53
1 Footings  Footings  Definition Footings are structural members used to support columns and walls and to transmit and distribute their loads to the soil in such a way that the load  bearing capacity of the soil is not exceeded, excessive settlement, differential settlement,or rotation are prevented and adequate safety against overturning or sliding is maintained.

Footing design and analysis

Embed Size (px)

Citation preview

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 1/53

1

Footings  

Footings  

Definition

Footings are structural members used to support

columns and walls and to transmit and distribute

their loads to the soil in such a way that the load

 bearing capacity of the soil is not exceeded,

excessive settlement, differential settlement,or

rotation are prevented and adequate safety

against overturning or sliding is maintained.

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 2/53

2

Types of Footings  

Wall footings  are used to

support structural walls that

carry loads for other floors

or to support nonstructural

walls. 

Types of Footings  Isolated or single footings  

are used to support single

columns. This is one of the

most economical types of

footings and is used when

columns are spaced at

relatively long distances. 

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 3/53

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 4/53

4

Types of Footings  

Continuous footings  

support a row of three or

more columns. They have

limited width and continue

under all columns.

Types of Footings  Rafted or mat foundation  

consists of one footing usually

 placed under the entire building

area. They are used, when soil

 bearing capacity is low, column

loads are heavy single footings

cannot be used, piles are not used

and differential settlement must

 be reduced. 

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 5/53

5

Types of Footings  

Pile caps  are thick slabs

used to tie a group of piles

together to support and

transmit column loads to the

 piles. 

Distribution of Soil Pressure  

When the column load P is

applied on the centroid of the

footing, a uniform pressure is

assumed to develop on the soilsurface below the footing area.

However the actual distribution of the soil is not uniform,

 but depends on may factors especially the composition of

the soil and degree of flexibility of the footing.

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 6/53

6

Distribution of Soil Pressure  

Soil pressure distribution in

cohesionless soil.

Soil pressure distribution incohesive soil.

Design Considerations  

Footings must be designed to carry the column loads

and transmit them to the soil safely while satisfying

code limitations.

The area of the footing based on the allowable bearing soil capacity

Two-way shear or punch out shear.

One-way bearing

Bending moment and steel reinforcement

required

1.

2.

3.

4.

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 7/53

7

Design Considerations  

Footings must be designed to carry the column loads

and transmit them to the soil safely while satisfying

code limitations.

Bearing capacity of columns at their base

Dowel requirements

Development length of bars

Differential settlement

1.

2.

3.

4.

Size of Footings  

The area of footing can be determined from the actual

external loads such that the allowable soil pressure is

not exceeded.

( ) pressure soil allowable

weight-self includingload Total footingof Area   =

footingof area

uu

Pq   =

Strength design requirements

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 8/53

8

Two-Way Shear (Punching Shear)  

For two-way shear in slabs (& footings) Vc is smallest of

long side/short side of column concentrated

load or reaction area < 2

length of critical perimeter around the

column

where, βc =

 b0 =

ACI 11-35d b f V  0c

c

c  4

2 ⎟⎟

 ⎠

 ⎞

⎜⎜

⎝ 

⎛ += β 

When β > 2 the allowable Vc is reduced.

Design of two-way shear  

Assume d.

Determine b0.

 b0

= 4(c+d)

 b0 = 2(c1+d) +2(c2+d)

1.

2.

for square columns

where one side = c

for rectangular

columns of sides c1 

and c2.

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 9/53

9

Design of two-way shear  

The shear force Vu acts at a

section that has a length

 b0 = 4(c+d) or 2(c1+d) +2(c2+d)

and a depth d; the section is

subjected to a vertical downward

load Pu and vertical upward

 pressure q u.

3.

( )

( ) ( )

2

u u u

u u u 1 2

V P q c d  

V P q c d c d  

= − +

= − + +

for square columns

for rectangular columns

Design of two-way shear  

Allowable 

Let Vu=φVc 

4. d b f V  0cc  4φ φ    =

0c

u

 4   b f 

V d 

φ 

=

If d is not close to the assumed d,

revise your assumptions

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 10/53

10

Design of one-way shear  

For footings with bending

action in one direction the

critical section is located a

distance d from face of column 

d b f V  0cc  2φ φ    =

Design of one-way shear  

The ultimate shearing force at

section m-m can be calculated  

⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ 

−−=   d 

c L

bqV  22 uu

If no shear reinforcement is to be

used, then d can be checked

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 11/53

11

Design of one-way shear  

b f 

V d 

 2c

u

φ 

=

If no shear reinforcement is

to be used, then d can be

checked, assuming Vu = φVc 

Flexural Strength and Footingreinforcement

2y

us

⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ −

=a

d  f 

 M  A

φ 

The bending moment in each

direction of the footing must be

checked and the appropriate

reinforcement must be provided.

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 12/53

12

Flexural Strength and Footingreinforcement

b f  A f a

 85.0 c

sy=

Another approach is to

calculated R u = Mu / bd 2 and

determine the steel percentage

required ρ . Determine As then

check if assumed a is close to

calculated a

Flexural Strength and Footingreinforcement

The minimum steel percentage

required in flexural members is

200/f y with minimum area and

maximum spacing of steel barsin the direction of bending shall

 be as required for shrinkage

temperature reinforcement.

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 13/53

13

Flexural Strength and Footingreinforcement

The reinforcement in one-way footings

and two-way footings must be

distributed across the entire width of

the footing.

1

2

directionshortinentreinforcemTotal

 width band inentReinforcem

+= β 

footingof sideshort

footingof sidelong= β where

Bearing Capacity of Column atBase  

The loads from the column act on the footing at the

 base of the column, on an area equal to area of the

column cross-section. Compressive forces are

transferred to the footing directly by bearing on theconcrete. Tensile forces must be resisted by

reinforcement, neglecting any contribution by

concrete.

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 14/53

14

Bearing Capacity of Column atBase 

 

Force acting on the concrete at the base of the column

must not exceed the bearing strength of the concrete

( )1c1 85.0   A f  N    φ =

where φ = 0.65 and

A1 =bearing area of column

Bearing Capacity of Column atBase  

The value of the bearing strength may be multiplied by a

factor for bearing on footing when the

supporting surface is wider on all sides than the loaded

area.

0.2/ 12   ≤ A A

The modified bearingstrength

( )

( )1c2

121c2

85.02

/85.0

 A f  N 

 A A A f  N 

φ 

φ 

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 15/53

15

Dowels in Footings  

A minimum steel ratio ρ = 0.005 of the column section

as compared to ρ = 0.01 as minimum reinforcement for

the column itself. The number of dowel bars needed is

four these may be placed at the four corners of the

column. The dowel bars are usually extended into the

footing, bent at the ends, and tied to the main footing

reinforcement. The dowel diameter shall not exceed

the diameter of the longitudinal bars in the column by

more than 0.15 in.

Development length of theReinforcing Bars  

The development length for compression bars was given

 but not less than

Dowel bars must be checked for proper development

length.

c byd  /02.0   f d  f l   =

in.8003.0  by   ≥d  f 

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 16/53

16

Example – Combined Loading  

A 12-in. x 24 in. column of an unsymmetrical shed is

subjected to an axial load PD of 220 k and MD = 180 k-ft

due to dead load and an an axial load PL = 165 k and a 

moment ML= 140 k-ft due to

live load. The base of the

footing is 5 ft below final

grade, and the allowable soil

 bearing pressure is 5 k/ft2.Design the footing using

f c = 4 ksi and f y = 60 ksi

Example – Combined Loading  

Find the combined actual loads, P0 and M0 

ft-k 320ft-k 140ft-k 180

k 385k165k220

LLDL0

LLDL0

=+=+=

=+=+=

 M  M  M 

PPP

Determine the eccentricity of the footing

in.10Usein97.9

k 385

ft1

in12ft-k 320

 

0

0 ⇒=⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ 

==P

 M e

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 17/53

17

Example – Combined Loading  

Assume a depth of footing, 24 in. The weight of

concrete and the soil are:

23

c lb/ft300

in.12

ft.1*in.24*lb/ft150   ===   d W    γ 

23

sss lb/ft300

in.12

ft.1*in.24ft5*lb/ft100   =⎟

⎟ ⎠

 ⎞⎜⎜⎝ 

⎛  −==   d W    γ 

Example – Combined Loading

The effective soil pressure is given as:

22

222

scseff 

k/ft4.4lb/ft4400

lb/ft300lb/ft300lb/ft5000

⇒=

−−=

−−=   W W qq

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 18/53

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 19/53

19

Example – Combined Loading

Calculate net upward pressure:

( ) ( )

( )( )2

n

ftk /5.87

ft01ft9

k528.0

  pressureupward  Net

k 528.0

 k 1651.6k 2022.1

6.12.1LoadsActual

=

=

=

+=

+=

q

 LL DL

Example – Combined Loading

Calculate the depth of the reinforcement use # 8 bars

with a crisscrossing layering.

( )

in.5.19

in0.15.1in3in.24

5.1cover   b

=

−−=

−−=

d hd 

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 20/53

20

Example – Combined Loading

( )

( )( ) k 4.169ft208.3ft9k/ft87.5

22

2

2nu

==

⎟ ⎠ ⎞⎜

⎝ ⎛  +−−=   ed c LlqV 

ft208.3

in12

ft1in10

in12

ft1in5.19

2

in12

ft1in42

2

ft10

22

=

⎟⎟⎟⎟⎟

 ⎠

 ⎞

⎜⎜⎜⎜⎜

⎝ 

⎛ 

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ +⎟

⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ 

−=+⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −−   ed 

c L

Vu =139.4 k in

short direction

The depth of the footing can be calculated by using the

one-way shear (long direction)

Example – Combined LoadingThe depth of the footing can be calculated by using

one-way shear design

in.53.16

ft1

in12ft9400020.75

k 1

lb1000

k 4.169

 2 c

u =

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ⎟

 ⎠

 ⎞⎜⎝ 

⎛ ⎟

 ⎠

 ⎞⎜⎝ 

⎛ ⎟ ⎠

 ⎞⎜⎝ ⎛ 

==b f 

V d 

φ 

The footing is 19.5 in. > 16.53 in. so it will work.

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 21/53

21

Example – Combined LoadingCalculate perimeter for two-way shear or punch out

shear. The column is 12 in. x 24 in.

( ) ( )

( ) ( )

( )

( ) ft625.3

in12

ft1in.5.19in.24

ft625.2

in12

ft1in.5.19in.12

in.150in.5.19in.242in.5.19in.122

22

2

1

21o

=⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ +=+

=⎟

 ⎠

 ⎞

⎝ 

⎛ +=+

=+++=

+++=

d c

d c

d cd cb

Example – Combined Loading

Calculate the shear Vu 

( )

( )( )k 2.472

ft625.3ft625.2k/ft5.87k0.5282

2

nuu

=

−=

+−=   d cqPV 

11.1

ft9

ft10== β 

The shape parameter

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 22/53

22

Example – Combined LoadingCalculate d from the shear capacity according to

11.12.2.1 chose the largest value of d.

d b f V  0c

c

c  4

2 ⎟⎟

 ⎠

 ⎞

⎜⎜

⎝ 

⎛ += β 

d b f V  0cc  4=

d b f b

V  0c

o

s

c  2⎟

 ⎠

 ⎞

⎝ 

⎛ 

+=

  α    αs is 40 for interior, 30 for edge

and 20 for corner column 

Example – Combined LoadingThe depth of the footing can be calculated for the

two way shear

( )

in.84.11

in150400011.1

420.75

k 1

lb1000k 2.472

 4

2 0c

u

=

⎟ ⎠

 ⎞⎜⎝ 

⎛ ⎟ ⎠

 ⎞⎜⎝ 

⎛  +

⎟ ⎠ ⎞⎜⎝ ⎛ =

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ +

=

b f 

V d 

 β φ 

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 23/53

23

Example – Combined LoadingThe third equation bo is dependent on d so use the

assumed values and you will find that d is smaller and

α = 40

( )( )( )

in.22.9

in15040002in150

in9.51400.75

k 1

lb1000k 2.472

 240

0c

o

u

=⎟

 ⎠ ⎞

⎜⎝ ⎛  +

 ⎠

 ⎞⎜

⎝ 

⎛ 

=

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ +

=

b f b

V d 

φ 

Example – Combined LoadingThe depth of the footing can be calculated by using

the two way shear

( )( )in.59.16

in150400040.75

k 1

lb1000k 72.24

 4 0c

u

=

⎟ ⎠ ⎞⎜⎝ ⎛ ==

b f 

V d 

φ 

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 24/53

24

Example – Combined LoadingCalculate the bending moment of the footing at the edge of

the column (long direction)

ft83.4

in12

ft1in10

2

in12

ft1in24

2

ft10

22

=⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ +

⎟⎟⎟⎟⎟

 ⎠

 ⎞

⎜⎜⎜⎜⎜

⎝ 

⎛ 

⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ 

−=+⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ −   e

c L

( )( )

( ) ft-k 2.616ft92

ft83.4ft83.4k/ft87.5

2

22

22nu

==

⎟ ⎠ ⎞⎜⎝ ⎛  +−⎟

 ⎠

 ⎞⎜⎝ 

⎛  +−=   b

ec L

ec L

q M 

Example – Combined LoadingCalculate R u for the footing to find ρ of the footing.

( )ksi1801.0

in5.19*ft1

in12ft9

ft1

in.12*ft-k 2.616

 bd R 

22

uu   =

⎟ ⎠

 ⎞⎜⎝ 

⎛ ⎟

 ⎠ ⎞

⎜⎝ ⎛ 

⎟ ⎠ ⎞

⎜⎝ ⎛ 

== M 

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 25/53

25

Example – Combined LoadingUse the R u for the footing to find ρ.

( )

( )( )

( )00344.0

ksi60

ksi405158.005158.0

 

05158.0

2

ksi49.0

ksi1801.07.147.17.1

07.1

7.159.01

c

y

2

c

u2

cu

==⇒=

=⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ ⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ −−

=

=+−⇒−=

 ρ  ρ 

ω 

φ ω ω ω ω 

 f 

 f 

 f 

 R f  R

Example – Combined LoadingCompute the amount of steel needed

( ) 2

s in24.7in.5.19ft1

in.12ft900344.0 =⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ ⎟ ⎠

 ⎞⎜⎝ 

⎛ ==   bd  A   ρ 

The minimum amount of steel for shrinkage is

( )( ) 2

s in67.4in.24in.1080018.00018.0   ===   bh A

The minimum amount of steel for flexure is

( )( ) 2

y

s in02.7in.9.51in.108

60000

200 

200=⎟

⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ==   bd 

 f 

 A

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 26/53

26

Example – Combined LoadingUse As =8.36 in2  with #8 bars (0.79 in2). Compute

the number of bars need

 bars11Use25.10

in79.0

in1.8

2

2

 b

s ⇒=== A

 An

Determine the spacing between bars

( )( ) in2.10

10

in32-in108

1

cover *2 ==−

−=n

 Ls

Example – Combined Loading

Calculate the bending moment of the footing at the

edge of the column for short length

ft42

in12

ft1in12

2

ft9

22 =⎟⎟⎟

⎟⎟

 ⎠

 ⎞

⎜⎜⎜

⎜⎜

⎝ 

⎛ 

⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ 

−=⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ 

 c L

( )( )

( )

ft-k 6.469

ft102

ft4ft4k/ft87.5

2

22

22nu

=

=⎟ ⎠ ⎞

⎜⎝ ⎛  −

⎟ ⎠

 ⎞⎜⎝ 

⎛  −=   b

c L

c Lq M 

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 27/53

27

Example – Combined LoadingCalculate R u for the footing to find ρ of the footing.

( )

ksi1235.0

in5.19*ft1

in12ft10

ft1

in.12*ft-k 69.64

 bd R 

22

uu

=

⎟ ⎠

 ⎞⎜⎝ 

⎛ ⎟

 ⎠ ⎞

⎜⎝ ⎛ 

⎟ ⎠ ⎞

⎜⎝ ⎛ 

==  M 

Example – Combined Loading

Use R u for the footing to find ρ.

( )

( )

( )00234.0

ksi60

ksi403503.003503.0

 

03503.02

ksi4

ksi1235.07.147.17.1

07.1

7.159.01

c

y

2

c

u2

cu

==⇒=

=

⎟ ⎠

 ⎞⎜⎝ 

⎛ ⎟

 ⎠

 ⎞⎜⎝ 

⎛ −−

=

=+−⇒−=

 ρ  ρ 

ω 

φ 

ω ω ω ω 

 f 

 f 

 f 

 R f  R

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 28/53

28

Example – Combined Loading

Compute the amount of steel needed

( ) 2

s in46.5in.5.19ft1

in.12ft1000234.0 =⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ ⎟ ⎠

 ⎞⎜⎝ 

⎛ ==   bd  A   ρ 

The minimum amount of steel for shrinkage is

( )( ) 2

s in18.5in.24in.1200018.00018.0   ===   bh A

The minimum amount of steel for flexure is

( )( ) 2

y

s in80.7in.9.51in.120

60000

200 

200=⎟

⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ==   bd 

 f 

 A

Example – Combined Loading

Use As =9.36 in2  with #6 bar (0.44 in2) Compute the

number of bars need

 bars18Use7.17

in44.0

in.807

2

2

 b

s ⇒=== A

 An

Calculate the reinforcement bandwidth

947.0

111.1

2

1

2

entreinforcemTotal

 bandwidthinentReinforcem=

+=

+=⎟

⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ 

 β 

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 29/53

29

Example – Combined Loading

The number of bars in the 9 ft band is 0.947(18)=17 bars .

So place 17 bars in 9 ft section and 1 bars in each in(10ft - 9ft)/2 =0.5 ft of the band.

 bars1 Use5.02

1718

2

 bars band - bars#Total bar#outside

⇒=−

=

=

Example – Combined Loading

Determine the spacing between bars for the band of 9 ft

( )in75.6

16

in108

1

==−

=n

 Ls

Determine the spacing between bars outside the band

in3

1

3in-in6cover ==

−=

n

 Ls

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 30/53

30

Example – Combined LoadingCheck the bearing stress. The bearing strength N1, at

the base of the column, 12 in x 24 in., φ = 0.65

( ) ( )( )( )( ) k 5.636in42in12ksi485.065.085.0 1c1   ===   A f  N    φ 

The bearing strength, N2, at the top of the footing is

1

1

212 2   N 

 A A N  N    ≤=

Example – Combined Loading

The bearing strength, N2, at the top of the footing is

( ) k 1273k 636.5222 6.71ft2

ft90122

2

1

2 ===⇒>==   N  N  A

 A

( )

2

1

2

2

ft2

in.12

ft1in42

in.12

ft1in12

ft90ft10ft9

=⎟⎟

 ⎠

 ⎞

⎜⎜

⎝ 

⎛ 

⎟⎟

 ⎠

 ⎞⎜⎜

⎝ 

⎛ 

⎟⎟

 ⎠

 ⎞

⎜⎜

⎝ 

⎛ 

⎟⎟

 ⎠

 ⎞⎜⎜

⎝ 

⎛ =

==

 A

 A

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 31/53

31

Example – Combined LoadingPu =628 k < N1, bearing stress is adequate. The

minimum area of dowels is required.

( )( ) 2

1 in44.1in42in12*005.0005.0   == A

Use minimum number of bars is 4, so use 4 # 8 bars

 placed at the four corners of the column.

Example – Combined Loading

The development length of the dowels in compression

from ACI Code 12.3.2 for compression.

( )( )in19 Usein97.18

 psi4000

 psi60000in102.002.0

c

y b

d    ⇒===  f 

 f d 

l

The minimum ld  , which has to be greater than 8 in., is

( )( ) in8in18 psi60000in10003.00003.0 y bd    ≥===   f d l

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 32/53

32

Example – Combined Loading

Therefore, use 4#8 dowels in the corners of

the column extending 19 in. into the column

and the footing. Note that ld  is less than the

given d = 19.5 in., which is sufficient

development length.

Example – Combined Loading

The development length, ld  for the #8 bars

( )( )in4.47

 psi400020

in0.1 psi60000

2020 c

 by

c

y

 b

d  ===⇒=

 f 

d  f l

 f 

 f 

l

There is adequate development length provided.

in60

2

in18in3

2

in144

2

cover 

2d    =−−=−−=

  c Ll

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 33/53

33

Example – Combined Loading

The development length, ld  for the #6 bars

( )( )in5.28

 psi400025

in75.0 psi60000

2525 c

 by

c

y

 b

d  ===⇒= f 

d  f l

 f 

 f 

l

There is adequate development length provided.

in39

2

in18in3

2

in102

2

cover 

2d    =−−=−−=

  c Ll

Example – Multi-Column Footing  

Design a rectangular footing to support two square

columns. The exterior column (I) has a section 16 x

16 in., which carries DL of 180 k and a LL of 120 k.

The interior column (II) has a section of 20 x 20 in.,which carries a DL of 250 k

and a LL of 140 k. The base of

the footing is 5 ft. below final

grade and allowable soil

 pressure is 5 k/ft2 Use f c = 4 ksi

and f y = 60 ksi The external

column is located 2 ft from the

 property line.

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 34/53

34

Example – Multi-Column FootingDetermine the location of an equivalent point and

its location select the datum at column I

( ) ( )

( ) ( )

ft.9 Useft.04.9

k 120k 180k 140k 250

k 120k 180ft0k 140k 250ft16

i

ii

⇒=

+++

+++==

∑∑

F  x x

Extend the footing up to the property line, so the length

is l = 9 ft + 2 ft. = 11 ft. So the length of the footing is

2(11 ft.) = 22 ft.

Example – Multi-Column Footing

Assume a depth of footing. (36 in.) The weight

of concrete and the soil are:

23

c lb/ft450

in.12

ft.1*in.36*lb/ft150   ===   d W    γ 

23

sss lb/ft200

in.12

ft.1*in.36ft5*lb/ft100   =⎟

⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −==   d W    γ 

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 35/53

35

Example – Multi-Column Footing

The effective soil pressure is given as:

22

222

scseff 

k/ft35.4lb/ft4350

lb/ft200lb/ft450lb/ft5000

⇒=

−−=

−−=   W W qq

Example – Multi-Column Footing

Calculate the size of the footing:

ft7.5Useft21.7

ft22

ft8.651footingof Side

ft8.651

k/ft35.4

k906footingof Area

k 690k300k390LoadsTotal

k 300k120k180LoadsActual

k 390k140k250LoadsActual

2

2

2

21

⇒==

==

=+=+=

=+=+=

=+=+=

 AL AL

 LL DL

 LL DL

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 36/53

36

Example – Multi-Column FootingCalculate net upward pressure:

( ) ( )

( ) ( )

( )( )

2

n ftk /6.33

ft7.5ft22

k1044  pressureupward  Net

k 1044

k588k456

k 1401.7k 2504.1 

k 1201.7k 1804.1

7.14.1LoadsActual

==

=

+=

++

+=

+=

q

 LL DL

Example – Multi-Column Footing

Calculate the depth of the reinforcement use # 8 bars

with a crisscrossing layering.

( )

in.5.31

in0.15.1in3in.36

5.1cover   b

=

−−=

−−=

d hd 

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 37/53

37

Example – Multi-Column FootingCompute the shear and bending moment diagrams.

Shear Forces

-400

-300

-200

-100

0

100

200

300

400

0 2 4 6 8 10 12 14 16 18 20 22

location (ft)

   F  o  r  c  e    (

   k   i  p  s   )

63.3 k

-329.5 k

358.7 k

-150.3 k

The columns are

considered point loads

 but shear values are

taken at each side of the

column.

( ) ( )

( )

( )

26.32 k/ft 7.5 ft

47.454 k/ft

V x qb x w

 x w

 x w

= −

= −

= −

Example – Multi-Column Footing

The location of the maximum moment is

( ) ft9.6ft5.14

k 7.358k 329.5

k 329.5x

ft5.14in12ft1in10

in12ft1in8ft16

=+

=

=⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ −

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 38/53

38

Example – Multi-Column Footing

Compute the shear and bending moment diagrams.

The columns are

considered point loads

 but moments are takenat each side of the

column. It will not

 balance because center

is at 9.04 ft

Bending Moment

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400

0 2 4 6 8 10 12 14 16 18 20 22

Location (ft)

   B  e  n

   d   i  n  g   M  o  m  e  n   t   (   k  -   f   t   )

-1278.9 k-ft @ 9.61 ft

42.2 k-ft

249.9 k-ft

( ) ( )

( ) ( )

( )

2

i i

22

i i

2

i i

2

6.32 k/ft 7.5 ft2

47.454 k/ft2

 x M x qb w x x

 xw x x

 xw x x

= − −

= − −

= − −

Example – Multi-Column Footing

The maximum shear force occurs at the edge of

the 20 in. column. So maximum shear is measured

at distance d from the column.

( )

k 1.234

in12ft1in31.5k/ft454.47k7.358max

=

⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ 

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −=−   d qV 

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 39/53

39

Example – Multi-Column Footing

The depth of the footing can be calculated by using

one-way shear

in.2.24

ft1

in12ft.57400020.85

k 1

lb1000k 34.12

 2 c

u =

 ⎠

 ⎞

⎝ 

⎛ 

 ⎠

 ⎞

⎝ 

⎛ 

 ⎠

 ⎞

⎝ 

⎛ 

⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ 

==b f 

V d 

φ 

The footing is 31.5 in. > 24.2 in. so it will work.

Example – Multi-Column Footing

Calculate perimeter for two-way shear or

 punch out shear. The column is 20 in.

square.

( )( )

( ) ft292.4

in12

ft1in.5.31in.02

in.206in.5.31in.024

4o

=⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ +=+

=+=+=

d c

d cb

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 40/53

40

Example – Multi-Column Footing

Calculate the shear Vu 

( )

( )

k 6.464

ft292.4k/ft6.70k58822

2

nuu

=

−=

+−=   d cqPV 

The other column will not be critical,

Pu = 456 k for the 16 in. column

Example – Multi-Column Footing

The depth of the footing can be calculated by using

two way shear

( )( )in.5.10

in206400040.85

k 1

lb1000k 64.64

 4 0c

u =⎟⎟

 ⎠ ⎞⎜⎜

⎝ ⎛ 

==b f 

V d 

φ 

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 41/53

41

Example – Multi-Column Footing

Calculate R u for the footing to find ρ of the footing.

( ) ( )

ksi1719.0

in5.31*in90

ft1

in.12*ft-k 278.91

 bd 

R 22

uu   =

⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ 

==  M 

Example – Multi-Column Footing

From R u for the footing the ρ value can be found.

( )

( )( )

( )00328.0

ksi60

ksi404917.004917.0

 

04917.0

2

ksi49.0

ksi1719.07.147.17.1

07.1

7.159.01

c

y

2

c

u2

cu

==⇒=

=⎟⎟⎟

 ⎠

 ⎞

⎜⎜⎜

⎝ 

⎛ 

⎟⎟

 ⎠

 ⎞

⎜⎜

⎝ 

⎛ −−

=

=+−⇒−=

 ρ  ρ 

ω 

φ 

ω ω ω ω 

 f 

 f 

 f 

 R f  R

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 42/53

42

Example – Multi-Column Footing

Compute the area of steel needed

( ) 2

s in29.9in.5.31

ft1

in.12ft5.700277.0 =

⎟⎟

 ⎠

 ⎞

⎜⎜

⎝ 

⎛ 

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ==   bd  A   ρ 

The minimum amount of steel for shrinkage is

( )( ) 2

s in38.5in.63in.900018.00018.0   ===   bh A

The minimum amount of steel for flexure is

( )( ) 2

y

s in45.9in.1.53in.90

60000

200 

200=⎟

⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ==   bd 

 f 

 A  Use⇐

Example – Multi-Column Footing

Use a #9 bar (1.00 in2) Compute the number of bars

needed bars10Use45.9

in0.1

in45.9

2

2

 b

s ⇒=== A

 An

Determine the spacing between bars

( )

( )in33.9

9

in32-in90

1

cover *2==

−=

n

 Ls

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 43/53

43

Example – Multi-Column Footing

The minimum amount is steel is going to be due to the

flexural restrictions. So below the columns with

 positive moment, the reinforcement will be 10 # 9 bars

running longitudinally. The development length will

have to be calculated.

Example – Multi-Column Footing

The development length, ld  for the #7 bars for the

reinforcement of the footing.

( )( )in5.53

 psi400020

in.1281 psi60000

2020 c

 by

c

y

 b

d  ===⇒=

 f 

d  f l

 f 

 f 

l

The bars have more than 12-in. of concrete below

them, therefore ld = 1.3 ld .

( ) in.70Usein6.69in3.553.1d    ⇒==l

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 44/53

44

Example – Multi-Column Footing

To determine the reinforcement in the short direction.

The bandwidth of the two columns must be determined

for the 16 in. column.

ft5.5 Useft3.5

in.12

ft1in5.31

in.12

ft1

2

in16 ft2in16Band    ⇒=⎟

⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ +

⎟⎟

 ⎠

 ⎞

⎜⎜

⎝ 

⎛ 

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −+=

Compute the moment at the edge

k/ft8.60

ft7.5

k 456net   ==q ft08.3

in12

ft1in8

2

ft5.7=⎟

⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −= L

Example – Multi-Column Footing

The bending moment will be

Compute the R u 

( )( )

ft-k 0.289

2

ft3.08k/ft8.60

2

22

netu   ===  l

q M 

( )

ksi053.0

in5.31*

ft1

in12ft5.5

ft1

in.12*ft-k 289

 bd 

22

uu   =

⎟⎟

 ⎠

 ⎞

⎜⎜

⎝ 

⎛ 

⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ 

⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ 

==  M 

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 45/53

45

Example – Multi-Column Footing

From R u for the footing the ρ value can be found.

( )

( )( )

( )001.0

ksi60

ksi404917.001484.0

 

01484.0

2

ksi49.0

ksi053.07.147.17.1

07.1

7.159.01

c

y

2

c

u2

cu

==⇒=

=⎟⎟⎟

 ⎠

 ⎞

⎜⎜⎜

⎝ 

⎛ 

⎟⎟

 ⎠

 ⎞

⎜⎜

⎝ 

⎛ −−

=

=+−⇒−=

 ρ  ρ 

ω 

φ 

ω ω ω ω 

 f 

 f 

 f 

 R f  R

Example – Multi-Column Footing

Compute the area of steel needed

( ) 2

s in08.2in.5.31

ft1

in.12ft5.5001.0 =

⎟⎟

 ⎠

 ⎞

⎜⎜

⎝ 

⎛ 

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ==   bd  A   ρ 

The minimum amount of steel for shrinkage is

( )( ) 2

s in28.4in.63in.660018.00018.0   ===   bh A

The minimum amount of steel for flexure is

( )( ) 2

y

s in93.6in.1.53in.66

60000

200 

200=⎟

⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ==   bd 

 f 

 A  Use⇐

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 46/53

46

Example – Multi-Column Footing

Use a #9 bar (1.00 in2) Compute the number of bars

needed bars7Use93.6

in0.1

in93.6

2

2

 b

s ⇒=== A

 An

Determine the spacing between bars

( )

( )in5.10

6

in3-in66

1

cover ==

−=

n

 Ls

Example – Multi-Column Footing

To determine the reinforcement in the short direction.

The 20-in. interior column extends beyond 4 ft from the

center therefore the band is 7.5 ft x 7.5 ft. Compute the

moment at the edge

k/ft4.78

ft7.5

k 885net   ==q ft92.2

in12

ft1in10

2

ft5.7=⎟

⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −= L

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 47/53

47

Example – Multi-Column Footing

The bending moment will be

Compute the R u 

( )( )

ft-k 3.334

2

ft2.92k/ft4.78

2

22

netu   ===  l

q M 

( )ksi045.0

in5.31*

ft1

in12ft7.5

ft1

in.12*ft-k 334.3

 bd R 2

2

u

u   =⎟⎟

 ⎠

 ⎞⎜⎜

⎝ 

⎛ ⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ 

⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ 

==

  M 

Example – Multi-Column Footing

From R u for the footing the ρ value can be found.

( )

( )( )

( )00084.0

ksi60

ksi401257.001257.0

 

01257.0

2

ksi49.0

ksi045.07.147.17.1

07.1

7.159.01

c

y

2

c

u2

cu

==⇒=

=⎟⎟⎟

 ⎠

 ⎞

⎜⎜⎜

⎝ 

⎛ 

⎟⎟

 ⎠

 ⎞

⎜⎜

⎝ 

⎛ −−

=

=+−⇒−=

 ρ  ρ 

ω 

φ 

ω ω ω ω 

 f 

 f 

 f 

 R f  R

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 48/53

48

Example – Multi-Column Footing

Compute the area of steel needed

( ) 2

s in38.2in.5.31

ft1

in.12ft5.700084.0 =

⎟⎟

 ⎠

 ⎞

⎜⎜

⎝ 

⎛ 

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ==   bd  A   ρ 

The minimum amount of steel for shrinkage is

( )( ) 2

s in83.5in.63in.090018.00018.0   ===   bh A

The minimum amount of steel for flexure is

( )( ) 2

y

s in45.9in.1.53in.09

60000

200 

200=⎟

⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ==   bd 

 f 

 A  Use⇐

Example – Multi-Column Footing

Check the bearing stress. The bearing strength N1, at

the base of the column, 16 in x 16 in., φ = 0.7

( ) ( )( )( ) k 609in16ksi485.07.085.02

1c1   ===   A f  N    φ 

The bearing strength, N2, at the top of the footing is

1

1

212 2   N 

 A

 A N  N    ≤=

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 49/53

49

Example – Multi-Column Footing

The bearing strength, N2, at the top of the footing is

( ) k 1218k 096222 4.125ft78.1ft30.25 12

2

2

1

2 ===⇒>==   N  N  A A

( )

2

2

1

22

2

ft78.1

in.12

ft1in16

ft25.30ft.55

=⎟⎟

 ⎠

 ⎞

⎜⎜

⎝ 

⎛ 

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ =

==

 A

 A

Example – Multi-Column Footing

Pu =456 k < N1, bearing stress is adequate. The

minimum area of dowels is required.

( ) 22

1 in28.1in16*005.0005.0   == A

Use minimum number of bars is 4, so use 4 # 7 bars

 placed at the four corners of the column.

Note  if the Pu > N1 the area of steel will be

( )

y

1us

 f 

 N P A

  −=

As long as the area of

steel is greater than the

minimum amount.

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 50/53

50

Example – Multi-Column Footing

The development length of the dowels in compression

from ACI Code 12.3.2 for compression.

( )( )in17 Usein6.16

 psi4000

 psi60000in.875002.002.0

c

y b

d    ⇒=== f 

 f d l

The minimum ld  , which has to be greater than 8 in., is

( )( ) in8in75.15 psi60000in.87500003.00003.0 y bd    ≥===   f d l

Example – Multi-Column Footing

Therefore, use 4#7 dowels in the corners of

the column extending 17 in. into the column

and the footing. Note that ld  is less than thegiven d = 31.5 in., which is sufficient

development length.

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 51/53

51

Example – Multi-Column Footing

Use a #9 bar (1.00 in2) Compute the number of bars

need bars10Use45.9

in0.1

in45.9

2

2

 b

s ⇒=== A

 An

Determine the spacing between bars

( )

( )in67.9

9

in3-in90

1

cover ==

−=

n

 Ls

Example – Multi-Column Footing

Check the bearing stress. The bearing strength N1, at

the base of the column, 20 in x 20 in., φ = 0.7

( ) ( )( )( ) k 952in02ksi485.07.085.02

1c1   ===   A f  N    φ 

The bearing strength, N2, at the top of the footing is

1

1

212 2   N 

 A

 A N  N    ≤=

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 52/53

52

Example – Multi-Column Footing

The bearing strength, N2, at the top of the footing is

( ) k 1904k 952222 4.5ft78.2ft56.25 12

2

2

1

2 ===⇒>==   N  N  A A

( )

2

2

1

22

2

ft78.2

in.12

ft1in02

ft25.56ft.57

=⎟⎟

 ⎠

 ⎞

⎜⎜

⎝ 

⎛ 

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ =

==

 A

 A

Example – Multi-Column Footing

Pu =588 k < N1, bearing stress is adequate. The

minimum area of dowels is required.

( ) 22

1 in0.2in02*005.0005.0   == A

Use minimum number of bars is 4, so use 4 # 8 bars

 placed at the four corners of the column.

8/18/2019 Footing design and analysis

http://slidepdf.com/reader/full/footing-design-and-analysis 53/53

Example – Multi-Column Footing

The development length of the dowels in compression

from ACI Code 12.3.2 for compression.

( )( )in19 Usein7.18

 psi4000

 psi60000in102.002.0

c

y b

d    ⇒=== f 

 f d l

The minimum ld  , which has to be greater than 8 in., is

( )( ) in8in18 psi60000in10003.00003.0 y bd    ≥===   f d l

Example – Multi-Column Footing

Therefore, use 4#8 dowels in the corners of

the column extending 19 in. into the column

and the footing. Note that ld  is less than thegiven d = 31.5 in., which is sufficient

development length.