31
FLAR project S.L. Yakovenko JINR, Dubna,Russia

FLAR project S.L.  Yakovenko JINR, Dubna,Russia

  • Upload
    genera

  • View
    58

  • Download
    1

Embed Size (px)

DESCRIPTION

FLAR project S.L.  Yakovenko JINR, Dubna,Russia. Contents FlAIR project AD facility at CERN Antyhydrogen and Positronium in-flight at FLAIR LEPTA facility Experimental program. 1.FlAIR project. 1.FLAIR project (Contnd). FLAIR - Facility for Low-energy Antiproton and Ion Research. L. - PowerPoint PPT Presentation

Citation preview

Page 1: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

FLAR project

S.L. Yakovenko

JINR, Dubna,Russia

Page 2: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

2

Contents

1.FlAIR project

2.AD facility at CERN

3.Antyhydrogen and Positronium in-flight at FLAIR

4.LEPTA facility

5.Experimental program

Page 3: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

1.FlAIR project

3

Page 4: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

1.FLAIR project (Contnd)

FLAIR - Facility for Low-energy Antiproton and Ion Research

4

L

Page 5: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

5

1.FLAIR project (Contnd)

LSR- CRYRING

Page 6: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

6

2.AD facility at CERN

Antiproton Decelerator (AD) typically supplies experiments with 25-30 million antiprotons with an energy of about 5 MeV in shots lasting approximately 200 ns every 100 s

Page 7: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

7

The Antiproton Catching Trap    

2.AD facility at CERN

Page 8: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

8

The positron accumulator

(ATHENA – ALFA experiment )

2.AD facility at CERN

Page 9: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

9

The ATHENA Mixing Trap

2.AD facility at CERN

Page 10: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

10

The ATHENA Detector         

2.AD facility at CERN

Page 11: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

11

The ALPHA apparatus

2.AD facility at CERN

Page 12: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

12

3. Antyhydrogen and Positronium in-flight at FLAIR

Page 13: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

13

o-Ps

PCSR

3. Antyhydrogen and Positronium in-flight at FLAIR (Contnd)

Page 14: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

General Parameters of the PCSR

14

Circumference m 10 – 11 Length of the section for recombination and electron cooling of antiprotons

m 1.0

Total length HTotal m 3.0 Length of the section for electron cooling of positrons

m 2.0

Positron energy keV 2 – 2.7 Revolution period nsec ~ 500-600 Longitudinal magnetic field G 50 Major radius of the toroidal solenoids (Rbend)

m 1

Positron beam radius cm 0.5 Number of circulating positrons - 1108 Recombination section length m 1 Positron energy in the recombination section

eV 50

Positron density in the recombination section

cm-3 6105

Recombination rate per 1 antiproton

s-1 110-7

Residual gas pressure Тоrr 110-11 Positron beam life time sec 100

Electron cooling system Length of cooling section m 1 Beam current A 0.1 Beam radius cm 1 Electron temperature meV 0.1

3. Antyhydrogen and Positronium in-flight at FLAIR (Contnd)

Page 15: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

15

septum

kicker

cooling section

Ps detector

positron

trap

4. LEPTA Facility

22Na10E6

e+ per sec

10 6100sec=10 8 e +

10E4 Ps per sec

e-gun

collector

Helical quadrupoleO-Ps

Page 16: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

16

Project Parameters of The LEPTACircumference , m 17.2

Positron energy, keV 2 10.0

Revolution time, ns 300

Longitudinal magnetic field, G 400

Average radius of the toroidal magnets, m 1.45

Helical quadrupole gradient, G/cm 10.0

Positron beam radius, cm 0.5

Number of positrons in the ring 1108

Residual gas pressure, Тоrr 110

Positronium beam parameters

Intensity, atom/s 110

Angular spread, mrad 1

Velocity spread 1104

Beam diameter at the exit of the ring, cm 1.1

4. LEPTA Facility (Contnd)

Page 17: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

17

First beam circulation

Signals from vertical PU electrodes

10 September, 2004

Helical quadrupole off

0.5 μs/div

Helical quadrupole on

1.0 μs/div

4. LEPTA Facility (Contnd)

Page 18: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

18

Tracing the ring with pencil beam (September - October 2007)

Electron gun

October 5, 2007

4. LEPTA Facility (Contnd)

Page 19: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

19

1-positron source 22Na, 2-radioactive protection shield, 3-vacuum valve, 4-vacuum chamber for pumping out and diagnostic tools, 5-positron trap, 6 – vacuum isolator, 7 – positron vacuum channel, 8 – vacuum “shutter” (fast valve), 9 - ion pump, 10-turbopump, 11 –LHe vessel

The Positron Injector

4547 1 2

9 9 10

38

11

6LEPTA entrance

4. LEPTA Facility (Contnd)

Page 20: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

20

Design parameters of the positron injector

Length, m 6,2

Positron injection energy, keV 10.0

Longitudinal magnetic field, G 400

Longitudinal magnetic field in the trap, G 1500

Residual gas pressure, Tor 1109

Beam radius, cm 0.5

Accumulation time, s 100

Injection pulse duration, ns 300

Number of positrons in injection pulse 1108

Positron momentum spread 110-4

4. LEPTA Facility (Contnd)

Page 21: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

The Cryogenic Moderator of Positrons

22Na

Ne

e+

Ne

T ~ 5 K

0.8 MBqe+

e+

4. LEPTA Facility (Contnd)

Page 22: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

22

The Cryogenic Positron Source

4. LEPTA Facility (Contnd)

Page 23: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

23

Slow Positron Flux Formation

06.12.05 – First slow positron has been registered.April 2006 - moderator parameters optimization

The positron spectrum at the e+ flux of 5.3*103 positrons per sec of the average energy of 1.2 eV at the width of 1 eV was obtained. The moderator efficiency is 1 %.

Зависимость выхода позитронов от толщины замедлителя

0200400600800

100012001400160018002000

0 15 30 45 60 75 90 105 120 135 150

d, мкм

N/c

ек

Slow Positron Yield vs Frozen Neon Thickness

0 30 60 90 120 150

d, mcm

2000

1600

1200

800

400

0

Ncounts/sec

Slow positron spectrum dependence on frozen neon thickness

0

2000

4000

6000

8000

10000

12000

14000

16000

0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 4,00

E, eV

dN

/dE

130мкм

90мкм

50мкм

30мкм

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Epos, eV

Slow Positron Spectrum vs Frozen Neon Thickness

16000

12000

8000

4000

0

dN/dE

4. LEPTA Facility (Contnd)

Page 24: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

24

I II III IV V VIIVI

10-3

Pressure, Torr

N2 N2 е+

10-4 10-6

“Surko Trap”

Area 1 Area 2 Area 3 eU

z

4. LEPTA Facility (Contnd)

Page 25: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

25

e-

0

-30

-60

I IIIII IV V VI VII VIII

-100 0

-29.3 -36.1-40.2-46.7

50.3 eV Electron storage studies

-50.3 V

-52.7 V

-90

4. LEPTA Facility (Contnd)

Page 26: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

26

Rotating Electric Field Method

1800

00 900

2700

Phase filter

B

-U(x)

(а)

(b)

(c)

Generator

One electrode is placed under combined

alternative + permanent potentials (Fig.a, b, c).

4. LEPTA Facility (Contnd)

Page 27: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

27

Rotating Electric Field Method (Contnd)

Зависимость числа накопленных электронов от времени накопления

0,00E+00

1,00E+07

2,00E+07

3,00E+07

4,00E+07

5,00E+07

6,00E+07

7,00E+07

8,00E+07

9,00E+07

0 10 20 30 40 50 60 70 80

t, сек

N

1 2 3

Stored electron number vs time

Aligniment of the axie of longitudinal magnetic and electric fields has been madeSame + rotating field is ON and optimized

Pressure distribution and potential are optimized

Optimal frotating = 650 kHz,

Amplitude = 1 V,

ε = 0.4, life = 25 s

April , 2007

life = 80 s, (Ne)max = 2108

4. LEPTA Facility (Contnd)

Page 28: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

28

Experiments with Positrons and Positronium in flight at LEPTA

1.“Atomic” physics: e+e- recombination with positronium formation2. QED test in measurement of para-Positronium (p-Ps) life time 3. Test of CPT theorem, CP and P conservation:

3.1. Rare and forbidden decay channels of o-Ps3.2. Rare and forbidden decay channels of p-Ps3.3. Search for circularly polarized photons in p-Ps => 3.4. Measurement of the electron and positron charge difference upper limit

4. QED test in Ps spectroscopy4.1. Hyperfine structure of Ps ground state4.2. Spectroscopy of excited states, Lamb shift

5. Search for the Axion6. o-Ps life time and the hypothesis of “The Mirror Universe"7. Antihydrogen generation in-flight8. o-Ps in solid state physics9. Condensed matter physics research at the LEPTA positron injector10. Particle beam physics and accelerator technology

7. Antihydrogen generation in-flight

5. Search for the Axion 6. o-Ps life time and the hypothesis of “The Mirror Universe"

4. LEPTA Facility (Contnd)

Page 29: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

29

The positron spectrum at the e+ flux of 1.5*105 positrons per sec of the average energy of 3 eV was obtained in the first experiments

New positron source activity of 25 mCi for LEPTA facility is under testing

Year 20094. LEPTA Facility (Contnd)

Page 30: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

• Precision spectroscopy of antiprotonic atoms and antihydrogen for tests of fundamental interactions and symmetries (especially CPT)

• Interaction of Antimatter with Matter

• Nuclear and Particle Physics with Antiprotons

30

5.Experiment Research Program

Page 31: FLAR project S.L.  Yakovenko JINR,  Dubna,Russia

31

Thank you for your attention!

- The FLAIR facility will drastically improve the conditions for the low energy antiproton research. First of all the beam intensity will be increased by about two orders of magnitude and the lower energy available allows a much more efficient use of the antiprotons compared to the AD operation.

- In-flight generation of antihydrogen might give rise to a number of very interesting experiments with relatively large number of antihydrogen particles. In particular the investigation of matter - antimatter reactions would become directly accessible in an interesting energy regime without the need of prior trapping of the particles.

6. Conclusion