116
François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint Programming Group, INRIA Rocquencourt mailto:[email protected] http://contraintes.inria.fr/ Main idea: to master the complexity of biological systems investigate Programming Language Concepts Formal Methods of Circuit and Program Verification Automated Reasoning Tools Prototype Implementation in the Biochemical Abstract Machine BIOCHAM modeling environment available at http://contraintes.inria.fr/BIOCHAM

François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

Embed Size (px)

Citation preview

Page 1: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Formal Verification of Dynamical Models and Application to Cell Cycle Control

François Fages, Sylvain SolimanConstraint Programming Group, INRIA Rocquencourt

mailto:[email protected]://contraintes.inria.fr/

Main idea: to master the complexity of biological systems investigate• Programming Language Concepts• Formal Methods of Circuit and Program Verification• Automated Reasoning Tools

Prototype Implementation in the Biochemical Abstract Machine BIOCHAMmodeling environment available at http://contraintes.inria.fr/BIOCHAM

Page 2: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Systems Biology

“Systems Biology aims at systems-level understanding [which]

requires a set of principles and methodologies that links the

behaviors of molecules to systems characteristics and functions.”

H. Kitano, ICSB 2000

• Analyze (post-)genomic data produced with high-throughput technologies (stored in databases like GO, KEGG, BioCyc, etc.);

• Integrate heterogeneous data about a specific problem;

• Understand and Predict behaviors or interactions in big networks of genes or proteins.

Systems Biology Markup Language (SBML) : exchange format for reaction models

Page 3: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Issue of Abstraction

Models are built in Systems Biology with two contradictory perspectives :

Page 4: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Issue of Abstraction

Models are built in Systems Biology with two contradictory perspectives :

1) Models for representing knowledge : the more concrete the better

Page 5: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Issue of Abstraction

Models are built in Systems Biology with two contradictory perspectives :

1) Models for representing knowledge : the more concrete the better

2) Models for making predictions : the more abstract the better !

Page 6: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Issue of Abstraction

Models are built in Systems Biology with two contradictory perspectives :

1) Models for representing knowledge : the more concrete the better

2) Models for making predictions : the more abstract the better !

These perspectives can be reconciled by organizing formalisms and models into hierarchies of abstractions.

To understand a system is not to know everything about it but to know

abstraction levels that are sufficient for answering questions about it

Page 7: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Language-based Approaches to Cell Systems Biology

Qualitative models: from diagrammatic notation to• Boolean networks [Kaufman 69, Thomas 73] Petri Nets [Reddy 93, Chaouiya 05]

• Process algebra π–calculus [Regev-Silverman-Shapiro 99-01, Nagasali et al. 00] • Bio-ambients [Regev-Panina-Silverman-Cardelli-Shapiro 03]

• Pathway logic [Eker-Knapp-Laderoute-Lincoln-Meseguer-Sonmez 02]

• Reaction rules [Chabrier-Fages 03] [Chabrier-Chiaverini-Danos-Fages-Schachter 04]

Quantitative models: from ODEs and stochastic simulations to• Hybrid Petri nets [Hofestadt-Thelen 98, Matsuno et al. 00]

• Hybrid automata [Alur et al. 01, Ghosh-Tomlin 01] HCC [Bockmayr-Courtois 01]

• Stochastic π–calculus [Priami et al. 03] [Cardelli et al. 06]

• Reaction rules with continuous time dynamics [Fages-Soliman-Chabrier 04]

Page 8: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Overview of the Lecture

1. Rule-based Language for Modeling Biochemical Systems 1. Syntax of molecules, compartments and reactions

2. Semantics at three abstraction levels: boolean, differential, stochastic

3. Simple examples of signal transduction, transcription, cell-cell interaction

2. Temporal Logic Language for Formalizing Biological Properties1. CTL for the boolean semantics

2. Constraint LTL for the differential semantics

3. PCTL for the stochastic semantics

3. Automated Reasoning Tools1. Inferring kinetic parameter values from Constraint-LTL specification

2. Inferring reaction rules from CTL specification

3. Type inference by abstract interpretationL. Calzone, N. Chabrier, F. Fages, S. Soliman. TCSB VI, LNBI 4220:68-94. 2006.

Page 9: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Formal Proteins

Cyclin dependent kinase 1 Cdk1

(free, inactive)

Complex Cdk1-Cyclin B Cdk1–CycB

(low activity preMPF)

Phosphorylated form Cdk1~{thr161}-CycB

at site threonine 161(high activity MPF) [Alberts et al 2002]

Page 10: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Syntax of BIOCHAM Objects

E == name | E-E | E~{p1,…,pn}

Page 11: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Syntax of BIOCHAM Objects

E == name | E-E | E~{p1,…,pn}

name: molecule, #gene binding site, abstract @process…

- : binding operator for protein complexes, gene bindings, …

Associative and commutative.

~{…}: modification operator for phosphorylated sites, acetylated, etc…

Set of modified sites (associative, commutative, idempotent).

Page 12: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Syntax of BIOCHAM Objects

E == name | E-E | E~{p1,…,pn}

name: molecule, #gene binding site, abstract @process…

- : binding operator for protein complexes, gene bindings, …

Associative and commutative.

~{…}: modification operator for phosphorylated sites, acetylated, etc…

Set of modified sites (associative, commutative, idempotent).

O == E | E::location

Location: symbolic compartment (nucleus, cytoplasm, cell …)

Page 13: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Syntax of BIOCHAM Objects

E == name | E-E | E~{p1,…,pn}

name: molecule, #gene binding site, abstract @process…

- : binding operator for protein complexes, gene bindings, …

Associative and commutative.

~{…}: modification operator for phosphorylated sites, acetylated, etc…

Set of modified sites (associative, commutative, idempotent).

O == E | E::location

Location: symbolic compartment (nucleus, cytoplasm, cell …)

S == _ | O+S

+ : solution multiset operator (associative, commutative, neutral element _)

Page 14: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Basic Rule Schemas

Complexation: A + B => A-B Decomplexation A-B => A + B cdk1+cycB => cdk1–cycB

Page 15: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Basic Rule Schemas

Complexation: A + B => A-B Decomplexation A-B => A + B cdk1+cycB => cdk1–cycB

Phosphorylation: A =[C]=> A~{p} Dephosphorylation A~{p} =[C]=> A

Cdk1-CycB =[Myt1]=> Cdk1~{thr161}-CycB

Cdk1~{thr14,tyr15}-CycB =[Cdc25~{Nterm}]=> Cdk1-CycB

Page 16: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Basic Rule Schemas

Complexation: A + B => A-B Decomplexation A-B => A + B cdk1+cycB => cdk1–cycB

Phosphorylation: A =[C]=> A~{p} Dephosphorylation A~{p} =[C]=> A

Cdk1-CycB =[Myt1]=> Cdk1~{thr161}-CycB

Cdk1~{thr14,tyr15}-CycB =[Cdc25~{Nterm}]=> Cdk1-CycB

Synthesis: _ =[C]=> A. Degradation: A =[C]=> _. _ =[#Ge2-E2f13-Dp12]=> CycA cycE =[@UbiPro]=> _

(not for cycE-cdk2 which is stable)

Page 17: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Basic Rule Schemas

Complexation: A + B => A-B Decomplexation A-B => A + B cdk1+cycB => cdk1–cycB

Phosphorylation: A =[C]=> A~{p} Dephosphorylation A~{p} =[C]=> A

Cdk1-CycB =[Myt1]=> Cdk1~{thr161}-CycB

Cdk1~{thr14,tyr15}-CycB =[Cdc25~{Nterm}]=> Cdk1-CycB

Synthesis: _ =[C]=> A. Degradation: A =[C]=> _. _ =[#Ge2-E2f13-Dp12]=> CycA cycE =[@UbiPro]=> _

(not for cycE-cdk2 which is stable)

Transport: A::L1 => A::L2Cdk1~{p}-CycB::cytoplasm => Cdk1~{p}-CycB::nucleus

Page 18: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

From Syntax to Semantics

R ::= S=>S

Page 19: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

From Syntax to Semantics

R ::= S=>S | S =[O]=> S | S <=> S | S <=[O]=> S where A =[C]=> B stands for A+C => B+C

A <=> B stands for A=>B and B=>A, etc.

| kinetic for R (import/export SBML format)

Page 20: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

From Syntax to Semantics

R ::= S=>S | S =[O]=> S | S <=> S | S <=[O]=> S where A =[C]=> B stands for A+C => B+C

A <=> B stands for A=>B and B=>A, etc.

| kinetic for R (import/export SBML format)

In SBML : no semantics (exchange format)

Page 21: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

From Syntax to Semantics

R ::= S=>S | S =[O]=> S | S <=> S | S <=[O]=> S where A =[C]=> B stands for A+C => B+C

A <=> B stands for A=>B and B=>A, etc.

| kinetic for R (import/export SBML format)

In SBML : no semantics (exchange format)

In BIOCHAM : three abstraction levels

1. Boolean Semantics: presence-absence of molecules 1. Concurrent Transition System (asynchronous, non-

deterministic)

Page 22: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

From Syntax to Semantics

R ::= S=>S | S =[O]=> S | S <=> S | S <=[O]=> S where A =[C]=> B stands for A+C => B+C

A <=> B stands for A=>B and B=>A, etc.

| kinetic for R (import/export SBML format)

In SBML : no semantics (exchange format)

In BIOCHAM : three abstraction levels

1. Boolean Semantics: presence-absence of molecules 1. Concurrent Transition System (asynchronous, non-

deterministic)

2. Differential Semantics: concentration• Ordinary Differential Equations or Hybrid system

(deterministic)

Page 23: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

From Syntax to Semantics

R ::= S=>S | S =[O]=> S | S <=> S | S <=[O]=> S where A =[C]=> B stands for A+C => B+C

A <=> B stands for A=>B and B=>A, etc.

| kinetic for R (import/export SBML format)

In SBML : no semantics (exchange format)

In BIOCHAM : three abstraction levels

1. Boolean Semantics: presence-absence of molecules 1. Concurrent Transition System (asynchronous, non-deterministic)

2. Differential Semantics: concentration 1. Ordinary Differential Equations or Hybrid system (deterministic)

• Stochastic Semantics: number of molecules • Continuous time Markov chain

Page 24: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

1. Differential Semantics

Associates to each molecule its concentration [Ai]= | Ai| / volume ML-1

volume of diffusion …

Page 25: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

1. Differential Semantics

Associates to each molecule its concentration [Ai]= | Ai| / volume ML-1

volume of compartment

Compiles a set of rules { ei for Si=>S’I }i=1,…,n (by default ei is MA(1))

into the system of ODEs (or hybrid automaton) over variables {A1,…,Ak}

dA/dt = Σni=1 ri(A)*ei - Σn

j=1 lj(A)*ej

where ri(A) (resp. li(A)) is the stoichiometric coefficient of A in Si (resp. S’i)

multiplied by the volume ratio of the location of A.

Page 26: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

1. Differential Semantics

Associates to each molecule its concentration [Ai]= | Ai| / volume ML-1

volume of compartment

Compiles a set of rules { ei for Si=>S’I }i=1,…,n (by default ei is MA(1))

into the system of ODEs (or hybrid automaton) over variables {A1,…,Ak}

dA/dt = Σni=1 ri(A)*ei - Σn

j=1 lj(A)*ej

where ri(A) (resp. li(A)) is the stoichiometric coefficient of A in Si (resp. S’i)

multiplied by the volume ratio of the location of A.

volume_ratio (15,n),(1,c).

mRNAcycA::n <=> mRNAcycA::c.

means 15*Vn = Vc and is equivalent to 15*mRNAcycA::n <=> mRNAcycA::c.

Page 27: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

1. Differential Semantics

Numerical integration

• Adaptive step size 4th order Runge-Kutta (can be weak for stiff systems)

• Rosenbrock implicit method using the Jacobian matrix ∂x’ i/∂xj

computes a (clever) discretization of time and a time series

(t0, X0, dX0/dt), (t1, X1, dX1/dt), …, (tn, Xn, dXn/dt), …

of concentrations and their derivatives at discrete time points

Page 28: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

2. Stochastic Semantics

Associates to each molecule its number |Ai| in its location

Page 29: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

2. Stochastic Semantics

Associates to each molecule its number |Ai| in its location

Compiles the rule set into a continuous time Markov chain

over vector states (|A1|,…, |Ak|) where the transition rate τi for the reaction ei for Si=>S’I (giving probability after normalization) is

Page 30: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

2. Stochastic Semantics

Associates to each molecule its number |Ai| in its location

Compiles the rule set into a continuous time Markov chain

over vector states (|A1|,…, |Ak|) where the transition rate τi for the reaction ei for Si=>S’I (giving probability after normalization) is

[Gillespie 76, Gibson 00]where Vi is the volume where the reaction occurs and K is Avogadro number

τi = ei for reactions of the form A =>...,

τi = ei /Vi×K for reactions of the form A+B=>...,

τi = 2 × ei /Vi×K for reactions of the form A+A=>...,

Page 31: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

2. Stochastic Semantics

Associates to each molecule its number |Ai| in its location

Compiles the rule set into a continuous time Markov chain

over vector states (|A1|,…, |Ak|) where the transition rate τi for the reaction ei for Si=>S’I (giving probability after normalization) is

[Gillespie 76, Gibson 00]where Vi is the volume where the reaction occurs and K is Avogadro number

τi = ei for reactions of the form A =>...,

τi = ei /Vi×K for reactions of the form A+B=>...,

τi = 2 × ei /Vi×K for reactions of the form A+A=>...,

Computes realizations as time series (t0, X0), (t1, X1), …, (tn, Xn), …

Page 32: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

2. Stochastic Semantics

Associates to each molecule its number |Ai| in its location

Compiles the rule set into a continuous time Markov chain

over vector states (|A1|,…, |Ak|) where the transition rate τi for the reaction ei for Si=>S’I (giving probability after normalization) is

[Gillespie 76, Gibson 00]where Vi is the volume where the reaction occurs and K is Avogadro number

τi = ei for reactions of the form A =>...,

τi = ei /Vi×K for reactions of the form A+B=>...,

τi = 2 × ei /Vi×K for reactions of the form A+A=>...,

The differential semantics is an abstraction of the stochastic one [Gillespie 76]

Page 33: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

3. Boolean Semantics

Associates to each molecule a Boolean denoting its presence/absence in its location

Page 34: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

3. Boolean Semantics

Associates to each molecule a Boolean denoting its presence/absence in its location

Compiles the rule set into an asynchronous transition system

Page 35: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

3. Boolean Semantics

Associates to each molecule a Boolean denoting its presence/absence in its location

Compiles the rule set into an asynchronous transition system where a reaction like A+B=>C+D is translated into 4 transition rules taking into account the possible complete consumption of reactants:

A+BA+B+C+D

A+BA+B +C+D

A+BA+B+C+D

A+BA+B+C+D

Page 36: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

3. Boolean Semantics

Associates to each molecule a Boolean denoting its presence/absence in its location

Compiles the rule set into an asynchronous transition system where a reaction like A+B=>C+D is translated into 4 transition rules taking into account the possible complete consumption of reactants:

A+BA+B+C+D

A+BA+B +C+D

A+BA+B+C+D

A+BA+B+C+D

Necessary to over-approximate the possible behaviors under :

1. the stochastic semantics : trivial abstraction N {zero, non-zero}

2. the differential semantics : harder to relate mathematically

Page 37: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Hierarchy of Semantics

Stochastic model

Differential model

Discrete model

abstraction

concretization

Boolean model

Theory of

abstract Interpretation [Cousot Cousot 77]

Page 38: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Cell Signaling

Receptors: RTK tyrosine kinase, G-protein coupled, Notch…

Page 39: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Cell Signaling

Receptors: RTK tyrosine kinase, G-protein coupled, Notch…

Signals: hormones insulin, adrenaline, steroids, EGF, … membrane proteins Delta, … nutriments, light, pressure …

Page 40: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Cell Signaling

Receptors: RTK tyrosine kinase, G-protein coupled, Notch…

Signals: hormones insulin, adrenaline, steroids, EGF, … membrane proteins Delta, … nutriments, light, pressure …

L + R <=> L-R

Page 41: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Cell Signaling

Receptors: RTK tyrosine kinase, G-protein coupled, Notch…

Signals: hormones insulin, adrenaline, steroids, EGF, … membrane proteins Delta, … nutriments, light, pressure …

L + R <=> L-R

L-R + L-R <=> L-R-L-R

Page 42: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Cell Signaling

Receptors: RTK tyrosine kinase, G-protein coupled, Notch…

Signals: hormones insulin, adrenaline, steroids, EGF, … membrane proteins Delta, … nutriments, light, pressure …

L + R <=> L-R

L-R + L-R <=> L-R-L-R

RAS-GDP =[L-R-L-R]=> RAS-GTP

Page 43: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

MAPK Signaling Pathways

Input: RAF activated by the receptor

RAF-p14-3-3 + RAS-GTP => RAF + p14-3-3 + RAS-GDP

Output: MAPK~{T183,Y185}

• moves to the nucleus

• phosphorylates a transcription factor

• which stimulates gene transcription

Page 44: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

MAPK Signalling Network [Levchencko et al 2000]

(MA(1),MA(0.4)) for RAF + RAFK <=> RAF-RAFK.

MA(0.1) for RAF-RAFK => RAFK + RAF~{p1}.

Page 45: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

MAPK Signalling Network [Levchencko et al 2000]

(MA(1),MA(0.4)) for RAF + RAFK <=> RAF-RAFK.

MA(0.1) for RAF-RAFK => RAFK + RAF~{p1}.

RAF~{p1} + RAFPH <=> RAF~{p1}-RAFPH.

RAF~{p1}-RAFPH => RAF + RAFPH.

MEK~$P + RAF~{p1} <=> MEK~$P-RAF~{p1} where p2 not in $P.

MEK~{p1}-RAF~{p1} => MEK~{p1,p2} + RAF~{p1}.$P pattern variable for

sites or molecules

Page 46: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

MAPK Signalling Network [Levchencko et al 2000]

(MA(1),MA(0.4)) for RAF + RAFK <=> RAF-RAFK.

MA(0.1) for RAF-RAFK => RAFK + RAF~{p1}.

RAF~{p1} + RAFPH <=> RAF~{p1}-RAFPH.

RAF~{p1}-RAFPH => RAF + RAFPH.

MEK~$P + RAF~{p1} <=> MEK~$P-RAF~{p1} where p2 not in $P.

MEK~{p1}-RAF~{p1} => MEK~{p1,p2} + RAF~{p1}.

MEK-RAF~{p1} => MEK~{p1} + RAF~{p1}.

MEKPH + MEK~{p1}~$P <=> MEK~{p1}~$P-MEKPH.

MEK~{p1}-MEKPH => MEK + MEKPH.

MEK~{p1,p2}-MEKPH => MEK~{p1} + MEKPH.

MAPK~$P+MEK~{p1,p2}<=>MAPK~$P-MEK~{p1,p2} where p2 not in $P.

MAPKPH + MAPK~{p1}~$P <=> MAPK~{p1}~$P-MAPKPH.

MAPK~{p1}-MAPKPH => MAPK + MAPKPH.

MAPK~{p1,p2}-MAPKPH => MAPK~{p1} + MAPKPH.

MAPK-MEK~{p1,p2} => MAPK~{p1} + MEK~{p1,p2}.

MAPK~{p1}-MEK~{p1,p2} => MAPK~{p1,p2}+MEK~{p1,p2}.

$P pattern variable for sites or molecules

Page 47: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Bipartite Protein-Reaction Graph of MAPK

GraphVizhttp://www.research.att.co/sw/tools/graphviz

Page 48: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Numerical Simulation of MAPK Signaling

Page 49: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Boolean Simulation (random) of MAPK Signaling

Page 50: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Five MAP Kinase Pathways in Budding Yeast

(Saccharomyces Cerevisiae)

Page 51: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Transcription: DNA pre-mRNA mRNA Protein

• Activation: transcription factors bind to the regulatory region of the gene

#E2 + E2F13-DP12 <=> #E2-E2F13-DP12

Page 52: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Transcription: DNA pre-mRNA mRNA Protein

• Activation: transcription factors bind to the regulatory region of the gene

#E2 + E2F13-DP12 <=> #E2-E2F13-DP12

• Transcription: RNA polymerase copies the DNA from start to stop positions into a single stranded pre-mature messenger RNA _

_ =[#E2-E2F13-DP12]=> pRNAcycA

Page 53: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Transcription: DNA pre-mRNA mRNA Protein

• Activation: transcription factors bind to the regulatory region of the gene

#E2 + E2F13-DP12 <=> #E2-E2F13-DP12

• Transcription: RNA polymerase copies the DNA from start to stop positions into a single stranded pre-mature messenger RNA _

_ =[#E2-E2F13-DP12]=> pRNAcycA

• (Alternative) splicing: non coding regions of pRNA are removed giving mature messenger mRNA pRNAcycA => mRNAcycA

Page 54: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Transcription: DNA pre-mRNA mRNA Protein

• Activation: transcription factors bind to the regulatory region of the gene

#E2 + E2F13-DP12 <=> #E2-E2F13-DP12

• Transcription: RNA polymerase copies the DNA from start to stop positions into a single stranded pre-mature messenger RNA _

_ =[#E2-E2F13-DP12]=> pRNAcycA

• (Alternative) splicing: non coding regions of pRNA are removed giving mature messenger mRNA pRNAcycA => mRNAcycA

• Transport: mRNA moves from the nucleus to the cytoplasm mRNAcycA => mRNAcycA::c

Page 55: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Transcription: DNA pre-mRNA mRNA Protein

• Activation: transcription factors bind to the regulatory region of the gene

#E2 + E2F13-DP12 <=> #E2-E2F13-DP12

• Transcription: RNA polymerase copies the DNA from start to stop positions into a single stranded pre-mature messenger RNA _

_ =[#E2-E2F13-DP12]=> pRNAcycA

• (Alternative) splicing: non coding regions of pRNA are removed giving mature messenger mRNA pRNAcycA => mRNAcycA

• Transport: mRNA moves from the nucleus to the cytoplasm mRNAcycA => mRNAcycA::c

• Translation: mRNA binds to a ribosome and synthesizes its protein mRNAcycA::c + Ribosome::c <=> mRNAcycA-Ribosome::c

_ =[mRNAcycA-Ribosome::c]=> cycA::c

Page 56: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Numerical Simulation with Default Mass Action Law

Page 57: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Boolean simulation (random) of transcription

Page 58: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Cell Differentiation by Delta-Notch Signaling

Xenopus embryonic skin [Ghosh, Tomlin 2001]

At the steady state, a cell has either the Delta phenotype or the Notch

Page 59: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Lateral Inhibition through Delta-Notch Signaling

Delta production is triggered by low Notch concentration in the same cell

if [N::c1]<0.5 then 1,[D::c1] for _<=>D::c1.

Page 60: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Lateral Inhibition through Delta-Notch Signaling

Delta production is triggered by low Notch concentration in the same cell

if [N::c1]<0.5 then 1,[D::c1] for _<=>D::c1.

Notch production is triggered by high Delta levels in neigboring cells

if [D::c21]+[D::c23]+[D::c12]+[D::c32]>0.2 then

1,[N::c22] for _ <=> N::c22.

Page 61: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Lateral Inhibition through Delta-Notch Signaling

Delta production is triggered by low Notch concentration in the same cell

if [N::c1]<0.5 then 1,[D::c1] for _<=>D::c1.

Notch production is triggered by high Delta levels in neigboring cells

if [D::c21]+[D::c23]+[D::c12]+[D::c32]>0.2 then

1,[N::c22] for _ <=> N::c22.

Page 62: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Overview of the Lecture

1. Rule-based Language for Modeling Biochemical Systems 1. Syntax of molecules, compartments and reactions2. Semantics at three abstraction levels: boolean, differential,

stochastic

3. Examples of signal transduction, transcription, cell-cell interaction

2. Temporal Logic Language for Formalizing Biological Properties1. CTL for the boolean semantics2. Constraint LTL for the differential semantics3. PCTL for the stochastic semantics

3. Automated Reasoning Tools1. Inferring kinetic parameter values from Constraint-LTL

specification2. Inferring reaction rules from CTL specification

3. Type inference by abstract interpretation

Page 63: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

A Logical Paradigm for Systems Biology

Biological model = Transition System

Biological property = Temporal Logic Formula

Biological validation = Model-checking

Express properties in:

• Computation Tree Logic CTL for the boolean semantics

• Linear Time Logic with numerical constraints for the concentration semantics

• Probabilistic CTL with numerical constraints for the stochastic semantics

Page 64: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

2.1 Computation Tree Logic CTL

Extension of propositional (or first-order) logic with operators for time and choices [Clarke et al. 99]

Time

Non-determinism E, A

F,G,U EF

EU

AG

Choice

Time

E

exists 

A

always

X

next time

EX(f)

¬ AX(¬ f)

AX(f)

F

finally

EF(f)

¬ AG(¬ f)

AF(f)

G

globally

EG(f)

¬ AF(¬ f)

AG(f)

U

untilE (f1 U f2) A (f1 U f2)

Page 65: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Biological Properties formalized in CTL (1/3)

About reachability:

• Can the cell produce some protein P? reachable(P)==EF(P)

Page 66: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Biological Properties formalized in CTL (1/3)

About reachability:

• Can the cell produce some protein P? reachable(P)==EF(P)

• Can the cell produce P, Q and not R? reachable(P^Q^R)

Page 67: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Biological Properties formalized in CTL (1/3)

About reachability:

• Can the cell produce some protein P? reachable(P)==EF(P)

• Can the cell produce P, Q and not R? reachable(P^Q^R)

• Can the cell always produce P? AG(reachable(P))

Page 68: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Biological Properties formalized in CTL (1/3)

About reachability:

• Can the cell produce some protein P? reachable(P)==EF(P)

• Can the cell produce P, Q and not R? reachable(P^Q^R)

• Can the cell always produce P? AG(reachable(P))

About pathways:

• Can the cell reach a (partially described) set of states s while passing by another set of states s2? EF(s2^EFs)

Page 69: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Biological Properties formalized in CTL (1/3)

About reachability:

• Can the cell produce some protein P? reachable(P)==EF(P)

• Can the cell produce P, Q and not R? reachable(P^Q^R)

• Can the cell always produce P? AG(reachable(P))

About pathways:

• Can the cell reach a (partially described) set of states s while passing by another set of states s2? EF(s2^EFs)

• Is it possible to produce P without Q? E(Q U P)

Page 70: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Biological Properties formalized in CTL (1/3)

About reachability:

• Can the cell produce some protein P? reachable(P)==EF(P)

• Can the cell produce P, Q and not R? reachable(P^Q^R)

• Can the cell always produce P? AG(reachable(P))

About pathways:

• Can the cell reach a (partially described) set of states s while passing by another set of states s2? EF(s2^EFs)

• Is it possible to produce P without Q? E(Q U P)• Is (set of) state s2 a necessary checkpoint for reaching (set of) state s?

checkpoint(s2,s)== E(s2U s)

Page 71: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Biological Properties formalized in CTL (1/3)

About reachability:

• Can the cell produce some protein P? reachable(P)==EF(P)

• Can the cell produce P, Q and not R? reachable(P^Q^R)

• Can the cell always produce P? AG(reachable(P))

About pathways:

• Can the cell reach a (partially described) set of states s while passing by another set of states s2? EF(s2^EFs)

• Is it possible to produce P without Q? E(Q U P)• Is (set of) state s2 a necessary checkpoint for reaching (set of) state s?

checkpoint(s2,s)== E(s2U s)

• Is s2 always a checkpoint for s? AG(s -> checkpoint(s2,s))

Page 72: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Biological Properties formalized in CTL (2/3)

About stationarity:

• Is a (set of) state s a stable state? stable(s)== AG(s)

Page 73: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Biological Properties formalized in CTL (2/3)

About stationarity:

• Is a (set of) state s a stable state? stable(s)== AG(s)

• Is s a steady state (with possibility of escaping) ? steady(s)==EG(s)

Page 74: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Biological Properties formalized in CTL (2/3)

About stationarity:

• Is a (set of) state s a stable state? stable(s)== AG(s)

• Is s a steady state (with possibility of escaping) ? steady(s)==EG(s)

• Can the cell reach a stable state s? EF(stable(s)) not in LTL

Page 75: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Biological Properties formalized in CTL (2/3)

About stationarity:

• Is a (set of) state s a stable state? stable(s)== AG(s)

• Is s a steady state (with possibility of escaping) ? steady(s)==EG(s)

• Can the cell reach a stable state s? EF(stable(s)) not in LTL

• Must the cell reach a stable state s? AG(stable(s))

Page 76: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Biological Properties formalized in CTL (2/3)

About stationarity:

• Is a (set of) state s a stable state? stable(s)== AG(s)

• Is s a steady state (with possibility of escaping) ? steady(s)==EG(s)

• Can the cell reach a stable state s? EF(stable(s)) not in LTL

• Must the cell reach a stable state s? AG(stable(s))

• What are the stable states? Not expressible in CTL. Needs to combine CTL with search (e.g. constraint programming [Thieffry et al. 05] )

Page 77: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Biological Properties formalized in CTL (3/3)

About oscillations:

• Can the system exhibit a cyclic behavior w.r.t. the presence of P ? oscil(P)== EG(F P ^ F P)

CTL* formula that can be approximated in CTL by

oscil(P)== EG((P EF P) ^ (P EF P))

(necessary but not sufficient condition for oscillation)

Page 78: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Biological Properties formalized in CTL (3/3)

About oscillations:

• Can the system exhibit a cyclic behavior w.r.t. the presence of P ? oscil(P)== EG((P EF P) ^ (P EF P))

(necessary but not sufficient condition)

• Can the system loops between states s and s2 ?

loop(P,Q)== EG((s EF s2) ^ (s2 EF s))

Page 79: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Temporal Logic Querying of MAPK Signaling Pathway

MEK~{p1} is a checkpoint for the cascade, i.e. producing MAPK~{p1,p2}biocham: checkpoint(MEK~{p1} , MAPK~{p1,p2}).!E(!MEK~{p1} U MAPK~{p1,p2}) is True

The phosphatase PH complexes are not checkpointsbiocham: checkpoint(MEK~{p1}-MEKPH , MAPK~{p1,p2}).!E(!MEK~{p1}-MEKPH U MAPK~{p1,p2}) is falseBiocham : why.Step 1 rule 15 Step 2 rule 1 RAF-RAFK presentStep 3 rule 21 RAF~{p1} presentStep 4 rule 5 MEK-RAF~{p1} presentStep 5 rule 24 MEK~{p1} presentStep 6 rule 7 MEK~{p1}-RAF~{p1} presentStep 7 rule 23 MEK~{p1,p2} presentStep 8 rule 13 MAPK-MEK~{p1,p2} presentStep 9 rule 27 MAPK~{p1} presentStep 10 rule 15 MAPK~{p1}-MEK~{p1,p2} presentStep 11 rule 28 MAPK~{p1,p2} present

Page 80: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Generation of CTL properties & Model Reduction

biocham: add_genCTL.

… 70 properties of reachability, oscillation and checkpoints are generated

biocham: reduce_model.1: deleting RAF-RAFK=>RAF+RAFK

2: deleting RAFPH-RAF~{p1}=>RAFPH+RAF~{p1}

3: deleting MEK-RAF~{p1}=>MEK+RAF~{p1}

4: deleting MEKPH-MEK~{p1}=>MEKPH+MEK~{p1}

5: deleting MAPK-MEK~{p1,p2}=>MAPK+MEK~{p1,p2}

6: deleting MAPKPH-MAPK~{p1}=>MAPKPH+MAPK~{p1}

7: deleting MEK~{p1}-RAF~{p1}=>MEK~{p1}+RAF~{p1}

8: deleting MEKPH-MEK~{p1,p2}=>MEKPH+MEK~{p1,p2}

9: deleting MAPK~{p1}-MEK~{p1,p2}=>MAPK~{p1}+MEK~{p1,p2

10: deleting MAPKPH-MAPK~{p1,p2}=>MAPKPH+MAPK~{p1,p2}

Page 81: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Basic Model-Checking Algorithm

Model Checking is an algorithm for computing, in a given finite Kripke structure K the set of states satisfying a CTL formula:

{sS : s |= }.

Represent K as a (finite) graph and iteratively label the nodes with the subformulas of which are true in that node.

Add to the states satisfying Add EF (EX ) to the (immediate) predecessors of states labeled by Add E( U ) to the predecessor states of while they satisfy Add EG to the states for which there exists a path leading to a non

trivial strongly connected component of the subgraph of states satisfying

Thm. CTL model checking is P-complete, model checking alg in O(|K|*||).

Page 82: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Symbolic Model-Checking

Still for finite Kripke structures, use boolean constraints to represent

1. sets of states as a boolean constraint c(V)

2. the transition relation as a boolean constraint r(V,V’)

Binary Decision Diagrams BDD [Bryant 85] provide canonical forms to Boolean formulas (decide Boolean equivalence, TAUT is co-NP)

(x⋁¬y)⋀(y⋁¬z)⋀(z⋁¬x)

and

(x⋁¬z)⋀(z⋁¬y)⋀(y⋁¬x)

are equivalent, they

have the same BDD(x,y,z)

Page 83: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Cell Cycle: G1 DNA Synthesis G2 Mitosis

G1: CdK4-CycD S: Cdk2-CycA G2,M: Cdk1-CycA

Cdk6-CycD Cdk1-CycB (MPF)

Cdk2-CycE

Page 84: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Page 85: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Mammalian Cell Cycle Control Map [Kohn 99]

Page 86: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Transcription of Kohn’s Map

_ =[ E2F13-DP12-gE2 ]=> cycA....cycB =[ APC~{p1} ]=>_.cdk1~{p1,p2,p3} + cycA => cdk1~{p1,p2,p3}-cycA.cdk1~{p1,p2,p3} + cycB => cdk1~{p1,p2,p3}-cycB....cdk1~{p1,p3}-cycA =[ Wee1 ]=> cdk1~{p1,p2,p3}-cycA.cdk1~{p1,p3}-cycB =[ Wee1 ]=> cdk1~{p1,p2,p3}-cycB.cdk1~{p2,p3}-cycA =[ Myt1 ]=> cdk1~{p1,p2,p3}-cycA.cdk1~{p2,p3}-cycB =[ Myt1 ]=> cdk1~{p1,p2,p3}-cycB....cdk1~{p1,p2,p3} =[ cdc25C~{p1,p2} ]=> cdk1~{p1,p3}.cdk1~{p1,p2,p3}-cycA =[ cdc25C~{p1,p2} ]=> cdk1~{p1,p3}-cycA.cdk1~{p1,p2,p3}-cycB =[ cdc25C~{p1,p2} ]=> cdk1~{p1,p3}-cycB.

165 proteins and genes, 500 variables, 800 rules [Chiaverini Danos 02]

Page 87: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Cell Cycle Model-Checking (with BDD NuSMV)

biocham: check_reachable(cdk46~{p1,p2}-cycD~{p1}). Ei(EF(cdk46~{p1,p2}-cycD~{p1})) is truebiocham: check_checkpoint(cdc25C~{p1,p2}, cdk1~{p1,p3}-cycB). Ai(!(E(!(cdc25C~{p1,p2}) U cdk1~{p1,p3}-cycB))) is truebiocham: nusmv(Ai(AG(!(cdk1~{p1,p2,p3}-cycB) -> checkpoint(Wee1, cdk1~{p1,p2,p3}-cycB))))). Ai(AG(!(cdk1~{p1,p2,p3}-cycB)->!(E(!(Wee1) U cdk1~{p1,p2,p3}-cycB)))) is falsebiocham: why.-- Loop starts here cycB-cdk1~{p1,p2,p3} is present cdk7 is present cycH is present cdk1 is present Myt1 is present cdc25C~{p1} is presentrule_114 cycB-cdk1~{p1,p2,p3}=[cdc25C~{p1}]=>cycB-cdk1~{p2,p3}. cycB-cdk1~{p2,p3} is present cycB-cdk1~{p1,p2,p3} is absentrule_74 cycB-cdk1~{p2,p3}=[Myt1]=>cycB-cdk1~{p1,p2,p3}. cycB-cdk1~{p2,p3} is absent cycB-cdk1~{p1,p2,p3} is present

Page 88: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Mammalian Cell Cycle Control Benchmark

500 variables, 2500 states. 800 rules.

BIOCHAM NuSMV model-checker time in sec. [Chabrier et al. TCS 04]

Initial state G2 Query: Time:

compiling 29

Reachability G1 EF CycE 2

Reachability G1 EF CycD 1.9

Reachability G1 EF PCNA-CycD 1.7

Checkpoint

for mitosis complex

EF ( Cdc25~{Nterm}

U Cdk1~{Thr161}-CycB)

2.2

Oscillation EG ( (CycA EF CycA) ( CycA EF CycA))

31.8

Page 89: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

2.2 LTL with Constraints for the Differential Semantics

• Constraints over concentrations and derivatives as FOL formulae over the reals:

• [M] > 0.2

• [M]+[P] > [Q]

• d([M])/dt < 0

Page 90: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

LTL with Constraints for the Differential Semantics

• Constraints over concentrations and derivatives as FOL formulae over the reals:

• [M] > 0.2

• [M]+[P] > [Q]

• d([M])/dt < 0

• Linear Time Logic LTL operators for time X, F, U, G• F([M]>0.2)

• FG([M]>0.2)

• F ([M]>2 & F (d([M])/dt<0 & F ([M]<2 & d([M])/dt>0 & F(d([M])/dt<0))))

• oscil(M,n) defined as at least n alternances of sign of the derivative

• Period(A,75)= t v F(T = t & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0)

& F(T = t + 75 & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0)))…

Page 91: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

How to Evaluate a Constraint LTL Formula ?

• Consider the ODE’s of the concentration semantics dX/dt = f(X)

Page 92: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

How to Evaluate a Constraint LTL Formula ?

• Consider the ODE’s of the concentration semantics dX/dt = f(X)

• Numerical integration methods produce a discretization of time (adaptive step size Runge-Kutta or Rosenbrock method for stiff syst.)

• The trace is a linear Kripke structure:

(t0,X0,dX0/dt), (t1,X1,dX1/dt), …, (tn,Xn,dXn/dt), …

over concentrations and their derivatives at discrete time points

• Evaluate the formula on that Kripke structure with a model checking alg.

Page 93: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Simulation-Based Constraint LTL Model Checking

Hypothesis 1: the initial state is completely known

Hypothesis 2: the formula can be checked over a finite period of time [0,T]

1. Run the numerical integration from 0 to T producing values at a finite sequence of time points

2. Iteratively label the time points with the sub-formulae of that are true:

Add to the time points where a FOL formula is true,

Add F (X ) to the (immediate) previous time points labeled by Add U to the predecessor time points of while they satisfy (Add G to the states satisfying until T)

Model checker and numerical integration methods implemented in Prolog

Page 94: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

2.3 PCTL Model Checker for the Stochastic Semantics

Compute the probability of realisation of a TL formula (with constraints) by Monte Carlo method

Perform several stochastic simulations

Evaluate the probability of realization of the TL formula

Costly…

PRISM [Kwiatkowska et al. 04] : PCTL model checker based on BDDs or Monte Carlo method.

Page 95: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Overview of the Lecture

1. Rule-based Language for Modeling Biochemical Systems 1. Syntax of molecules, compartments and reactions

2. Semantics at three abstraction levels: boolean, differential, stochastic

3. Examples of signal tra nsduction, transcription, cell-cell interaction

2. Temporal Logic Language for Formalizing Biological Properties1. CTL for the boolean semantics

2. Constraint LTL for the differential semantics

3. PCTL for the stochastic semantics

3. Automated Reasoning Tools1. Inferring kinetic parameter values from Constraint-LTL

specification

2. Inferring reaction rules from CTL specification

3. Type inference by abstract interpretation

Page 96: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Example: Cell Cycle Control Model [Tyson 91]

MA(k1) for _ => Cyclin.

MA(k2) for Cyclin => _.

MA(K7) for Cyclin~{p1} => _.

MA(k8) for Cdc2 => Cdc2~{p1}.

MA(k9) for Cdc2~{p1} =>Cdc2.

MA(k3) for Cyclin+Cdc2~{p1} => Cdc2~{p1}-Cyclin~{p1}.

MA(k4p) for Cdc2~{p1}-Cyclin~{p1} => Cdc2-Cyclin~{p1}.

k4*[Cdc2-Cyclin~{p1}]^2*[Cdc2~{p1}-Cyclin~{p1}] for

Cdc2~{p1}-Cyclin~{p1} =[Cdc2-Cyclin~{p1}] => Cdc2-Cyclin~{p1}.

MA(k5) for Cdc2-Cyclin~{p1} => Cdc2~{p1}-Cyclin~{p1}.

MA(k6) for Cdc2-Cyclin~{p1} => Cdc2+Cyclin~{p1}.

Page 97: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Interaction Graph

Page 98: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Concentration Simulation

Page 99: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Boolean Simulation

Page 100: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Inferring Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

oscil(Cdc2-Cyclin~{p1},3),150).

Page 101: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Inferring Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

oscil(Cdc2-Cyclin~{p1},3),150).

First values found :

parameter(k3,10).

parameter(k4,70).

Page 102: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Inferring Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

oscil(Cdc2-Cyclin~{p1},3) & F([Cdc2-Cyclin~{p1}]>0.15), 150).

First values found :

parameter(k3,10).

parameter(k4,120).

Page 103: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Inferring Parameters from LTL Specification

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

period(Cdc2-Cyclin~{p1},35), 150).

First values found:

parameter(k3,10).

parameter(k4,280).

Page 104: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Leloup and Goldbeter (1999)

MPF preMPF

Wee1

Wee1P

Cdc25

Cdc25PAPC

APC

....

....

........

Cell cycle

Linking the Cell and Circadian Cycles through Wee1

BMAL1/CLOCK

PER/CRY

Circadian cycle

Wee1 mRNA

L L. Calzone, S. Soliman RR INRIA 2006

Page 105: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

PCN

Wee1m

Wee1MPF

BN

Cdc25

Page 106: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

entrainmententrainment

Condition on Wee1/Cdc25 for the Entrainment in Period

Entrainment in period constraint expressed in LTL with the period formula

Page 107: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

3.2. Inferring Rules from Temporal Properties

Given

• a BIOCHAM model (background knowledge)

• a set of properties formalized in temporal logic

learn

• revisions of the reaction model, i.e. rules to delete and rules to add such that the revised model satisfies the properties

Page 108: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Model Revision from Temporal Properties

• Background knowledge T: BIOCHAM model • reaction rule language: complexation, phosphorylation, …

• Examples φ: biological properties formalized in temporal logic language• Reachability

• Checkpoints

• Stable states

• Oscillations

• Bias R: Reaction rule patterns or parameter ranges• Kind of rules to add or delete

Find a revision T’ of T such that T’ |= φ

Page 109: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Model Revision Algorithm

General idea of constraint programming: replace a generate-and-test algorithm by a constrain-and-generate algorithm.

Anticipate whether one has to add or remove a rule.

• Positive ECTL formula: if false, remains false after removing a rule• EF(φ) where φ is a boolean formula (pure state description)

• Oscil(φ)

• Negative ACTL formula: if false, remains false after adding a rule• AG(φ) where φ is a boolean formula,

• Checkpoint(a,b): ¬E(¬aUb)

• Remove a rule on the path given by the model checker (why command)

• Unclassified CTL formulae

Page 110: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Cell Cycle Kinetic Model [Tyson 91]

Page 111: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Automatic Generation of True CTL PropertiesEi(reachable(Cyclin)))Ei(reachable(!(Cyclin))))Ai(oscil(Cyclin)))Ei(reachable(Cdc2~{p1})))Ei(reachable(!(Cdc2~{p1}))))Ai(oscil(Cdc2~{p1})))Ai(AG(!(Cdc2~{p1})->checkpoint(Cdc2,Cdc2~{p1}))))Ei(reachable(Cdc2-Cyclin~{p1,p2})))Ei(reachable(!(Cdc2-Cyclin~{p1,p2}))))Ai(oscil(Cdc2-Cyclin~{p1,p2})))Ei(reachable(Cdc2-Cyclin~{p1})))Ei(reachable(!(Cdc2-Cyclin~{p1}))))Ai(oscil(Cdc2-Cyclin~{p1})))Ai(AG(!(Cdc2-Cyclin~{p1})->checkpoint(Cdc2-Cyclin~{p1,p2},Cdc2-Cyclin~{p1})))Ei(reachable(Cdc2)))Ei(reachable(!(Cdc2))))Ai(oscil(Cdc2)))Ei(reachable(Cyclin~{p1})))Ei(reachable(!(Cyclin~{p1}))))Ai(oscil(Cyclin~{p1})))Ai(AG(!(Cyclin~{p1})->checkpoint(Cdc2-Cyclin~{p1},Cyclin~{p1}))))

Page 112: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Rule Deletion

biocham: delete_rules(Cdc2 => Cdc2~{p1}).

biocham: check_all.

First formula not satisfied

Ei(EF(Cdc2-Cyclin~{p1}))

Page 113: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Model Revision from Temporal Properties

biocham: revise_model.

Rules to delete:

Rules to add:

Cdc2 => Cdc2~{p1}.

biocham: learn_one_addition.

(1) Cdc2 => Cdc2~{p1}.

(2) Cdc2 =[Cdc2]> Cdc2~{p1}.

(3) Cdc2 =[Cyclin]> Cdc2~{p1}.

Page 114: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Use of Types in Model Revision

Use of types to limit the search to biologically possible rules and to speed-up the search process

• The types of protein functions (kinase, phosphatase etc.) restrict the rules where the protein can appear

• The types of influences (activation, inhibition) similalry restrict the possible rules.

Type inference by abstract interpretation [Fages Soliman CMSB’06]

Inference of the influence graph from the reaction model, either from the differential semantics (Jacobian) or from the syntax (pattern matching)

Page 115: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Conclusion

• Temporal logic with constraints is powerful enough to express both qualitative and quantitative biological properties of systems

• Three levels of abstraction in BIOCHAM :

Boolean semantics CTL formulas (rule learning)

Differential semantics LTL with constraints over reals (parameter search)

Stochastic semantics Probabilistic CTL with integer constraints (inefficient)

• Parameter search from temporal properties proved useful and complementary to bifurcation theory and tools (Xppaut)

• Rule inference from temporal properties still in its infancy, to be optimized and improved by types computed by abstract interpretation

Page 116: François Fages Les Houches, avril 2007 Formal Verification of Dynamical Models and Application to Cell Cycle Control François Fages, Sylvain Soliman Constraint

François Fages Les Houches, avril 2007

Collaborations

STREP APrIL2 : Luc de Raedt, Univ. Freiburg, Stephen Muggleton, IC ,…

• Learning in a probabilistic logic setting (finished)

ARC MOCA : modularity, compositionality and abstraction

NoE REWERSE : semantic web, François Bry, Münich, Rolf Backofen,

• Connecting Biocham to gene and protein ontologies (use of types)

STREP TEMPO : Cancer chronotherapies, INSERM Villejuif, Francis Lévi

• Coupled models of cell cycle, circadian cycle, cytotoxic drugs.

INRA Tours : FSH signalling, Eric Reiter, Frédérique Clément, Domitille