49
DAVID KRESS Director of Technical Marketing Fundamentals of Data Converters 9/14/2016

Fundamentals of Data Converters - eewebinar.co.kr · Outline Sampled data system types Digitizing processes Data converters for measurement systems and errors Data converters for

  • Upload
    vanngoc

  • View
    229

  • Download
    2

Embed Size (px)

Citation preview

DAVID KRESS

Director of Technical Marketing

Fundamentals of Data

Converters

9/14/2016

Analog to Electronic Signal Processing

Sensor

(INPUT)Digital ProcessorAmp Converter

Actuator

(OUTPUT)Amp Converter

Analog to Electronic Signal Processing

Sensor

(INPUT)Digital ProcessorAmp Converter

Actuator

(OUTPUT)Amp Converter

Outline

►Sampled data system types

►Digitizing processes

►Data converters for measurement systems and errors

►Data converters for dynamic systems and errors

►Sampling system problems

►Structure and use of digital-analog converters

►Structure and use of analog-digital converters

Many Types of Sampled Data Systems

►Analog to digital converters

►Digital to analog converters

►Sample and hold amplifiers

►Peak detectors

►Comparators

►Switched cap filters

►Samples a continuous signal

►Domain conversion

– Analog to digital

– Digital to analog

– Continuous time to discrete time

– Continuous frequency to

discrete frequency

►Sampling rate

– Continuous, discontinuous

Analog and Digital Domains

Why Convert to Digital?

►Analog signals are continuous and provide the entire signal

►Digital signals capture only a portion of the signal

►Why digitize?

▪ Improved signal analysis potential

▪ More robust storage

▪ More accurate transmission

►Development objective of sampled data systems is to minimize

effect of the sampling process

Sampled Data System: Sampling and Quantization

LPF

OR

BPF

N-BIT

ADCDSP

N-BIT

DAC

LPF

OR

BPF

fa

fs fs

t

AMPLITUDE

QUANTIZATION DISCRETE

TIME SAMPLING

fa

1

fsts=

Transfer Functions for Ideal 3-Bit DAC and ADC

DIGITAL INPUT

ANALOG

OUTPUT

FS

000 001 010 011 100 101 110 111 ANALOG INPUT

DIGITALOUTPUT

FS

000

001

010

011

100

101

110

111

QUANTIZATION

UNCERTAINTY

QUANTIZATION

UNCERTAINTY

DAC ADC

Unipolar Binary Code, 4-bit Converter

+15

+14

+13

+12

+11

+10

+9

+8

+7

+6

+5

+4

+3

+2

+1

0

BASE 10

NUMBERSCALE +10 V FS BINARY

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

9.375

8.750

8.125

7.500

6.875

6.250

5.625

5.000

4.375

3.750

3.125

2.500

1.875

1.250

0.625

0.000

+FS – 1 LSB = 15/16 FS

+7/8 FS

+13/16 FS

+3/4 FS

+11/16 FS

+5/16 FS

+9/16 FS

+1/2 FS

+7/16 FS

+3/8 FS

+5/16 FS

+1/4 FS

+3/16 FS

+1/8 FS

1 LSB = +1/16 FS

0

+15

+14

+13

+12

+11

+10

+9

+8

+7

+6

+5

+4

+3

+2

+1

0

BASE 10

NUMBERSCALE +10 V FS BINARY

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

9.375

8.750

8.125

7.500

6.875

6.250

5.625

5.000

4.375

3.750

3.125

2.500

1.875

1.250

0.625

0.000

+FS – 1 LSB = 15/16 FS

+7/8 FS

+13/16 FS

+3/4 FS

+11/16 FS

+5/16 FS

+9/16 FS

+1/2 FS

+7/16 FS

+3/8 FS

+5/16 FS

+1/4 FS

+3/16 FS

+1/8 FS

1 LSB = +1/16 FS

0

Bipolar Codes, 4-bit Converter

+4.375

+3.750

+3.125

+2.500

+1.875

+1.250

+0.625

0.000

–0.625

–1.250

–1.875

–2.500

–3.125

–3.750

–4.375

–5.000

1 1 1 1

1 1 1 0

1 1 0 1

1 1 0 0

1 0 1 1

1 0 1 0

1 0 0 1

1 0 0 0

0 1 1 1

0 1 1 0

0 1 0 1

0 1 0 0

0 0 1 1

0 0 1 0

0 0 0 1

0 0 0 0

0 1 1 1

0 1 1 0

0 1 0 1

0 1 0 0

0 0 1 1

0 0 1 0

0 0 0 1

*0 0 0 0

1 1 1 0

1 1 0 1

1 1 0 0

1 0 1 1

1 0 1 0

1 0 0 1

1 0 0 0

+FS – 1LSB = +7/8 FS

+3/4 FS

+5/8 FS

+1/2 FS

+3/8 FS

+1/4 FS

+1/8 FS

0

– 1/8 FS

– 1/4 FS

– 3/8 FS

–1/2 FS

–5/8 FS

–3/4 FS

– FS + 1LSB = –7/8 FS

– FS

±5V FSSCALE

0 1 1 1

0 1 1 0

0 1 0 1

0 1 0 0

0 0 1 1

0 0 1 0

0 0 0 1

0 0 0 0

1 1 1 1

1 1 1 0

1 1 0 1

1 1 0 0

1 0 1 1

1 0 1 0

1 0 0 1

1 0 0 0

0 1 1 1

0 1 1 0

0 1 0 1

0 1 0 0

0 0 1 1

0 0 1 0

0 0 0 1

*1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

OFFSET

BINARY

TWOS

COMP.

ONES

COMP.

SIGN

MAG.

0+ 0 0 0 0

0– 1 1 1 1

0 0 0 0

1 0 0 0

ONES

COMP.

SIGN

MAG.

CODES NOT NORMALLY USED

IN COMPUTATIONS (SEE TEXT)

+7

+6

+5

+4

+3

+2

+1

0

–1

–2

–3

–4

–5

–6

–7

–8

BASE 10

NUMBER

*

RESOLUTION

N

2-bit

4-bit

6-bit

8-bit

10-bit

12-bit

14-bit

16-bit

18-bit

20-bit

22-bit

24-bit

2N

4

16

64

256

1,024

4,096

16,384

65,536

262,144

1,048,576

4,194,304

16,777,216

VOLTAGE

(10V FS)

2.5 V

625 mV

156 mV

39.1 mV

9.77 mV (10 mV)

2.44 mV

610 V

153 V

38 V

9.54 V (10 V)

2.38 V

596 nV*

ppm FS

250,000

62,500

15,625

3,906

977

244

61

15

4

1

0.24

0.06

% FS

25

6.25

1.56

0.39

0.098

0.024

0.0061

0.0015

0.0004

0.0001

0.000024

0.000006

dB FS

– 12

– 24

– 36

– 48

– 60

– 72

– 84

– 96

– 108

– 120

– 132

– 144

*600nV is the Johnson Noise in a 10kHz BW of a 2.2k Resistor @ 25°C

Remember: 10-bits and 10V FS yields an LSB of 10mV, 1000ppm, or 0.1%.

All other values may be calculated by powers of 2.

Quantization: The Size of a Least Significant Bit (LSB)

Practical Resolution Needs for Data Converters

► Instrumentation measurements

▪ Sensor resolution/accuracy of 0.5% = 1/200

▪ 8 bits equivalent to 1/256 -- digitizing will lose information

▪ 10x sensor resolution = 1/2000 -- 12 bits is 1/4096

▪ Allows discrimination of small changes

▪ Can also be driven by display requirements

►Dynamic signal measurements

▪ Audio systems need better than 0.1% distortion at 5% of full scale

▪ Equivalent to 1/20,000 -- 16 bits is 1/65,536

Primary Errors in Data Converters

► Instrumentation and measurement

▪ Described in LSBs(least-significant-bit), % of FS, ppm of FS

▪ Offset error – the input level needed to change the first code

▪ Gain/full-scale error – the input level need to change the last code

▪ Nonlinearity – deviation of codes from the line from zero to FS

▪ Differential nonlinearity – code-to-code deviation from 1 LSB

▪ Transition noise – ADC uncertainty in code center point

Transfer Functions for Non-Ideal 3-Bit DAC and ADC

DIGITAL INPUT

ANALOGOUTPUT

FS

000 001 010 011 100 101 110 111

NON-MONOTONIC

ANALOG INPUT

DIGITALOUTPUT

FS

000

001

010

011

100

101

110

111

MISSING CODE

DAC ADC

DIGITAL INPUT

ANALOGOUTPUT

FS

000 001 010 011 100 101 110 111

NON-MONOTONIC

DIGITAL INPUT

ANALOGOUTPUT

FS

000 001 010 011 100 101 110 111

NON-MONOTONIC

ANALOG INPUT

DIGITALOUTPUT

FS

000

001

010

011

100

101

110

111

ANALOG INPUT

DIGITALOUTPUT

FS

000

001

010

011

100

101

110

111

MISSING CODE

DAC ADC

Combined Effects of Code Transition Noise and DNL

ADC INPUT ADC INPUT ADC INPUT

CODE TRANSITION NOISE DNL TRANSITION NOISEAND DNL

ADCOUTPUT

CODE

Primary Errors in Data Converters

► Dynamic systems

► SINAD (Signal-to-Noise-and-Distortion Ratio):▪ The ratio of the rms signal amplitude to the mean value of the root-sum-

squares (RSS) of all other spectral components, including harmonics, but excluding DC.

► ENOB (Effective Number of Bits):

► SNR (Signal-to-Noise Ratio, or Signal-to-Noise Ratio Without Harmonics:▪ The ratio of the rms signal amplitude to the mean value of the root-sum-

squares (RSS) of all other spectral components, excluding the first 5 harmonics and DC

► SFDR (Spurious-Free-Dynamic-Range) Signal dynamic range in the bandwidth of interest containing no frequency noise spurs

ENOB = SINAD – 1.76dB

6.02dB

Quantization & Quantization Noise

001

010

011

100

101

110

111

1/8 2/8 3/8 4/8 5/8 6/8 7/8 FS

NORMALIZED ANALOG INPUT

DIG

ITA

L O

UT

PU

T

quantization noise error: RMS value is LSB/3.464

Quantization Error

Function

Quantization Noise as a Function of Time

t

+q

2

–q

2

SLOPE = s

+q

2s

–q

2s

e(t)

e(t) = st, –q

2s

+q

2s< t <

e2(t) = s

q –q/2s

+q/2s

(st) 2 dt = q2

12MEAN-SQUARE ERROR =

ERROR =

ROOT-MEAN-SQUARE ERROR =q

12e2(t) =

Ideal ADC Sampling

3 Different Frequencies, Sampled the Same

Ideal ADC Sampling

Once Sampled, Information is Lost

Nyquist's Criteria

► A signal with a maximum frequency fa must be sampled at a rate fs > 2fa or information about the signal will be lost because of aliasing.

► Aliasing occurs whenever fs < 2fa

► A signal which has frequency components between fa and fb must be sampled at a rate fs > 2 (fb – fa) in order to prevent alias components from overlapping the signal frequencies

► The concept of aliasing is widely used in communications applications such as direct IF-to-digital conversion.

Aliasing occurs in Many Domains

Spatial, Temporal, etc.

Image Source : Wikipedia

Sampling & Aliasing in the Time Domain

1

fs

INPUT = faALIASED SIGNAL = fs – fa

NOTE: fa IS SLIGHTLY LESS THAN fs

t

Baseband Antialiasing Filter Requirements

B

Kfs - fafa

KfsKfs2

STOPBAND ATTENUATION = DR

TRANSITION BAND: fa to fs - fa

CORNER FREQUENCY: fa

STOPBAND ATTENUATION = DR

TRANSITION BAND: fa to Kfs - fa

CORNER FREQUENCY: fa

Anti-Alias Filter Prevents Aliasing

Contributes to Dynamic Range

Anti-Alias Filter Objectives

➢Brick Wall (Steep/Deep Rolloff)

➢Linear Passband

➢Linear Phase

A

DR

fs

fa fs - fa

fs2

Oversampling Relaxes Requirements

on Baseband Antialiasing Filter

BA

DR

fs

fa fs - fa

Kfs - fa

fa

fs2

KfsKfs2

STOPBAND ATTENUATION = DR

TRANSITION BAND: fa to fs - fa

CORNER FREQUENCY: fa

STOPBAND ATTENUATION = DR

TRANSITION BAND: fa to Kfs - fa

CORNER FREQUENCY: fa

Sample-and-Hold Function

Required for Digitizing AC Signals

ADC

ENCODER

TIMINGSAMPLING

CLOCK

SW

CONTROL

ANALOG

INPUT

SAMPLE

HOLD

SAMPLE

C

ENCODER CONVERTS

DURING HOLD TIME

SW

CONTROL

N

Input Frequency Limitations of

Non-Sampling ADC (Encoder)

N-BIT

SAR ADC ENCODER

CONVERSION TIME = 8µs

EXAMPLE:

dv = 1 LSB = q

dt = 8µs

N = 12, 2N = 4096

fmax = 9.7 Hz

v(t) = 2N

2sin (2 f t )

dv

dt

2N

22 f cos (2 f t )=

dv

dt max= 2(N–1) 2 f

dv

dt max

2(N–1) 2 qfmax =

fs = 100 kSPS

ANALOG INPUTN

dv

dt max

q 2Nfmax =

q

q

q

Effective Aperture Delay Time

Measured with Respect to ADC Input

SAMPLING

CLOCK

ANALOG INPUT

SINEWAVE

ZERO CROSSING

+FS

-FS

0V

+te–te

te

' '

'

Effects of Aperture Jitter

and Sampling Clock Jitter

ANALOGINPUT

TRACK

HOLD

D

dv

dt

vdv

dt

tRMS

= APERTURE JITTER

vRMS

NOMINALHELDOUTPUT

= t

= SLOPE = APERTURE JITTER ERRORD

D

D

Theoretical SNR and ENOB Due to Jitter

vs. Fullscale Sinewave Analog Input Frequency

SNR(dB)

ENOB

100

80

60

40

20

16

14

12

10

8

6

4

1 3 10 30 100

tj = 1ns

tj = 100ps

tj = 10ps

tj = 1ps

tj = 0.1ps

120

18

FULL-SCALE SINEWAVE ANALOG INPUT FREQUENCY (MHz)

SNR = 20log 10

1

2 f t j

tj = 50fs

1-Bit DAC:

Changeover Switch (SPDT)

VREF

OUTPUT

Simplest Voltage Output Thermometer DAC:

The Kelvin Divider ( AKA - "String DAC")

3-TO-8

DECODER

3-BITDIGITALINPUT

ANALOG

OUTPUT

VREF

8

TO

SWITCHES

R

R

R

R

R

R

R

R

The Simplest Current Output

Thermometer (Fully-Decoded) DAC

3-BITDIGITALINPUT

CURRENTOUTPUT INTO

VIRTUALGROUND

(USUALLY ANOP-AMP I-V

CONVERTER)

VREF

3-TO-7DECODER

R R R R R R R

TO

SWITCHES

7

Voltage-Mode Binary Weighted Resistor DAC

R/8 R/4 R/2 R

V

V

REF

OUT

MSBLSB

Current-Mode R-2R Ladder Network

Resistor-Based DAC

2R

RRR

2R2R2R2R

VREF

MSB LSB

CURRENT

OUTPUTINTO

VIRTUAL

GROUND

<< R

*

* GAIN TRIM IF REQUIRED

Segmented Voltage Output DACs

KELVIN-VARLEY DIVIDER

("STRING DAC")

VREFV

REF

OUTPUT

KELVIN DIVIDER ANDR-2R LADDER NETWORK

NOTE:MSB OF R-2R LADDER

ON RIGHT

IF THE R-2R LADDER NETWORKIS MONOTONIC, THE

WHOLE DAC ISMONOTONIC

OUTPUT

(A) (B)

A

B

A

B

A

B

A

B

A

A

B A

B

Circuits from the Lab

Multiplying DAC attenuates AC signal

08

34

4-0

01

16/14-BIT

VDD

ROFS

ROFS

VOUT

RFB

RFB C82.2pF

GND

U1AD5546/AD5556

IOUT

R2R1

RCOMR1

16/14 DATA

REF

U2AD8610

+

C40.1µF

C51µF

C60.1µF

C71µF

+12V

–12V

WR

WR

LDAC

LDAC

RS

RS

MSB

MSB

C20.1µF

C11µF

V+

V–

+5V

+10V

VIN

–10V

Digital Potentiometer Applications

►Amplifier and other component adjustment

▪ Connect across offset-adjust pins

▪ Gain adjustment or fine tuning

►System calibration

▪ Digital pots inserted in strategic system locations

▪ System tune-up automatically or manually

▪ Non-volatile RAM setting returns on system power-up

▪ RAM can be one-time program or re-programmable

▪ Settings can be stored centrally and transmitted for system re-adjustment

Circuits from the Lab

Digital Potentiometer Gain Adjustment

1-Bit DAC:

Highly-sophisticated Digital-Audio DAC

VREF

OUTPUT

Sampled Data System: Sampling and Quantization

Sampled Data System: Sampling and Quantization

Basic ADC with External Reference

VDD

VSS

GROUND

(MAY BE INTERNALLY

CONNECTED TO VSS)

ADC

ANALOG

INPUT

VREF

DIGITAL

OUTPUT

SAMPLING

CLOCK

EOC, DATA READY, ETC.

The Comparator: A 1-Bit ADC

+

DIFFERENTIAL

ANALOG INPUT

LOGIC

OUTPUT

LATCH

ENABLE

DIFFERENTIAL ANALOG INPUT

COMPARATOR

OUTPUT

"0"

"1"

0

VHYSTERESIS

Basic Successive Approximation ADC

(Feedback Subtraction ADC)

SHA

CONTROL

LOGIC:

SUCCESSIVE

APPROXIMATION

REGISTER

(SAR)DAC

TIMING

CONVERT

START

EOC,

DRDY,

OR BUSY

OUTPUT

ANALOG

INPUT COMPARATOR

Successive Approximation ADC Algorithm

Analogy Using Binary Weights

TEST

IS X 32 ? YES RETAIN 32 1

ASSUME X = 45

IS X (32 +16) ? NO REJECT 16 0

IS X (32 +8) ? YES RETAIN 8 1

IS X (32 +8 + 4) ? YES RETAIN 4 1

IS X (32 +8 + 4 + 2) ? NO REJECT 2 0

IS X (32 +8 + 4 + 2 + 1) ? YES RETAIN 1 1

X = 32 + 8 + 4 + 1 = 4510 = 1011012TOTALS:

3-bit All-Parallel (Flash) Converter

N

R

PRIORITY

ENCODER

AND LATCH

ANALOG

INPUT

DIGITAL

OUTPUT

+VREF

R

R

R

R

R

0.5R

STROBE

1.5R

+

+

+

+

+

+

+

Sigma-Delta ADC - First-Order Modulator

+

_

+VREF

–VREF

DIGITAL

FILTER

AND

DECIMATOR

+

_

CLOCK

Kfs

VINN-BITS

fs

fs

A

B

1-BIT DATA

STREAM1-BIT

DAC

LATCHED

COMPARATOR

(1-BIT ADC)

1-BIT,

Kfs

SIGMA-DELTA MODULATOR

INTEGRATOR

Thank You For Watching!

View Additional Webcasts at

www.analog.com/Webcasts

Ask Questions on EngineerZone

ez.analog.com/Webcasts

Order ADI Products on Avnet

www.avnet.com