suigetsu, Japan, as revealed by dissimilatory sulfitereductase gene analysisMori, Y., Kataoka, T., Okamura, T., Kondo, R., 2013. Archives of Microbiology 195, 303–312.http://dx.doi.org/10.1007/s00203-013-0879-5

Salinibacter: An extremely halophilic bacterium with archaeal propertiesOren, A., 2013. FEMS Microbiology Letters 342, 1–9.http://dx.doi.org/10.1111/1574-6968.12094

In situ chemistry and microbial community compositions in five deep-sea hydrothermal fluid samples from Irina II in the LogatchevfieldPerner, M., Gonnella, G., Hourdez, S., Böhnke, S., Kurtz, S., Girguis, P., 2013. Environmental Microbiology 15, 1551–1560.http://dx.doi.org/10.1111/1462-2920.12038

Page 17: Geochemistry articles – April 2013

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29 e17

Salinicoccus halitifaciens sp. nov., a novel bacterium participating in halite formationRamana, C.V., Srinivas, A., Subhash, Y., Tushar, L., Mukherjee, T., Kiran, P.U., Sasikala, C., 2013. Antonie van Leeuwenhoek 103, 885–898.http://dx.doi.org/10.1007/s10482-012-9870-4

Chemosymbiotic species from the Gulf of Cadiz (NE Atlantic): Distribution, life styles and nutritional patternsRodrigues, C.F., Hilário, A., Cunha, M.R., 2013. Biogeosciences 10, 2569–2581.http://www.biogeosciences.net/10/2569/2013/

Caloramator quimbayensis sp. nov., an anaerobic, moderately thermophilic bacterium isolated from a terrestrial hot springRubiano-Labrador, C., Baena, S., Díaz-Cárdenas, C., Patel, B.K.C., 2013. International Journal of Systematic and Evolutionary Microbiology 63,1396–1402.http://ijs.sgmjournals.org/content/63/Pt_4/1396.abstract

Methanotrophic bacteria in oilsands tailings ponds of northern AlbertaSaidi-Mehrabad, A., He, Z., Tamas, I., Sharp, C.E., Brady, A.L., Rochman, F.F., Bodrossy, L., Abell, G.C.J., Penner, T., Dong, X., Sensen, C.W., Dun-field, P.F., 2013. ISME Journal 7, 908–921.http://dx.doi.org/10.1038/ismej.2012.163

Haloferax chudinovii sp. nov., a halophilic archaeon from Permian potassium salt depositsSaralov, A.I., Baslerov, R.V., Kuznetsov, B.B., 2013. Extremophiles 17, 499–504.http://dx.doi.org/10.1007/s00792-013-0534-8

Chloride and organic osmolytes: A hybrid strategy to cope with elevated salinities by the moderately halophilic, chloride-dependentbacterium Halobacillus halophilusSaum, S.H., Pfeiffer, F., Palm, P., Rampp, M., Schuster, S.C., Müller, V., Oesterhelt, D., 2013. Environmental Microbiology 15, 1619–1633.http://dx.doi.org/10.1111/j.1462-2920.2012.02770.x

Diversity analyses of microbial communities in petroleum samples from Brazilian oil fieldsSilva, T.R., Verde, L.C.L., Santos Neto, E.V., Oliveira, V.M., 2013. International Biodeterioration & Biodegradation 81, 57–70.http://www.sciencedirect.com/science/article/pii/S0964830512001059

Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the oceanSintes, E., Bergauer, K., De Corte, D., Yokokawa, T., Herndl, G.J., 2013. Environmental Microbiology 15, 1647–1658.http://dx.doi.org/10.1111/j.1462-2920.2012.02801.x

Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, ChinaSong, Z.-Q., Wang, F.-P., Zhi, X.-Y., Chen, J.-Q., Zhou, E.-M., Liang, F., Xiao, X., Tang, S.-K., Jiang, H.-C., Zhang, C.L., Dong, H., Li, W.-J., 2013.Environmental Microbiology 15, 1160–1175.http://dx.doi.org/10.1111/1462-2920.12025

Methanol oxidation by temperate soils and environmental determinants of associated methylotrophsStacheter, A., Noll, M., Lee, C.K., Selzer, M., Glowik, B., Ebertsch, L., Mertel, R., Schulz, D., Lampert, N., Drake, H.L., Kolb, S., 2013. ISME Journal7, 1051–1064.http://dx.doi.org/10.1038/ismej.2012.167

Bacteria and diatom co-occurrence patterns in microbial mats from polar desert streamsStanish, L.F., O’Neill, S.P., Gonzalez, A., Legg, T.M., Knelman, J., McKnight, D.M., Spaulding, S., Nemergut, D.R., 2013. EnvironmentalMicrobiology 15, 1115–1131.http://dx.doi.org/10.1111/j.1462-2920.2012.02872.x

Does microbial stoichiometry modulate eutrophication of aquatic ecosystems?Steenbergh, A.K., Bodelier, P.L.E., Heldal, M., Slomp, C.P., Laanbroek, H.J., 2013. Environmental Microbiology 15, 1572–1579.http://dx.doi.org/10.1111/1462-2920.12042

Principal methods for isolation and identification of soil microbial communitiesStefanis, C., Alexopoulos, A., Voidarou, C., Vavias, S., Bezirtzoglou, E., 2013. Folia Microbiologica 58, 61–68.http://dx.doi.org/10.1007/s12223-012-0179-5

Sensitive and substrate-specific detection of metabolically active microorganisms in natural microbial consortia using communityisotope arraysTourlousse, D.M., Kurisu, F., Tobino, T., Furumai, H., 2013. FEMS Microbiology Letters 342, 70–75.http://dx.doi.org/10.1111/1574-6968.12112

Page 18: Geochemistry articles – April 2013

e18 Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Analysis of community composition of sulfur-oxidizing bacteria in hypersaline and soda lakes using soxB as a functional molecularmarkerTourova, T.P., Slobodova, N.V., Bumazhkin, B.K., Kolganova, T.V., Muyzer, G., Sorokin, D.Y., 2013. FEMS Microbiology Ecology 84, 280–289.http://dx.doi.org/10.1111/1574-6941.12056

Microbiology: Intraterrestrial lifestylesValentine, D.L., 2013. Nature 496, 176–177.http://dx.doi.org/10.1038/nature12088

Identification of acetate-oxidizing bacteria in a coastal marine surface sediment by RNA-stable isotope probing in anoxic slurriesand intact coresVandieken, V., Thamdrup, B., 2013. FEMS Microbiology Ecology 84, 373–386.http://dx.doi.org/10.1111/1574-6941.12069

Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent Red Sea brine poolsWang, Y., Cao, H., Zhang, G., Bougouffa, S., Lee, O.O., Al-Suwailem, A., Qian, P.-Y., 2013. Scientific Reports 3, Article number:1748.http://dx.doi.org/10.1038/srep01748

Going local: Technologies for exploring bacterial microenvironmentsWessel, A.K., Hmelo, L., Parsek, M.R., Whiteley, M., 2013. Nature Reviews Microbiology 11, 337–348.http://dx.doi.org/10.1038/nrmicro3010

Biogeographic partitioning of Southern Ocean microorganisms revealed by metagenomicsWilkins, D., Lauro, F.M., Williams, T.J., Demaere, M.Z., Brown, M.V., Hoffman, J.M., Andrews-Pfannkoch, C., McQuaid, J.B., Riddle, M.J., Rin-toul, S.R., Cavicchioli, R., 2013. Environmental Microbiology 15, 1318–1333.http://dx.doi.org/10.1111/1462-2920.12035

Key microbial drivers in Antarctic aquatic environmentsWilkins, D., Yau, S., Williams, T.J., Allen, M.A., Brown, M.V., DeMaere, M.Z., Lauro, F.M., Cavicchioli, R., 2013. FEMS Microbiology Reviews 37,303–335.http://dx.doi.org/10.1111/1574-6976.12007

The molecular ecology analysis of microbial communities in waste water–based mudYang, Z.X., Zhou, Y.B., Xiang, X.Z., Zhu, Z.B., Pen, L., Luo, Y.W., Lu, J., 2013. Petroleum Science and Technology 31, 887–894.http://dx.doi.org/10.1080/10916466.2011.608401

Genome sequence of a novel deep-sea vent epsilonproteobacterial phage provides new insight into the co-evolution of Epsilonpro-teobacteria and their phagesYoshida-Takashima, Y., Takaki, Y., Shimamura, S., Nunoura, T., Takai, K., 2013. Extremophiles 17, 405–419.http://dx.doi.org/10.1007/s00792-013-0529-5

Diversity of bacteria in surface ice of Austre Lovénbreen glacier, SvalbardZeng, Y.-X., Yan, M., Yu, Y., Li, H.-R., He, J.-F., Sun, K., Zhang, F., 2013. Archives of Microbiology 195, 313–322.http://dx.doi.org/10.1007/s00203-013-0880-z

Novel rod-shaped magnetotactic bacteria belonging to the class AlphaproteobacteriaZhang, W.-Y., Zhou, K., Pan, H.-M., Du, H.-J., Chen, Y.-R., Zhang, R., Ye, W., Lu, C., Xiao, T., Wu, L.-F., 2013. Applied and Environmental Micro-biology 79, 3137–3140.http://aem.asm.org/content/79/9/3137.abstract

Adaptation of spherical multicellular magnetotactic prokaryotes to the geochemically variable habitat of an intertidal zoneZhou, K., Zhang, W.-Y., Pan, H.-M., Li, J.-H., Yue, H.-D., Xiao, T., Wu, L.-F., 2013. Environmental Microbiology 15, 1595–1605.http://dx.doi.org/10.1111/1462-2920.12057

Paleoclimatology/Palaeoceanography

Buried soil organic inclusions in non-sorted circles fields in northern Sweden: Age and paleoclimatic contextBecher, M., Olid, C., Klaminder, J., 2013. Journal of Geophysical Research: Biogeosciences 118, 104–111.http://dx.doi.org/10.1002/jgrg.20016

Page 19: Geochemistry articles – April 2013

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29 e19

Conodont biostratigraphy, and d13C and d34S isotope chemostratigraphy, of the uppermost Ordovician and Lower Silurian atOsmundsberget, Dalarna, SwedenBergström, S.M., Eriksson, M.E., Young, S.A., Widmark, E.-M., 2012. GFF 134, 251–272.http://dx.doi.org/10.1080/11035897.2012.758169

Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?Borowski, W.S., Rodriguez, N.M., Paull, C.K., Ussler III, W., 2013. Marine and Petroleum Geology 43, 381–395.http://www.sciencedirect.com/science/article/pii/S0264817213000032

Repercussions of differential settling on sediment assemblages and multi-proxy palaeo-reconstructionsCaromel, A.G.M., Schmidt, D.N., Phillips, J.C., 2013. Biogeosciences Discussions 10, 6763–6781.http://www.biogeosciences-discuss.net/10/6763/2013/

Calcification response to climate change in the Pliocene?Davis, C.V., Badger, M.P.S., Bown, P.R., Schmidt, D.N., 2013. Biogeosciences Discussions 10, 6839–6860.http://www.biogeosciences-discuss.net/10/6839/2013/

A latest Carboniferous warming spike recorded by a fusulinid-rich bioherm in Timor Leste: Implications for East GondwanadeglaciationDavydov, V.I., Haig, D.W., McCartain, E., 2013. Palaeogeography, Palaeoclimatology, Palaeoecology 376, 22–38.http://www.sciencedirect.com/science/article/pii/S0031018213000527

Modern foraminifera, d13C, and bulk geochemistry of central Oregon tidal marshes and their application in paleoseismologyEngelhart, S.E., Horton, B.P., Vane, C.H., Nelson, A.R., Witter, R.C., Brody, S.R., Hawkes, A.D., 2013. Palaeogeography, Palaeoclimatology,Palaeoecology 377, 13–27.http://www.sciencedirect.com/science/article/pii/S0031018213001181

Patterns and mechanisms of early Pliocene warmthFedorov, A.V., Brierley, C.M., Lawrence, K.T., Liu, Z., Dekens, P.S., Ravelo, A.C., 2013. Nature 496, 43–49.http://dx.doi.org/10.1038/nature12003

Evaluation of paleoclimatic conditions east and west of the southern Canadian Cordillera in the mid-late Paleocene using bulkorganic d13C recordsForeman, B.Z., Clementz, M.T., Heller, P.L., 2013. Palaeogeography, Palaeoclimatology, Palaeoecology 376, 103–113.http://www.sciencedirect.com/science/article/pii/S0031018213000990

Paleohydrological and paleoenvironmental changes recorded in terrestrial sediments of the Paleocene–Eocene boundary(Normandy, France)Garel, S., Schnyder, J., Jacob, J., Dupuis, C., Boussafir, M., Le Milbeau, C., Storme, J.-Y., Iakovleva, A.I., Yans, J., Baudin, F., Fléhoc, C., Quesnel, F.,2013. Palaeogeography, Palaeoclimatology, Palaeoecology 376, 184–199.http://www.sciencedirect.com/science/article/pii/S0031018213001223

The role of East-Tethys seaway closure in the middle Miocene climatic transition (ca. 14 Ma)Hamon, N., Sepulchre, P., Lefebvre, V., Ramstein, G., 2013. Climate of the Past Discussions 9, 2115–2152.http://www.clim-past-discuss.net/9/2115/2013/

Relative sea level variations in the Chukchi region - Arctic Ocean - since the late EoceneHegewald, A., Jokat, W., 2013. Geophysical Research Letters 40, 803–807.http://dx.doi.org/10.1002/grl.50182

Reorganization of Southern Ocean plankton ecosystem at the onset of Antarctic glaciationHouben, A.J.P., Bijl, P.K., Pross, J., Bohaty, S.M., Passchier, S., Stickley, C.E., Röhl, U., Sugisaki, S., Tauxe, L., van de Flierdt, T., Olney, M., San-giorgi, F., Sluijs, A., Escutia, C., Brinkhuis, H., Scientists, a.t.E., 2013. Science 340, 341–344.http://www.sciencemag.org/content/340/6130/341.abstract

Comparison and implication of TEX86 and U37K’ temperature records over the last 356 kyr of ODP Site 1147 from the northern South

China SeaLi, D., Zhao, M., Tian, J., Li, L., 2013. Palaeogeography, Palaeoclimatology, Palaeoecology 376, 213–223.http://www.sciencedirect.com/science/article/pii/S003101821300117X

Contrasting long-term global and short-term local redox proxies during the Great Ordovician Biodiversification Event: A case studyfrom Fossil Mountain, Utah, USAMarenco, P.J., Marenco, K.N., Lubitz, R.L., Niu, D., 2013. Palaeogeography, Palaeoclimatology, Palaeoecology 377, 45–51.http://www.sciencedirect.com/science/article/pii/S0031018213001272

Page 20: Geochemistry articles – April 2013

e20 Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Another rapid event in the carbon-14 content of tree ringsMiyake, F., Masuda, K., Nakamura, T., 2013. Nature Communications 4, Article number 1748.http://dx.doi.org/10.1038/ncomms2783

Early Cretaceous chalks from the North Sea giving evidence for global changeMutterlose, J., Bottini, C., 2013. Nature Communications 4, Article number: 1686.http://dx.doi.org/10.1038/ncomms2698

Carbon and oxygen-isotope stratigraphy of the Early Cretaceous carbonate platform of Padurea Craiului (Apuseni Mountains,Romania): A chemostratigraphic correlation and paleoenvironmental toolPapp, D.C., Cociuba, I., Lazar, D.F., 2013. Applied Geochemistry 32, 3–16.http://www.sciencedirect.com/science/article/pii/S0883292712002570

Ocean lead at the termination of the Younger Dryas cold spellPearce, C., Seidenkrantz, M.-S., Kuijpers, A., Massé, G., Reynisson, N.F., Kristiansen, S.M., 2013. Nature Communications 4, Article Number:1664.http://dx.doi.org/10.1038/ncomms2686

Simulating the mid-Pliocene Warm Period with the CCSM4 modelRosenbloom, N.A., Otto-Bliesner, B.L., Brady, E.C., Lawrence, P.J., 2013. Geoscientific Model Development 6, 549–561.http://www.geosci-model-dev.net/6/549/2013/

Middle–Upper Permian carbon isotope stratigraphy at Chaotian, South China: Pre-extinction multiple upwelling of oxygen-depletedwater onto continental shelfSaitoh, M., Isozaki, Y., Ueno, Y., Yoshida, N., Yao, J., Ji, Z., 2013. Journal of Asian Earth Sciences 67–68, 51–62.http://www.sciencedirect.com/science/article/pii/S1367912013000965

Reconciliation of marine and terrestrial carbon isotope excursions based on changing atmospheric CO2 levelsSchubert, B.A., Hope Jahren, A., 2013. Nature Communications 4, Article number: 1653.http://dx.doi.org/10.1038/ncomms2659

A petrographic and geochemical record of climate change over the last 4600 years from a northern Namibia stalagmite, withevidence of abruptly wetter climate at the beginning of southern Africa’s Iron AgeSletten, H.R., Railsback, L.B., Liang, F., Brook, G.A., Marais, E., Hardt, B.F., Cheng, H., Edwards, R.L., 2013. Palaeogeography, Palaeoclimatology,Palaeoecology 376, 149–162.http://www.sciencedirect.com/science/article/pii/S0031018213001065

Post-Pliocene establishment of the present monsoonal climate in SW China: Evidence from the late Pliocene Longmen megafloraSu, T., Jacques, F.M.B., Spicer, R.A., Liu, Y.S., Huang, Y.J., Xing, Y.W., Zhou, Z.K., 2013. Climate of the Past Discussions 9, 1675–1701.http://www.clim-past-discuss.net/9/1675/2013/

Speleothems reveal 500,000-year history of Siberian permafrostVaks, A., Gutareva, O.S., Breitenbach, S.F.M., Avirmed, E., Mason, A.J., Thomas, A.L., Osinzev, A.V., Kononov, A.M., Henderson, G.M., 2013.Science 340, 183–186.http://www.sciencemag.org/content/340/6129/183.abstract

Reconstructing tropical cyclone frequency using hydrogen isotope ratios of sedimentary n-alkanes in northern Queensland,Australiavan Soelen, E.E., Wagner-Cremer, F., Sinninghe Damsté, J.S., Reichart, G.J., 2013. Palaeogeography, Palaeoclimatology, Palaeoecology 376,66–72.http://www.sciencedirect.com/science/article/pii/S0031018213000953

Marine black shale deposition and Hadley Cell dynamics: A conceptual framework for the Cretaceous Atlantic OceanWagner, T., Hofmann, P., Flögel, S., 2013. Marine and Petroleum Geology 43, 222–238.http://www.sciencedirect.com/science/article/pii/S0264817213000330

On the effect of orbital forcing on mid-Pliocene climate, vegetation and ice sheetsWilleit, M., Ganopolski, A., Feulner, G., 2013. Climate of the Past Discussions 9, 1703–1734.http://www.clim-past-discuss.net/9/1703/2013/

Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake haliteZambito, J.J., Benison, K.C., 2013. Geology 41, 587–590.http://geology.gsapubs.org/content/41/5/587.abstract

Page 21: Geochemistry articles – April 2013

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29 e21

The mid-Pliocene climate simulated by FGOALS-g2Zheng, W., Zhang, Z., Chen, L., Yu, Y., 2013. Geoscientific Model Development Discussions 6, 2403–2428.http://www.geosci-model-dev-discuss.net/6/2403/2013/

Paleoecology of Extinction Events

Permian–Triassic paleoceanographyAlgeo, T.J., Fraiser, M.L., Wignall, P.B., Winguth, A.M.E., 2013. Global and Planetary Change 105, 1–6.http://www.sciencedirect.com/science/article/pii/S0921818113000696

Plankton and productivity during the Permian-Triassic boundary crisis: An analysis of organic carbon fluxesAlgeo, T.J., Henderson, C.M., Tong, J., Feng, Q., Yin, H., Tyson, R.V., 2013. Global and Planetary Change 105, 52–67.http://www.sciencedirect.com/science/article/pii/S0921818112000380?v=s5

The Hettangian corals of the Isle of Skye (Scotland): An opportunity to better understand the palaeoenvironmental conditions dur-ing the aftermath of the Triassic–Jurassic boundary crisisGretz, M., Lathuilière, B., Martini, R., Bartolini, A., 2013. Palaeogeography, Palaeoclimatology, Palaeoecology 376, 132–148.http://www.sciencedirect.com/science/article/pii/S0031018213001053

Ocean’s response to changing climate: Clues from variations in xarbonate mineralogy across the Permian–Triassic boundary of theShareza section, IranHeydari, E., Arzani, N., Safaei, M., Hassanzadeh, J., 2013. Global and Planetary Change 105, 79–90.http://www.sciencedirect.com/science/article/pii/S092181811200241X

Conodont Sr/Ca and d18O record seawater changes at the Frasnian–Famennian boundaryLe Houedec, S., Girard, C., Balter, V., 2013. Palaeogeography, Palaeoclimatology, Palaeoecology 376, 114–121.http://www.sciencedirect.com/science/article/pii/S0031018213001016

Palaeoceanographic conditions following the end-Permian mass extinction recorded by giant ooids (Moyang, South China)Li, F., Yan, J., Algeo, T., Wu, X., 2013. Global and Planetary Change 105, 102–120.http://www.sciencedirect.com/science/article/pii/S0921818111001494

Microbial-algal community changes during the latest Permian ecological crisis: Evidence from lipid biomarkers at Cili, South ChinaLuo, G., Wang, Y., Grice, K., Kershaw, S., Algeo, T.J., Ruan, X., Yang, H., Jia, C., Xie, S., 2013. Global and Planetary Change 105, 36–51.http://www.sciencedirect.com/science/article/pii/S0921818112002287

Sensitivity of Late Permian climate to bathymetric features and implications for the mass extinctionOsen, A., Winguth, A.M.E., Winguth, C., Scotese, C.R., 2013. Global and Planetary Change 105, 171–179.http://www.sciencedirect.com/science/article/pii/S0921818112000288?v=s5

K-Pg extinction: Reevaluation of the heat-fire hypothesisRobertson, D.S., Lewis, W.M., Sheehan, P.M., Toon, O.B., 2013. Journal of Geophysical Research: Biogeosciences 118, 329–336.http://dx.doi.org/10.1002/jgrg.20018

Evidence for atmospheric carbon injection during the end-Permian extinctionSchneebeli-Hermann, E., Kürschner, W.M., Hochuli, P.A., Ware, D., Weissert, H., Bernasconi, S.M., Roohi, G., ur-Rehman, K., Goudemand, N.,Bucher, H., 2013. Geology 41, 579–582.http://geology.gsapubs.org/content/41/5/579.abstract

Termination of a continent-margin upwelling system at the Permian-Triassic boundary (Opal Creek, Alberta, Canada)Schoepfer, S.D., Henderson, C.M., Garrison, G.H., Foriel, J., Ward, P.D., Selby, D., Hower, J.C., Algeo, T.J., Shen, Y., 2013. Global and PlanetaryChange 105, 21–35.http://www.sciencedirect.com/science/article/pii/S0921818112001452?v=s5

Volcanism in South China during the Late Permian and its relationship to marine ecosystem and environmental changesShen, J., Algeo, T.J., Hu, Q., Xu, G., Zhou, L., Feng, Q., 2013. Global and Planetary Change 105, 121–134.http://www.sciencedirect.com/science/article/pii/S0921818112001191

Large vertical d13CDIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related toSiberian Traps volcanismSong, H., Tong, J., Algeo, T.J., Horacek, M., Qiu, H., Song, H., Tian, L., Chen, Z.-Q., 2013. Global and Planetary Change 105, 7–20.http://www.sciencedirect.com/science/article/pii/S0921818112002135?v=s5

Page 22: Geochemistry articles – April 2013

e22 Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Sulfur isotope profiles in the pelagic Panthalassic deep sea during the Permian-Triassic transitionTakahashi, S., Kaiho, K., Hori, R., Gorjan, P., Watanabe, T., Yamakita, S., Aita, Y., Takemura, A., Spörli, K.B., Kakegawa, T., Oba, M., 2013. Globaland Planetary Change 105, 68–78.http://www.sciencedirect.com/science/article/pii/S0921818112002342

Precession-driven monsoon variability at the Permian–Triassic boundary — Implications for anoxia and the mass extinctionWinguth, A., Winguth, C., 2013. Global and Planetary Change 105, 160–170.http://www.sciencedirect.com/science/article/pii/S0921818112001208

Microbial ooids and cortoids from the Lower Triassic (Spathian) Virgin Limestone, Nevada, USA: Evidence for an Early Triassicmicrobial bloom in shallow depositional environmentsWoods, A.D., 2013. Global and Planetary Change 105, 91–101.http://www.sciencedirect.com/science/article/pii/S0921818112001592?v=s5

Petroleum/Source Rock Geochemistry

Magmatic events and sour crude oils in the Malargüe area of the Neuquén Basin, ArgentinaAlberdi-Genolet, M., Cavallaro, A., Hernandez, N., Crosta, D.E., Martinez, L., 2013. Marine and Petroleum Geology 43, 48–62.http://www.sciencedirect.com/science/article/pii/S0264817212002346

Deep gases discharged from mud volcanoes of Azerbaijan: New geochemical evidenceBonini, M., Tassi, F., Feyzullayev, A.A., Aliyev, C.S., Capecchiacci, F., Minissale, A., 2013. Marine and Petroleum Geology 43, 450–463.http://www.sciencedirect.com/science/article/pii/S0264817212002619

Abiotic methane in the hyperalkaline springs of Genova, ItalyBoschetti, T., Etiope, G., Toscani, L., 2013. Procedia Earth and Planetary Science 7, 248–251.http://www.sciencedirect.com/science/article/pii/S1878522013000817

Bedding-parallel fibrous veins (beef and cone-in-cone): Worldwide occurrence and possible significance in terms of fluidoverpressure, hydrocarbon generation and mineralizationCobbold, P.R., Zanella, A., Rodrigues, N., Løseth, H., 2013. Marine and Petroleum Geology 43, 1–20.http://www.sciencedirect.com/science/article/pii/S0264817213000299

The characteristics of unconformity surface at the bottom of the Paleogene and its significance in hydrocarbon migration in theSikeshu Sag of the Junggar Basin, northwest ChinaGao, X., Liu, L., Wang, Y., Jiang, Z., Liu, G., Shang, X., 2013. Chinese Journal of Geochemistry 32, 181–190.http://dx.doi.org/10.1007/s11631-013-0620-8

Key controls on accumulation and high production of large non-marine gas fields in northern Sichuan BasinGuo, T., 2013. Petroleum Exploration and Development 40, 150–160.http://www.sciencedirect.com/science/article/pii/S187638041360018X

Compositional analysis of oil residues by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometryKekdldinen, T., Pakarinen, J.M.H., Wickström, K., Lobodin, V.V., McKenna, A.M., Jdnis, J., 2013. Energy & Fuels 27, 2002–2009.http://dx.doi.org/10.1021/ef301762v

Source potential of the upper Jurassic rocks of the Barents Sea petroleum basinKiryukhina, N.M., Kiryukhina, T.A., 2013. Moscow University Geology Bulletin 68, 26–34.http://dx.doi.org/10.3103/S0145875213010055

Organic geochemistry of the Lower Cretaceous black shales and oil seep in the Sinop Basin, northern Turkey: An oil–source rock cor-relation studyKorkmaz, S., Kara-Gülbay, R., Yztan, Y.H., 2013. Marine and Petroleum Geology 43, 272–283.http://www.sciencedirect.com/science/article/pii/S0264817213000305

Biogenically enhanced reservoir properties in the Medicine Hat gas field, Alberta, CanadaLa Croix, A.D., Gingras, M.K., Pemberton, S.G., Mendoza, C.A., MacEachern, J.A., Lemiski, R.T., 2013. Marine and Petroleum Geology 43, 464–477.http://www.sciencedirect.com/science/article/pii/S0264817212002607

The generation kinetics of natural gases in the Kela-2 gas field from the Kuqa Depression, Tarim Basin, northwestern ChinaLi, X., Feng, S., Xiao, X., Tang, Y., Xiao, Z., Mi, J., Tian, H., Liu, D., Shen, J., 2013. Chinese Journal of Geochemistry 32, 157–169.http://dx.doi.org/10.1007/s11631-013-0618-2

Page 23: Geochemistry articles – April 2013

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29 e23

Dynamics of hydrocarbon accumulation in the west section of the northern margin of the Qaidam Basin, NW ChinaLuo, X., Sun, Y., Wang, L., Xiao, A., Ma, L., Zhang, X., Wang, Z., Song, C., 2013. Petroleum Exploration and Development 40, 170–182.http://www.sciencedirect.com/science/article/pii/S1876380413600208

Permian carbonaceous rocks from the Bonito Coalfield, Santa Catarina, Brazil: Organic facies approachesMendonça Filho, J.G., Sommer, M.G., Klepzig, M.C., Mendonça, J.O., Silva, T.F., Kern, M.L., Menezes, T.R., Jasper, A., Silva, M.C., Santos, L.G.C.,2013. International Journal of Coal Geology 111, 23–36.http://www.sciencedirect.com/science/article/pii/S0166516212001838

Estimation of water film thickness in geological media associated with the occurrence of gas entrapmentNishiyama, N., Yokoyama, T., 2013. Procedia Earth and Planetary Science 7, 620–623.http://www.sciencedirect.com/science/article/pii/S1878522013001574

Key factors controlling hydrocarbon accumulations in Ordovician carbonate reservoirs in the Tazhong area, Tarim basin, westernChinaPang, H., Chen, J., Pang, X., Liu, L., Liu, K., Xiang, C., 2013. Marine and Petroleum Geology 43, 88–101.http://www.sciencedirect.com/science/article/pii/S0264817213000573

Palynofacies and organic geochemistry of the Sinemurian carbonate deposits in the western Lusitanian Basin (Portugal): Coimbraand Água de Madeiros formationsPoças Ribeiro, N., Mendonça Filho, J.G., Duarte, L.V., Silva, R.L., Mendonça, J.O., Silva, T.F., 2013. International Journal of Coal Geology 111,37–52.http://www.sciencedirect.com/science/article/pii/S016651621200287X

Petroleum potential of the Chalbi basin, NW KenyaRop, B., 2013. Journal of the Geological Society of India 81, 405–414.http://dx.doi.org/10.1007/s12594-013-0051-5

Water consumption in hydrocarbon generation and its significance to reservoir formationWang, Y., Zhang, S., Zhu, R., 2013. Petroleum Exploration and Development 40, 259–267.http://www.sciencedirect.com/science/article/pii/S1876380413600324

Characteristics of tight oil in Triassic Yanchang Formation, Ordos BasinYao, J., Deng, X., Zhao, Y., Han, T., Chu, M., Pang, J., 2013. Petroleum Exploration and Development 40, 161–169.http://www.sciencedirect.com/science/article/pii/S1876380413600191

A review of alkane gas geochemistry in the Xujiaweizi fault-depression, Songliao BasinZeng, H., Li, J., Huo, Q., 2013. Marine and Petroleum Geology 43, 284–296.http://www.sciencedirect.com/science/article/pii/S0264817213000263

A well-preserved 250 million-year-old oil accumulation in the Tarim Basin, western China: Implications for hydrocarbon explorationin old and deep basinsZhu, G., Zhang, S., Liu, K., Yang, H., Zhang, B., Su, J., Zhang, Y., 2013. Marine and Petroleum Geology 43, 478–488.http://www.sciencedirect.com/science/article/pii/S0264817212002590

Precambrian Geochemistry

Mo isotopic composition of the mid-Neoproterozoic ocean: An iron formation perspectiveBaldwin, G.J., Ndgler, T.F., Greber, N.D., Turner, E.C., Kamber, B.S., 2013. Precambrian Research 230, 168–178.http://www.sciencedirect.com/science/article/pii/S0301926813000831

Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crustCabral, R.A., Jackson, M.G., Rose-Koga, E.F., Koga, K.T., Whitehouse, M.J., Antonelli, M.A., Farquhar, J., Day, J.M.D., Hauri, E.H., 2013. Nature496, 490–493.http://dx.doi.org/10.1038/nature12020

Anoxia in the terrestrial environment during the late MesoproterozoicCumming, V.M., Poulton, S.W., Rooney, A.D., Selby, D., 2013. Geology 41, 583–586.http://geology.gsapubs.org/content/41/5/583.abstract

Page 24: Geochemistry articles – April 2013

e24 Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Were the 2.1-Gyr fossil colonial organisms discovered in the Francevillian basin (Palaeoproterozoic, Gabon) buried by turbidites?Parize, O., Feybesse, J.-L., Guillocheau, F., Mulder, T., 2013. Comptes Rendus Geoscience 345, 101–110.http://www.sciencedirect.com/science/article/pii/S1631071313000023

Proterozoic ocean redox and biogeochemical stasisReinhard, C.T., Planavsky, N.J., Robbins, L.J., Partin, C.A., Gill, B.C., Lalonde, S.V., Bekker, A., Konhauser, K.O., Lyons, T.W., 2013. Proceedings ofthe National Academy of Sciences 110, 5357–5362.http://www.pnas.org/content/110/14/5357.abstract

Age, origin and significance of nodular sulfides in 2680 Ma carbonaceous black shale of the Eastern Goldfields Superterrane, YilgarnCraton, Western AustraliaSteadman, J.A., Large, R.R., Meffre, S., Bull, S.W., 2013. Precambrian Research 230, 227–247.http://www.sciencedirect.com/science/article/pii/S0301926813000855

Microfabrics in Mesoproterozoic microdigitate stromatolites: Evidence of biogenicity and organomineralization at micron and nan-ometer scalesTang, D., Shi, X., Jiang, G., Zhang, W., 2013. Palaios 28, 178–194.http://palaios.sepmonline.org/content/28/3/178.abstract

Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed thesecond half of Earth historyYoung, G.M., 2013. Geoscience Frontiers 4, 247–261.http://www.sciencedirect.com/science/article/pii/S1674987112000898?v=s5

Production/Engineering Geochemistry

Island versus archipelago architecture for asphaltenes: Polycyclic aromatic hydrocarbon dimer theoretical studiesAlvarez-Ramírez, F., Ruiz-Morales, Y., 2013. Energy & Fuels 27, 1791–1808.http://dx.doi.org/10.1021/ef301522m

Removal of naphthenic acids from crude oil using amino acid ionic liquidsAnderson, K., Goodrich, P., Hardacre, C., Hussain, A., Rooney, D.W., Wassell, D., 2013. Fuel 108, 715–722.http://www.sciencedirect.com/science/article/pii/S0016236113001221

High temperature simulated distillation of bitumen fractions with open tubular capillary columns depleted in silicone/siloxane sta-tionary phasesCarbognani, L., Carbognani Arambarri, J., Molero, H., Pereira-Almao, P., 2013. Energy & Fuels 27, 2033–2041.http://dx.doi.org/10.1021/ef400012e

Study of the aggregation and adsorption of asphaltene sub-fractions A1 and A2 by white light interferometry: Importance of A1 sub-fraction in the aggregation processCastillo, J., Ranaudo, M.A., Fernández, A., Piscitelli, V., Maza, M., Navarro, A., 2013. Colloids and Surfaces A: Physicochemical and EngineeringAspects 427, 41–46.http://www.sciencedirect.com/science/article/pii/S0927775713002057

Far infrared (terahertz) spectroscopy of a series of polycyclic aromatic hydrocarbons and application to structure iterpretation ofasphaltenes and related compoundsCataldo, F., Angelini, G., Aníbal García-Hernández, D., Manchado, A., 2013. Spectrochimica Acta Part A: Molecular and Biomolecular Spectro-scopy 111, 68–79.http://www.sciencedirect.com/science/article/pii/S1386142513002989

Occlusion of polyaromatic compounds in asphaltene precipitates suggests porous nanoaggregatesDerakhshesh, M., Bergmann, A., Gray, M.R., 2013. Energy & Fuels 27, 1748–1751.http://pubs.acs.org/doi/abs/10.1021/ef3012189

Investigation of asphaltene aggregate size distribution under aggregation and breakage phenomena using Monte Carlo simulationFaraji, M., Nazar, A.R.S., 2012. Journal of Dispersion Science and Technology 34, 455–461.http://dx.doi.org/10.1080/01932691.2012.681609

Oil recovery from thin heavy-oil reservoirs: The case of the combined-thermal-drive pilot in the Morgan FieldGutiérrez, D., Ursenbach, M.G., Moore, R.G., Mehta, S.A., 2013. Journal of Canadian Petroleum Technology 52, 120–130.http://www.spe.org/ejournals/jsp/journalapp.jsp?pageType=Preview&jid=JCPT&mid=SPE-150593-PA&pdfChronicleId=0901476280288b53

Page 25: Geochemistry articles – April 2013

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29 e25

Enhanced heavy oil recovery by in situ prepared ultradispersed multimetallic nanoparticles: A study of hot fluid flooding for Atha-basca bitumen recoveryHashemi, R., Nassar, N.N., Pereira Almao, P., 2013. Energy & Fuels 27, 2194–2201.http://dx.doi.org/10.1021/ef3020537

Establishing the maximum carbon number for reliable quantitative gas chromatographic analysis of heavy ends hydrocarbons. Part2. Migration and separation gas chromatography modelingHernandez-Baez, D.M., Reid, A., Chapoy, A., Tohidi, B., Bounaceur, R., 2013. Energy & Fuels 27, 2336–2350.http://dx.doi.org/10.1021/ef302009n

Probing the effect of side-chain length on the aggregation of a model asphaltene using molecular dynamics simulationsJian, C., Tang, T., Bhattacharjee, S., 2013. Energy & Fuels 27, 2057–2067.http://dx.doi.org/10.1021/ef400097h

Joint industrial case study for asphaltene depositionJuyal, P., McKenna, A.M., Fan, T., Cao, T., Rueda-Velásquez, R.I., Fitzsimmons, J.E., Yen, A., Rodgers, R.P., Wang, J., Buckley, J.S., Gray, M.R.,Allenson, S.J., Creek, J., 2013. Energy & Fuels 27, 1899–1908.http://dx.doi.org/10.1021/ef301956x

Prospects for using native and recombinant rhamnolipid producers for microbially enhanced oil recoveryKryachko, Y., Nathoo, S., Lai, P., Voordouw, J., Prenner, E.J., Voordouw, G., 2013. International Biodeterioration & Biodegradation 81,133–140.http://www.sciencedirect.com/science/article/pii/S0964830512002697

Phase behaviour of C3H8/n-C4H10/heavy-oil systems at high pressures and elevated temperaturesLi, H., Yang, D., 2013. Journal of Canadian Petroleum Technology 52, 30–40.http://www.spe.org/ejournals/jsp/journalapp.jsp?pageType=Preview&jid=JCPT&mid=SPE-157744-PA&pdfChronicleId=090147628027db20

Impact of liquid–vapor to liquid–liquid–vapor phase transitions on asphaltene-rich nanoaggregate behavior in Athabasca vacuumresidue + pentane mixturesLong, B., Chodakowski, M., Shaw, J.M., 2013. Energy & Fuels 27, 1779–1790.http://dx.doi.org/10.1021/ef301475f

Molecular dynamics simulations of asphaltenes at the oil–water interface: From nanoaggregation to thin-film formationMikami, Y., Liang, Y., Matsuoka, T., Boek, E.S., 2013. Energy & Fuels 27, 1838–1845.http://dx.doi.org/10.1021/ef301610q

Extension of the Expanded Fluid viscosity model to characterized oilsMotahhari, H., Satyro, M.A., Taylor, S.D., Yarranton, H.W., 2013. Energy & Fuels 27, 1881–1898.http://dx.doi.org/10.1021/ef301575n

Clusters of asphaltene nanoaggregates observed in oilfield reservoirsMullins, O.C., Seifert, D.J., Zuo, J.Y., Zeybek, M., 2013. Energy & Fuels 27, 1752–1761.http://dx.doi.org/10.1021/ef301338q

Revisiting the PC-SAFT characterization procedure for an improved asphaltene precipitation predictionPunnapala, S., Vargas, F.M., 2013. Fuel 108, 417–429.http://www.sciencedirect.com/science/article/pii/S0016236112010824

Prediction of asphaltene precipitation in live and tank crude oil using Gaussian process regressionRostami, H., Khaksar Manshad, A., 2013. Petroleum Science and Technology 31, 913–922.http://dx.doi.org/10.1080/10916466.2010.531349

Characterization of asphaltene building blocks by cracking under favorable hydrogenation conditionsRueda-Velásquez, R.I., Freund, H., Qian, K., Olmstead, W.N., Gray, M.R., 2013. Energy & Fuels 27, 1817–1829.http://dx.doi.org/10.1021/ef301521q

Kinetics of asphaltene aggregation in crude oil studied by confocal laser-scanning microscopySeifried, C.M., Crawshaw, J., Boek, E.S., 2013. Energy & Fuels 27, 1865–1872.http://dx.doi.org/10.1021/ef301594j

Page 26: Geochemistry articles – April 2013

e26 Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Predictive petroleomics: Measurement of the total acid number by electrospray Fourier transform mass spectrometry andchemometric analysisVaz, B.G., Abdelnur, P.V., Rocha, W.F.C., Gomes, A.O., Pereira, R.C.L., 2013. Energy & Fuels 27, 1873–1880.http://dx.doi.org/10.1021/ef301515y

Advances in the Flory–Huggins–Zuo equation of state for asphaltene gradients and formation evaluationZuo, J.Y., Mullins, O.C., Freed, D., Elshahawi, H., Dong, C., Seifert, D.J., 2013. Energy & Fuels 27, 1722–1735.http://dx.doi.org/10.1021/ef301239h

Recent Sediments/Hydrosphere

Two dimensional correlation analysis of Fourier transform ion cyclotron resonance mass spectra of dissolved organic matter: A newgraphical analysis of trendsAbdulla, H.A.N., Sleighter, R.L., Hatcher, P.G., 2013. Analytical Chemistry 85, 3895–3902.http://dx.doi.org/10.1021/ac303221j

Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of thecentral Baltic SeaBlumenberg, M., Berndmeyer, C., Moros, M., Muschalla, M., Schmale, O., Thiel, V., 2013. Biogeosciences 10, 2725–2735.http://www.biogeosciences.net/10/2725/2013/

Tracing estuarine organic matter sources into the southern North Sea using C and N isotopic signaturesBristow, L.A., Jickells, T.D., Weston, K., Marca-Bell, A., Parker, R., Andrews, J.E., 2013. Biogeochemistry 113, 9–22.http://dx.doi.org/10.1007/s10533-012-9758-4

Water column distribution and carbon isotopic signal of cholesterol, brassicasterol and particulate organic carbon in the Atlanticsector of the Southern OceanCavagna, A.J., Dehairs, F., Bouillon, S., Woule-Ebongué, V., Planchon, F., Delille, B., Bouloubassi, I., 2013. Biogeosciences 10, 2787–2801.http://www.biogeosciences.net/10/2787/2013/

Complex-forming properties of peat humic acids from a raised bog profilesDudare, D., Klavins, M., 2013. Journal of Geochemical Exploration 129, 18–22.http://www.sciencedirect.com/science/article/pii/S0375674212002622

Effect of sulfate availability on the isotopic signature of reduced sulfurous compounds in the sediments of a subtropical estuaryFan, L.-F., Lin, S., He, W.-G., Huang, K.-M., Chen, C.-P., Hsieh, H.-L., 2012. Wetlands 32, 907–917.http://dx.doi.org/10.1007/s13157-012-0323-7

Hydroxylated isoprenoidal GDGTs in the Nordic SeasFietz, S., Huguet, C., Rueda, G., Hambach, B., Rosell-Melé, A., 2013. Marine Chemistry 152, 1–10.http://www.sciencedirect.com/science/article/pii/S0304420313000376

Particulate organic matter export by two contrasting small mountainous rivers from the Pacific Northwest, U.S.AGoñi, M.A., Hatten, J.A., Wheatcroft, R.A., Borgeld, J.C., 2013. Journal of Geophysical Research: Biogeosciences 118, 112–134.http://dx.doi.org/10.1002/jgrg.20024

Response of halocarbons to ocean acidification in the ArcticHopkins, F.E., Kimmance, S.A., Stephens, J.A., Bellerby, R.G.J., Brussaard, C.P.D., Czerny, J., Schulz, K.G., Archer, S.D., 2013. Biogeosciences 10,2331–2345.http://www.biogeosciences.net/10/2331/2013/

Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal watersHugoni, M., Taib, N., Debroas, D., Domaizon, I., Jouan Dufournel, I., Bronner, G., Salter, I., Agogué, H., Mary, I., Galand, P.E., 2013. Proceedingsof the National Academy of Sciences 110, 6004–6009.http://www.pnas.org/content/110/15/6004.abstract

Global charcoal mobilization from soils via dissolution and riverine transport to the oceansJaffé, R., Ding, Y., Niggemann, J., Vdhdtalo, A.V., Stubbins, A., Spencer, R.G.M., Campbell, J., Dittmar, T., 2013. Science 340, 345–347.http://www.sciencemag.org/content/340/6130/345.abstract

100-year ecosystem history elucidated from inner shelf sediments off the Pearl River estuary, ChinaJia, G., Xu, S., Chen, W., Lei, F., Bai, Y., Huh, C.-A., 2013. Marine Chemistry 151, 47–55.http://www.sciencedirect.com/science/article/pii/S0304420313000352

Page 27: Geochemistry articles – April 2013

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29 e27

Dissolved organic carbon dynamics in anaerobic sediments of the Santa Monica BasinKomada, T., Burdige, D.J., Crispo, S.M., Druffel, E.R.M., Griffin, S., Johnson, L., Le, D., 2013. Geochimica et Cosmochimica Acta 110, 253–273.http://www.sciencedirect.com/science/article/pii/S0016703713001129

Assessing production of the ubiquitous archaeal diglycosyl tetraether lipids in marine subsurface sediment using intramolecularstable isotope probingLin, Y.-S., Lipp, J.S., Elvert, M., Holler, T., Hinrichs, K.-U., 2013. Environmental Microbiology 15, 1634–1646.http://dx.doi.org/10.1111/j.1462-2920.2012.02888.x

Predominant archaea in marine sediments degrade detrital proteinsLloyd, K.G., Schreiber, L., Petersen, D.G., Kjeldsen, K.U., Lever, M.A., Steen, A.D., Stepanauskas, R., Richter, M., Kleindienst, S., Lenk, S.,Schramm, A., Jørgensen, B.B., 2013. Nature 496, 215–218.http://dx.doi.org/10.1038/nature12033

Different methanotrophic potentials in stratified polar fjord waters (Storfjorden, Spitsbergen) identified by using a combination ofmethane oxidation techniquesMau, S., Blees, J., Helmke, E., Niemann, H., Damm, E., 2013. Biogeosciences Discussions 10, 6461–6491.http://www.biogeosciences-discuss.net/10/6461/2013/

Differential response of fatty acid composition in the different lipid classes from particulate matter in a high arctic fjord (Kongsf-jorden, Svalbard)Mayzaud, P., Boutoute, M., Gasparini, S., 2013. Marine Chemistry 151, 23–34.http://www.sciencedirect.com/science/article/pii/S030442031300039X

On the abundances of noble and biologically relevant gases in Lake Vostok, AntarcticaMousis, O., Lakhlifi, A., Picaud, S., Pasek, M., Chassefière, E., 2013. Astrobiology 13, 380–390.http://dx.doi.org/10.1089/ast.2012.0907

Sources and fate of terrestrial dissolved organic carbon in lakes of a Boreal Plains region recently affected by wildfireOlefeldt, D., Devito, K.J., Turetsky, M.R., 2013. Biogeosciences Discussions 10, 6093–6141.http://www.biogeosciences-discuss.net/10/6093/2013/

Long-term patterns in dissolved organic carbon, major elements and trace metals in boreal headwater catchments: Trends, mechan-isms and heterogeneityOni, S.K., Futter, M.N., Bishop, K., Köhler, S.J., Ottosson-Löfvenius, M., Laudon, H., 2013. Biogeosciences 10, 2315–2330.http://www.biogeosciences.net/10/2315/2013/

Improved quantification of microbial CH4 oxidation efficiency in arctic wetland soils using carbon isotope fractionationPreuss, I., Knoblauch, C., Gebert, J., Pfeiffer, E.M., 2013. Biogeosciences 10, 2539–2552.http://www.biogeosciences.net/10/2539/2013/

Different pools of black carbon in sediments from the Gulf of Cádiz (SW Spain): Method comparison and spatial distributionSánchez-García, L., de Andrés, J.R., Gélinas, Y., Schmidt, M.W.I., Louchouarn, P., 2013. Marine Chemistry 151, 13–22.http://www.sciencedirect.com/science/article/pii/S0304420313000364

Differential production yet chemical similarity of dissolved organic matter across a chronosequence with contrasting nutrient avail-ability in HawaiiSanderman, J., Kramer, M.G., 2013. Biogeochemistry 113, 259–269.http://dx.doi.org/10.1007/s10533-012-9821-1

Prominent bacterial heterotrophy and sources of 13C-depleted fatty acids to the interior Canada BasinShah, S.R., Griffith, D.R., Galy, V., McNichol, A.P., Eglinton, T.I., 2013. Biogeosciences Discussions 10, 6695–6736.http://www.biogeosciences-discuss.net/10/6695/2013/

The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics andmetaproteomicsWilliams, T.J., Wilkins, D., Long, E., Evans, F., DeMaere, M.Z., Raftery, M.J., Cavicchioli, R., 2013. Environmental Microbiology 15, 1302–1317.http://dx.doi.org/10.1111/1462-2920.12017

Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populationsXie, S., Lipp, J.S., Wegener, G., Ferdelman, T.G., Hinrichs, K.-U., 2013. Proceedings of the National Academy of Sciences 110, 6010–6014.http://www.pnas.org/content/110/15/6010.abstract

Page 28: Geochemistry articles – April 2013

e28 Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Seepage-Remote Detection

Gas-seep related carbonate and barite authigenic mineralization in the northern Gulf of CaliforniaCanet, C., Anadón, P., Alfonso, P., Prol-Ledesma, R.M., Villanueva-Estrada, R.E., García-Vallès, M., 2013. Marine and Petroleum Geology 43,147–165.http://www.sciencedirect.com/science/article/pii/S0264817213000391

Drivers of focused fluid flow and methane seepage at south Hydrate Ridge, offshore Oregon, USACrutchley, G.J., Berndt, C., Geiger, S., Klaeschen, D., Papenberg, C., Klaucke, I., Hornbach, M.J., Bangs, N.L.B., Maier, C., 2013. Geology 41, 551–554.http://geology.gsapubs.org/content/41/5/551.abstract

High density of structurally controlled, shallow to deep water fluid seep indicators imaged offshore Costa RicaKluesner, J.W., Silver, E.A., Bangs, N.L., McIntosh, K.D., Gibson, J., Orange, D., Ranero, C.R., von Huene, R., 2013. Geochemistry, Geophysics,Geosystems 14, 519–539.http://dx.doi.org/10.1002/ggge.20058

Hydrocarbon plumbing systems above the Snøhvit gas field: Structural control and implications for thermogenic methane leakage inthe Hammerfest Basin, SW Barents SeaOstanin, I., Anka, Z., di Primio, R., Bernal, A., 2013. Marine and Petroleum Geology 43, 127–146.http://www.sciencedirect.com/science/article/pii/S0264817213000408

Investigation on the geochemical dynamics of a hydrate-bearing pockmark in the Niger DeltaRuffine, L., Caprais, J.-C., Bayon, G., Riboulot, V., Donval, J.-P., Etoubleau, J., Birot, D., Pignet, P., Rongemaille, E., Chazallon, B., Grimaud, S.,Adamy, J., Charlou, J.-L., Voisset, M., 2013. Marine and Petroleum Geology 43, 297–309.http://www.sciencedirect.com/science/article/pii/S0264817213000251

Conceptual modeling of onshore hydrocarbon seep occurrence in the Dezful Embayment, SW IranSalati, S., van Ruitenbeek, F.J.A., Carranza, E.J.M., van der Meer, F.D., Tangestani, M.H., 2013. Marine and Petroleum Geology 43, 102–120.http://www.sciencedirect.com/science/article/pii/S0264817213000561

Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources andgeochronologyTong, H., Feng, D., Cheng, H., Yang, S., Wang, H., Min, A.G., Edwards, R.L., Chen, Z., Chen, D., 2013. Marine and Petroleum Geology 43, 260–271.http://www.sciencedirect.com/science/article/pii/S0264817213000317

Distribution of subsurface fluid-flow systems in the SW Barents SeaVadakkepuliyambatta, S., Bünz, S., Mienert, J., Chand, S., 2013. Marine and Petroleum Geology 43, 208–221.http://www.sciencedirect.com/science/article/pii/S0264817213000354

Soil Geochemistry

Prediction of humic acids bioactivity using spectroscopy and multivariate analysisAguiar, N.O., Novotny, E.H., Oliveira, A.L., Rumjanek, V.M., Olivares, F.L., Canellas, L.P., 2013. Journal of Geochemical Exploration 129,95–102.http://www.sciencedirect.com/science/article/pii/S0375674212002051

Spin labeling ESR investigation of the molecular environment of soil interacting with chemical organic contaminantsAleksandrova, O.N., 2013. Journal of Geochemical Exploration 129, 6–13.http://www.sciencedirect.com/science/article/pii/S0375674213000034

Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the ArcticCory, R.M., Crump, B.C., Dobkowski, J.A., Kling, G.W., 2013. Proceedings of the National Academy of Sciences 110, 3429–3434.http://www.pnas.org/content/110/9/3429.abstract

Spatial carbon and nitrogen distribution and organic matter characteristics of biological soil crusts in the Negev desert (Israel) alonga rainfall gradientDrahorad, S., Felix-Henningsen, P., Eckhardt, K.U., Leinweber, P., 2013. Journal of Arid Environments 94, 18–26.http://www.sciencedirect.com/science/article/pii/S014019631300030X

Page 29: Geochemistry articles – April 2013

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29 e29

Carbon sequestration in iron-nodules in moist semi-deciduous tropical forest soilElberling, B., Breuning-Madsen, H., Knicker, H., 2013. Geoderma 200–201, 202–207.http://www.sciencedirect.com/science/article/pii/S0016706113000785

Differences in fluorescence properties between humic acid and its size fractions separated by preparative HPSECHalim, M., Spaccini, R., Parlanti, E., Amezghal, A., Piccolo, A., 2013. Journal of Geochemical Exploration 129, 23–27.http://www.sciencedirect.com/science/article/pii/S0375674212002373

Mass spectrometry-based metabolomics towards understanding of gene functions with a diversity of biological contextsLv, H., 2013. Mass Spectrometry Reviews 32, 118–128.http://dx.doi.org/10.1002/mas.21354

Conformational changes of dissolved humic and fulvic superstructures with progressive iron complexationNuzzo, A., Sánchez, A., Fontaine, B., Piccolo, A., 2013. Journal of Geochemical Exploration 129, 1–5.http://www.sciencedirect.com/science/article/pii/S0375674213000241

Isopentenyladenosine and cytokinin-like activity of different humic substancesPizzeghello, D., Francioso, O., Ertani, A., Muscolo, A., Nardi, S., 2013. Journal of Geochemical Exploration 129, 70–75.http://www.sciencedirect.com/science/article/pii/S0375674212002075?v=s5

Expanded compilations of references with abstracts in Microsoft Word and ISI EndNote formats are available at: http://www.eaog.org/other/ref_update.html.

Compiled by Clifford C. Walters