Final Experiment 5_1

  • View
    216

  • Download
    0

Embed Size (px)

Text of Final Experiment 5_1

  • 8/6/2019 Final Experiment 5_1

    1/25

    CHEMICAL ENGINEERING LABORATORY II

    1.0 TITLE OF EXPERIMENT: Temperature Process Control.

    2.0 OBJECTIVES OF EXPERIMENT

    The objective of this experiment is to demonstrate and understand the characteristic

    of proportional (P), proportional integral (PI) and proportional-integral-derivative

    (PID) controller in a temperature control loop. Besides that, the objective of this

    experiment is also to observe the different types of temperature responses to P, PI,

    and PID controller.

    3.0 INTRODUCTION

    Temperature process control is a process of where the temperature of the fluid is

    changed in order to be measured, as the heat energy in or out of the space is adjusted

    to achieve a desired average or optimum temperature. The temperature control

    system consists of a heat exchanger, a sensor, a controller and a control panel. The

    controller is used for maintaining the temperature measuring the process variable at a

    particular set. In this experiment, a circulation pump transfers water within a closed

    circuit in order to allow water to experience heat exchange between the hot and cold

    water. The water flow is controlled by an actuator, taking place automatically should

    any deviation occurs from the set point with the supply of compressed air.

    A proportionalintegralderivative controller (PID controller) is a control

    loop feedback mechanism, which is able to minimize errors of the values by

    adjusting the process control inputs. The output of a PID controller is a linear

    combination of P, I, and D modes of control. The proportional controller, or P

    controller, is a linear type of feedback control system and is more complex than an

    on-off control system, but simpler than a proportional-integral-derivative (PID)

    control system. However, the P-only controller still has some amount of offset away

    from the set point. Therefore, with the addition of an extra controlling system, the

  • 8/6/2019 Final Experiment 5_1

    2/25

    integral controller, forming the proportional-integral (PI) control. The integral action

    will attempt to avoid or minimize the offset created in the proportional control by

    bringing the output closer to the set point. PID control system is a linear combination

    of P, I and the derivative (D) which permits an increase in the proportional gain,

    offsetting the decrease error from the integral controlling. The derivative action

    reduces the period of cycling, yet producing the same speed of response as with the

    proportional action but without offsets.

    PI controller offers a balance of complexity and capability that makes them

    popular in many process control applications due to the integral action that enables

    PI controllers to eliminate offsets.

    4.0 MATERIALS AND EQUIPMENT

    Figure 4.1: Schematic Diagram of Temperature Control Unit / Trainer.

  • 8/6/2019 Final Experiment 5_1

    3/25

    5.0 RESULTS AND CALCULATIONS

    Experiment 1: Closed Loop Proportional (P) Control

    Variable= P Value

    Constant = I Value (600 s) and D Value (0 s)

    Table 5.1: Load Change (PB = 5)

    Date Time TT01 (C) Set Point (C) Output (%)

    23/03/2011 14:10:11 45.0 45.0 12.4

    23/03/2011 14:10:13 45.1 45.0 11.8

    23/03/2011 14:10:43 43.2 45.0 49.7

    23/03/2011 14:11:13 43.1 45.0 50.1

    23/03/2011 14:11:43 45.1 45.0 10.623/03/2011 14:12:13 45.1 45.0 11.4

    23/03/2011 14:12:43 45.0 45.0 13.3

    23/03/2011 14:13:13 44.9 45.0 14.4

    23/03/2011 14:13:43 45.0 45.0 12.4

    23/03/2011 14:14:13 44.9 45.0 14.3

    Figure 5.1: Load Change (PB = 5)

    Table 5.2: Set Point Change (PB = 5)

    Date Time TT01 (C) Set Point (C) Output (%)

    23/03/2011 17:12:58 44.9 45.0 28.7

    23/03/2011 17:13:00 44.9 45.0 27.9

    23/03/2011 17:13:30 47.3 50.0 79.623/03/2011 17:14:00 47.8 50.0 70.7

  • 8/6/2019 Final Experiment 5_1

    4/25

    23/03/2011 17:14:30 47.6 50.0 75.4

    23/03/2011 17:15:00 47.7 50.0 71.7

    23/03/2011 17:15:30 47.8 50.0 71.1

    23/03/2011 17:16:00 47.2 50.0 83.9

    23/03/2011 17:16:30 47.5 50.0 76.9

    23/03/2011 17:17:00 47.7 50.0 73.523/03/2011 17:17:30 47.8 50.0 72.7

    23/03/2011 17:18:00 47.9 50.0 69.5

    23/03/2011 17:18:30 47.3 50.0 82.4

    23/03/2011 17:19:00 47.4 50.0 81.6

    23/03/2011 17:19:30 47.5 50.0 78.4

    23/03/2011 17:20:00 47.7 50.0 75.4

    23/03/2011 17:20:30 47.9 50.0 71.7

    23/03/2011 17:21:00 47.2 50.0 85.8

    23/03/2011 17:21:30 47.4 50.0 80.9

    Figure 5.2: Set Point Change (PB = 5)

    Table 5.3: Load Change (PB = 20)

    Date Time TT01 (C) Set Point (C) Output (%)23/03/2011 14:02:09 45.1 45.0 13.1

    23/03/2011 14:02:39 43.6 45.0 20.5

    23/03/2011 14:03:09 41.4 45.0 31.9

    23/03/2011 14:03:39 44.0 45.0 19.1

    23/03/2011 14:04:09 45.1 45.0 13.5

    23/03/2011 14:04:39 45.2 45.0 12.9

    23/03/2011 14:05:09 45.0 45.0 14.1

    23/03/2011 14:05:39 45.0 45.0 14.0

    23/03/2011 14:06:09 45.0 45.0 13.8

    23/03/2011 14:06:39 44.9 45.0 14.2

  • 8/6/2019 Final Experiment 5_1

    5/25

    Figure 5.3: Load Change (PB = 20)

    Table 5.4: Set Point Change (PB = 20)

    Date Time TT01 (C) Set Point (C) Output (%)

    23/03/2011 16:55:30 44.7 45.0 28.1

    23/03/2011 16:55:32 44.7 45.0 28.1

    23/03/2011 16:56:02 46.4 50.0 44.5

    23/03/2011 16:56:32 46.6 50.0 43.6

    23/03/2011 16:57:02 46.4 50.0 44.7

    23/03/2011 16:57:32 46.1 50.0 46.6

    23/03/2011 16:58:02 46.4 50.0 45.1

    23/03/2011 16:58:32 46.5 50.0 44.7

    23/03/2011 16:59:02 46.6 50.0 44.4

    23/03/2011 16:59:32 46.7 50.0 43.9

    23/03/2011 17:00:02 46.0 50.0 47.1

    23/03/2011 17:00:32 46.3 50.0 46.0

    23/03/2011 17:01:02 46.4 50.0 45.5

    23/03/2011 17:01:32 46.5 50.0 45.0

    23/03/2011 17:02:02 46.7 50.0 44.4

    23/03/2011 17:02:32 46.0 50.0 47.8

    23/03/2011 17:03:02 46.3 50.0 46.523/03/2011 17:03:32 46.5 50.0 45.6

    23/03/2011 17:04:02 46.6 50.0 45.3

    23/03/2011 17:04:32 46.1 50.0 47.5

    23/03/2011 17:05:02 46.3 50.0 46.9

  • 8/6/2019 Final Experiment 5_1

    6/25

    Figure 5.4: Set Point Change (PB = 20)

    Table 5.5: Load Change (PB = 100)

    Date Time TT01 (C) Set Point (C) Output (%)

    23/03/2011 13:26:15 44.9 45.0 15.1

    23/03/2011 13:26:45 45.3 45.0 14.8

    23/03/2011 13:27:15 45.2 45.0 14.8

    23/03/2011 13:27:45 43.8 45.0 16.3

    23/03/2011 13:28:15 39.8 45.0 20.3

    23/03/2011 13:28:45 45.0 45.0 15.1

    23/03/2011 13:29:15 44.9 45.0 15.2

    23/03/2011 13:29:45 45.2 45.0 14.9

    23/03/2011 13:30:15 45.0 45.0 15.1

    23/03/2011 13:30:45 45.3 45.0 14.8

    23/03/2011 13:31:15 45.5 45.0 14.5

    23/03/2011 13:31:45 45.2 45.0 14.8

    23/03/2011 13:32:15 45.3 45.0 14.8

    23/03/2011 13:32:45 45.5 45.0 14.5

    23/03/2011 13:33:15 45.2 45.0 14.8

    Figure 5.5: Load Change (PB = 100)

  • 8/6/2019 Final Experiment 5_1

    7/25

    Table 5.6: Set Point Change (PB = 100)

    Date Time TT01 (C) Set Point (C) Output (%)

    23/03/2011 13:38:47 45.2 45.0 14.8

    23/03/2011 13:39:17 45.1 45.0 14.9

    23/03/2011 13:39:47 44.9 45.0 15.1

    23/03/2011 13:40:17 45.9 50.0 19.223/03/2011 13:40:47 45.5 50.0 19.6

    23/03/2011 13:41:17 45.7 50.0 19.4

    23/03/2011 13:41:47 45.9 50.0 19.2

    23/03/2011 13:42:17 45.6 50.0 19.5

    23/03/2011 13:42:47 45.5 50.0 19.7

    23/03/2011 13:43:17 46.2 50.0 19.0

    23/03/2011 13:43:47 46.0 50.0 19.2

    23/03/2011 13:44:17 45.7 50.0 19.5

    23/03/2011 13:44:47 46.0 50.0 19.3

    23/03/2011 13:45:17 45.9 50.0 19.323/03/2011 13:45:47 45.7 50.0 19.6

    23/03/2011 13:46:17 46.0 50.0 19.3

    23/03/2011 13:46:47 45.9 50.0 19.4

    23/03/2011 13:47:17 45.5 50.0 19.8

    23/03/2011 13:47:47 45.8 50.0 19.5

    23/03/2011 13:48:17 45.9 50.0 19.5

    23/03/2011 13:48:47 45.5 50.0 19.9

    23/03/2011 13:49:17 46.0 50.0 19.5

    23/03/2011 13:49:47 45.9 50.0 19.5

    23/03/2011 13:50:17 45.9 50.0 19.6

    23/03/2011 13:50:47 46.2 50.0 19.3

    23/03/2011 13:51:17 45.9 50.0 19.6

    23/03/2011 13:51:47 45.9 50.0 19.6

    23/03/2011 13:52:17 46.2 50.0 19.4

    23/03/2011 13:52:47 45.8 50.0 19.7

    Figure 5.6: Set Point Change (PB = 100)

  • 8/6/2019 Final Experiment 5_1

    8/25

    Table 5.7: Mean Temperatures, Settling Time for Different PB Values

    PB value

    Mean Temperature (C) Settling Time (s)

    Load ChangeSet Point

    ChangeLoad Change

    Set Point

    Change

    5 45.0 47.6 71 127

    20() 45.0 46.3 67 41100 45.2 46.0 467 1

    Experiment 2: Closed Loop Proportional-Integral (PI) Control

    Variable= I Value

    Constant = P Value (20 s) and D Value (0 s)

    Table 5.8: Load Change (I = 1)

    Date Time TT01 (C) Set Point (C) Output (%)

    23/03/2011 14:33:41 45.0 45.0 13.7

    23/03/2011 14:33:43 45.0 45.0 13.6

    23/03/2011 14:34:13 42.6 45.0 46.3

    23/03/2011 14:34:43 47.3 45.0 17.4

    23/03/2011 14:35:13 45.3 45.0 12.6

    23/03/2011 14:35:43 45.1 45.0 11.1

    23/03/2011 14:36:13 44.9 45.0 12.5

    23/03/2011 14:36:43 44.9 45.0 14.8

    23/03/2011 14:37:13 45.1 45.0 12.8

    23/03/2011 14:37:43 44.9 45.0 13.3

    23/03/2011 14:38:13 44.9 45.0 15.2

    Figure 5.7: Load Change (I = 1)

  • 8/6/2019 Final Experiment 5_1

    9/25

    Table 5.9: Set Point Change (I = 1)

    Date Time TT01 (C) Set Point (C) Output (%)

    23/03/2011 16:37:29 45.1 45.0 28.1

    23/03/2011 16:37:31 45.0 45.0 28.2

    23/03/2011 16:38:01 46.9 50.0 92.4

    23/03/2011 16:38:31 47.4 50.0 100.023/03/2011 16:39:01 47.7 50.0 100.0

    23/03/2011 16:39:31 47.7 50.0 100.0

Search related