32
Gapless spin liquids in frustrated Heisenberg models Federico Becca CNR IOM-DEMOCRITOS and International School for Advanced Studies (SISSA) New Horizon of Strongly Correlated Physics, June 2014 Y. Iqbal (ICTP, Trieste), W.-J. Hu (now CSUN) A. Parola (Como), D. Poilblanc (CNRS, Toulouse), and S. Sorella (SISSA) Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 1 / 32

Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Embed Size (px)

Citation preview

Page 1: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Gapless spin liquids in frustrated Heisenberg models

Federico Becca

CNR IOM-DEMOCRITOS and International School for Advanced Studies (SISSA)

New Horizon of Strongly Correlated Physics, June 2014

Y. Iqbal (ICTP, Trieste), W.-J. Hu (now CSUN)

A. Parola (Como), D. Poilblanc (CNRS, Toulouse), and S. Sorella (SISSA)

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 1 / 32

Page 2: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

1 Introduction

2 The Heisenberg model on the frustrated square lattice

3 The Heisenberg model on the Kagome lattice

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 2 / 32

Page 3: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Ultimate frustration?

Looking for a magnetically disordered ground state?

• Many theoretical suggestions since P.W. Anderson (1973)Anderson, Mater. Res. Bull. 8, 153 (1973)

Fazekas and Anderson, Phil. Mag. 30, 423 (1974)

“Resonating valence-bond” (quantum spin liquid) states

Idea: the best state for two spin-1/2 spins is a valence bond (a spin singlet):

|VB〉R,R′ =1√2(| ↑〉R| ↓〉R′ − | ↓〉R| ↑〉R′)

Every spin of the lattice is coupled to a partnerThen, take a superposition of different valence bond configurations

Ψ = + + + ...

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 3 / 32

Page 4: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Valence-bond states: liquids and solids

Valence-bond solidbreaks translational/rotationalsymmetries

Short-range RVB + + ...

Long-range RVB + + ...

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 4 / 32

Page 5: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

The Heisenberg model on the frustrated square lattice

H = J1∑

〈ij〉

Si · Sj + J2∑

〈〈ij〉〉

Si · Sj

Neel order Collinear order

Spin singlet

0 0.5 1

For J2/J1 ≪ 1: Antiferromagnetic order at Q = (π, π)

For J2/J1 ≫ 1: Antiferromagnetic order at Q = (π, 0) and Q = (0, π)

For J2/J1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?)

Experimental realization in Li2VOSiO4 (J2 & J1) and VOMoO4 (J2 < 0.5J1)

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 5 / 32

Page 6: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Recent DMRG calculations

Jiang, Yao, and Balents, PRB 86, 024424 (2012)

• It has been criticized by Sandvik (possible dimer order)Sandvik, PRB 85, 134407 (2012)

• More recent calculations with both spin-liquid and dimer phases

Gong, Zhu, Sheng, Motrunich, Fisher, arXiv:1311.5962

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 6 / 32

Page 7: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Describing magnetically disordered phases

Sµi =

1

2c†i,ασ

µα,βci,β

H = −1

2

i,j,α,β

Jij

(

c†i,αcj,αc

†j,βci,β +

1

2c†i,αci,αc

†j,βcj,β

)

c†i,αci,α = 1 ci,αci,βǫαβ = 0

• At the mean-field level:

HMF =∑

i,j,α

(χij + µδij)c†i,αcj,α +

i,j

(ηij + ζδij)(c†i,↑c

†j,↓ + c

†j,↑c

†i,↓) + h.c.

〈c†i,αci,α〉 = 1 〈ci,αci,β〉ǫαβ = 0

• Then, we reintroduce the constraint of one-fermion per site:

|Φ(χij , ηij , µ, ζ)〉 = PG |ΦMF(χij , ηij , µ, ζ)〉

PG =∏

i (1− ni,↑ni,↓)

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 7 / 32

Page 8: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Symmetry of the mean-field ansatz

In 2001, we guessed:χk = 2t(cos kx + cos ky )ηk = ∆x2−y2(cos kx − cos ky ) + ∆xy (sin 2kx sin 2ky )After Wen, called Z2Azz13

〈s〉 =∑

x

|〈x |Φ〉|2sign {〈x |Φ〉〈x |Ψex〉}

After the Wen’s classification, it is the best projected fermionic state

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 8 / 32

Page 9: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Towards the exact ground state

How can we improve the variational state?By the application of a few Lanczos steps!

|Ψp−LS〉 =(

1 +∑

m=1,...,p

αmHm

)

|ΨVMC 〉

For p → ∞, |Ψp−LS〉 converges to the exact ground state, provided 〈Ψ0|ΨVMC 〉 6= 0

On large systems, only FEW Lanczos steps are affordable: We can do up to p = 2

In addition, a fixed-node (FN) projection is possibleten Haaf et al., PRB 51, 13039 (1995)

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 9 / 32

Page 10: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

The variance extrapolation

A zero-variance extrapolation can be done

Whenever |ΨVMC 〉 is sufficiently close to the ground state:

E ≃ E0 + const× σ2 E = 〈H〉/Nσ2 = (〈H2〉 − E 2)/N

How does it work?Example: the t−J model

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 10 / 32

Page 11: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Going to the excitation spectrum

If a variational approach works also low-energy excitations must be described

HMF =∑

i,j,α

(χij + µδij)c†i,αcj,α +

i,j

(ηij + ζδij)(c†i,↑c

†j,↓ + c

†j,↑c

†i,↓) + h.c.

After a Bogoliubov transformation:

HMF =∑

k

(Ekψ†kψk − Ekφ

†kφk)

The ground state is:

|Φ0MF〉 =

k

φ†k |0〉

Excited states are obtained by:

φq1. . . φqnψ

†p1. . . ψ†

pm |Φ0MF〉

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 11 / 32

Page 12: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Spin excitations

Considering excited states that can be described by a SINGLE determinant, we have:

• The S=0 ground state• The S=2 with momentum k = (0, 0)• The S=1 with momentum k = (π, 0) or k = (0, π)

Test case: J2/J1 = 0.5 and 6× 6 cluster

0.00 0.01 0.02

–0.495

–0.490

–0.485

–0.480

–0.475

0 0.01 0.02

–0.495

–0.485

–0.475

–0.465

Variance Variance0 3.10–3 6.10–3 9.10–3

–0.504

–0.502

–0.500

–0.498

–0.496

–0.494

Variance

E(S

) pe

r si

te

6x68x810x1014x1418x18

(a) (b) (c)

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 12 / 32

Page 13: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Spin excitations

• The S=2 gap vanishes in the Neel phase• The S=1 gap at k = (π, 0) is instead finite in the Neel phase

The Lanczos extrapolation is performed on each state separately

Calculations on the 6× 6 cluster vs exact results

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.550.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

J 2/J 1

∆ 1

S=1 gap

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.550.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

J 2/J 1

∆ 2

exactp=0p=1p=2variance extrapolation

S=2 gap

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 13 / 32

Page 14: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

The S=2 spin excitation for large sizes

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.180.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1/L

∆ 2J2/J1=0.5, p=0

J2/J1=0.5, variance extrapolation

J2/J1=0.5, triplet gap from DMRG

J2/J1=0.55, p=0

J2/J1=0.55, variance extrapolation

J2/J1=0.55, triplet gap from DMRG

• J2/J1 = 0.5 −→ ∆2 = −0.04(5)• J2/J1 = 0.55 −→ ∆2 = −0.07(7)

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 14 / 32

Page 15: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

The S=1 spin excitation for large sizes

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.180.0

0.2

0.4

0.6

0.8

1.0

1/L

∆ 1

J 2/J1=0.45, p=0

J 2/J1=0.45, variance extrapolation

J 2/J1=0.5, p=0

J 2/J1=0.5, variance extrapolation

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.180.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1/L

J 2/J1=0.3

J 2/J1=0.4

J 2/J1=0.45

J 2/J1=0.5

J 2/J1=0.55

∆1

0.30 0.35 0.40 0.45 0.50 0.550.0

0.1

0.2

0.3

0.4

0.5

0.6

J 2/J 1

∆ 1

0.48(2)

The spin gap is FINITE for J2/J1 < 0.48

Instead, it vanishes for J2/J1 > 0.48

NON-trivial aspect of the SL phase!

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 15 / 32

Page 16: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Conclusions (first part)

Very good energiesWith few (TWO-THREE) variational parameters: Educated guessTo be compared with about 16000 parameters in DMRG: Brute-force calculation

Direct calculation of the spin gap for S=2 and S=1 excitationsIn both cases, we find evidence for a GAPLESS spin liquid

Our calculations are done on L× L clusters with PBC in both directions

DMRG calculations are done on 2L× L cylinders with OBC along x and PBC along y

(but the gap is computed only in the central part of the cluster)

Our approach may capture both gapless and gapped states

DMRG algorithm favors low-entangled (gapped) states

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 16 / 32

Page 17: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

The Heisenberg model on the Kagome lattice

H = J∑

〈ij〉

Si · Sj + . . .

• No magnetic order down to 50mK (despite TCW ≃ 200K)

• Spin susceptibility rises with T → 0 but then saturates below 0.5K

• Specific heat Cv ∝ T below 0.5K

• No sign of spin gap in dynamical Neutron scattering measurements

Mendels et al., PRL 98, 077204 (2007)

Helton et al., PRL 98, 107204 (2007)

Bert et al., PRB 76, 132411 (2007)

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 17 / 32

Page 18: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Some of the previous results

Nearest-neighbor Heisenberg model on the Kagome lattice

Author GS proposed Energy/site Method used

P.A. Lee U(1) gapless SL −0.42866(1)J Fermionic VMC

Singh 36-site HVBC −0.433(1)J Series expansion

Vidal 36-site HVBC −0.43221 J MERA

Poilblanc 12- or 36-site VBC QDM

Lhuillier Chiral gapped SL SBMF

White Z2 gapped SL −0.4379(3)J DMRG

Schollwoeck Z2 gapped SL −0.4386(5)J DMRG

Xie et al. gapped SL −0.4364(1)J PESS

Ran, Hermele, Lee, and Wen, PRL 98, 117205 (2007)

Yan, Huse, and White, Science 332, 1173 (2011)

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 18 / 32

Page 19: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Results with projected wave functions

A variational ansatz with ONLY hopping but non-trivial fluxes has been proposed with

• π fluxes through hexagons and 0 fluxes through triangles• Dirac points in the mean-field spinon spectrumRan, Hermele, Lee, and Wen, PRL 98, 117205 (2007)

a

b c

d

1 5

6

a

b c

d

dd

1

3

5

6

(a)

(b)

(d) (e)

0 a1

2a

0

1 2

3

4 5

6

(c)

0

0 0

• 0 fluxes everywhere• Fermi surface in the mean-field spinon spectrum

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 19 / 32

Page 20: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Can we have a Z2 gapped spin liquid (as in DMRG)?

Projective symmetry-group analysis

Lu, Ran, and Lee, PRB 83, 224413 (2011)

uij =

(

χ∗ij ∆ij

∆∗ij −χij

)

a

b c

d

1 5

6

a

b c

d

dd

1

3

5

6

(a)

(b)

(d) (e)

0 a1

2a

0

1 2

3

4 5

6

(c)

0

0 0

Only ONE gapped SL connected with the U(1) Dirac SL:

FOUR gapped SL connected with the Uniform U(1) SL:

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 20 / 32

Page 21: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

The Dirac U(1) SL is stable against opening a gap

• By optimizing the variational state, the breaking terms go to zero

• The best variational energy is obtained by the U(1) Dirac state

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 21 / 32

Page 22: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Calculations on the 48-site cluster

Our zero-variance extrapolation gives: E/N ≃ −0.4378

0 0.005 0.01 0.015 0.02 0.025

Variance of energy (σ2)

-0.435

-0.43

-0.425

-0.42

-0.415

-0.41E

nerg

y pe

r si

te

Uniform RVB ([0,0]) SL {VMC}Z

2[0,π]β SL {VMC}

U(1) Dirac ([0,π]) SL {VMC}U(1) Dirac ([0,π]) SL {FN}DMRG (Torus) [Jiang et al.]

0 0.001 0.002-0.438

-0.437

-0.436

E/N ≃ −0.4387 by ED, A. Lauchli (seen at APS in Boston)E/N ≃ −0.4381 by DMRG, S. White (private communication)

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 22 / 32

Page 23: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Calculations on larger clusters

0 0.005 0.01 0.015

Variance of energy (σ2)

-0.438

-0.436

-0.434

-0.432

-0.43

-0.428

Ene

rgy

per

site

48 sites {VMC}108 sites {VMC}144 sites {VMC}192 sites {VMC}DMRG (Torus 108) [Depenbrock et al.]

0 0.001 0.002

-0.438

-0.437

0 0.005 0.01 0.015

Variance of energy (σ2)

-0.438

-0.436

-0.434

-0.432

-0.43

-0.428

Ene

rgy

per

site

48 sites {FN}108 sites {FN}144 sites {FN}192 sites {FN}DMRG (Torus 108) [Depenbrock et al.]

0 0.001 0.002

-0.438

-0.437

• NO substraction techniques to get the energy• The state has ALL symmetries of the lattice• The extrapolated values are essentially size consistent

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 23 / 32

Page 24: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Extrapolations for Dirac and Z2 states

Starting from a Z2 state the extrapolation is worse than for the Dirac state

0 0.005 0.01 0.015 0.02 0.025

Variance of energy (σ2)

-0.436

-0.432

-0.428

-0.424

Ene

rgy

per

site

192 sites - U(1) Dirac SL {VMC}192 sites - Z

2[0,π]β SL {VMC}

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 24 / 32

Page 25: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

The thermodynamic limit

0 0.01 0.02 0.031/N

-0.4385

-0.438

-0.4375

-0.437

-0.4365G

roun

d st

ate

ener

gy p

er s

ite 2d estimate from Lanczos+VMC (current work)2d estimate from DMRG (Depenbrock et al.)2d estimate from DMRG (Yan et al.)2d estimate from CCM (Götze et al.)

• OUR thermodynamic energy is: E/J = −0.4365(2)• DMRG thermodynamic energy is: E/J = −0.4386(5)

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 25 / 32

Page 26: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

The variational S = 2 gap

0 0.05 0.1 0.15 0.2 0.25Inverse geometrical diameter (1/L)

0

0.2

0.4

0.6

0.8

1

1.2

S=2

Spi

n G

ap (∆

2)

Projected U(1) Dirac SLMean field U(1) Dirac SL

• The Gutzwiller projected state is still gapless• Remarkable stability of the U(1) Dirac spin liquid

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 26 / 32

Page 27: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

The Lanczos step extrapolations

0 0.005 0.01 0.015

Variance of energy (σ2)

-0.438

-0.436

-0.434

-0.432

-0.43

-0.428

Ene

rgy

per

site

(E/J

)

48-sites108-sites192-sites432-sites

0 0.005 0.01 0.015 0.02

Variance of energy (σ2)

-0.436

-0.432

-0.428

-0.424

-0.42

-0.416

Ene

rgy

per

site

(E/J

)

48-sites108-sites192-sites432-sites

• We separately extrapolate both S = 0 and S = 2 energies• Then the gap (zero-variance) gap is computed

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 27 / 32

Page 28: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

The S = 2 gap of the kagome Heisenberg model

0 0.05 0.1 0.15 0.2 0.25Inverse geometrical diameter (1/L)

0

0.1

0.2

0.3

0.4

0.5

S=2

Spi

n G

ap (∆

2)

p = 0 Lanczos stepsp = 2 Lanczos steps extrapolated

• The final result is ∆2 = −0.04± 0.06• The “upper” bound is given by ∆2 ≃ 0.02• The S = 1 gap should be ∆1 . 0.01

Much smaller than previous DMRG estimationsMore similar to recent calculations by Nishimoto et al. ∆1 = 0.05± 0.02Nishimoto, Shibata, and Hotta, Nat. Commun. 4, 2287 (2013)

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 28 / 32

Page 29: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Adding the next-nearest-neighbor super-exchange

0 0.1 0.2 0.3 0.4 0.5J

2

-0.5

-0.48

-0.46

-0.44

-0.42

-0.4

-0.38

Ene

rgy

per

site

U(1) Dirac SLZ

2[0,π]β SL

q=0 magnetically ordered state2 Lanczos steps + ZVE {Z

2[0,π]β SL}

48-sites

0 0.1 0.2 0.3 0.4 0.5J

2

-0.5

-0.48

-0.46

-0.44

-0.42

-0.4

-0.38

Ene

rgy

per

site

U(1) Dirac SLZ

2[0,π]β SL

q=0 magnetically ordered state

192-sites

• The gapped Z2 state overcomes the U(1) Dirac one for J2/J1 > 0.1

• The magnetic state with q = 0 (Jastrow) is stabilized for J2/J1 > 0.3

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 29 / 32

Page 30: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Adding the next-nearest-neighbor super-exchange

Applying Lanczos steps on 48 sites

0 0.005 0.01 0.015 0.02 0.025 0.03

Variance of energy-0.46

-0.456

-0.452

-0.448

-0.444

-0.44

-0.436

Ene

rgy

per

site

Z2[0,π]β SL

U(1) Dirac SL

48-site torus, J2=0.20

• For finite J2/J1 the gapped Z2 state has a “better” extrapolation with Lanczos steps

• Calculations on larger clusters are in progress...

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 30 / 32

Page 31: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Conclusions

Results up to now:

Very good energiesWith TWO variational parameters: Educated guessTo be compared with about 16000 parameters in DMRG: Brute-force calculation

Direct calculation of the S = 2 gapNo evidence for a finite gap in thermodynamic limit

Pros• Very flexible approach that may describe several different phases

(gapped and gapless, not only low-entanglement states)

• Natural way of constructing and understanding low-energy excitations

• Applying few Lanczos steps allows for a sizable improvement

Cons• Still, it is a biased approach and more work must be done

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 31 / 32

Page 32: Gapless spin liquids in frustrated Heisenberg models · 1 ∼ 0.5: Disordered phase (RVB liquid, dimer order or more exotic?) Experimental realization in Li 2VOSiO 4 (J 2 &J ... Brute-force

Different kinds of spin liquids

The folklore is that

• DMRG always produces excellent spin liquids

• Other numerical methods produce no good liquids

We are trying to improve the quality of our liquids

Federico Becca (CNR and SISSA) Gapless Spin Liquids NHSCP at ISSP 32 / 32