35
Francis Norman Paraan State University of New York, Stony Brook, Phillipine日時: 2011 329日 (火) 15時~16時30分 場所:本館2階H284A室 Some aspects of the one-dimensional interacting boson gas Abstract: In this talk we discuss two recent results involving a one- dimensional boson gas with contact interactions as modeled by the Lieb-Liniger hamiltonian. First, we present a perturbation calculation for the ground state energy and chemical potential of such a gas in the presence of longitudinal harmonic confinement about the impenetrable boson limit. This result is compared to that obtained from the Thomas-Fermi formalism. Second, we quantify the amount of entanglement that can be extracted by certain coarse- grained measurements on the ground state of this gas when it is confined in a ring. We demonstrate that the amount of entanglement in these projections increases monotonically with interparticle repulsion strength. 担当 鹿野 豊(内線 3893名前 大学 滞在期間 受入担当氏名 Francis N.C. Paraan State University of New York, 3/17-3/31 鹿野 Stony Brook (Phillippine) FGIP-Guest student の滞在スケジュール 教員、修士課程大学院生の参加も歓迎します。 東工大 基礎・物性物理学専攻「物理学リーダーシップ」 FGIPForeign Graduate Student Invitation Program 外国人博士課程大学院生の短期招待・共同研究 FGIP-Student Forum セミナー http://www.phys.titech.ac.jp/leadership/fgip/ FGIP-Student Forum 事務局 小林慶鑑(内線2369)

FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

Embed Size (px)

Citation preview

Page 1: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

Francis Norman Paraan(State University of New York, Stony Brook, Phillipine)

日時: 2011 年 3月 29日 (火) 15時~16時30分

場所:本館2階H284A室

‘Some aspects of the one-dimensional interacting

boson gas ’

• Abstract: In this talk we discuss two recent results involving a one-

dimensional boson gas with contact interactions as modeled by the Lieb-Liniger

hamiltonian. First, we present a perturbation calculation for the ground state

energy and chemical potential of such a gas in the presence of longitudinal

harmonic confinement about the impenetrable boson limit. This result is

compared to that obtained from the Thomas-Fermi formalism. Second, we

quantify the amount of entanglement that can be extracted by certain coarse-

grained measurements on the ground state of this gas when it is confined in a

ring. We demonstrate that the amount of entanglement in these projections

increases monotonically with interparticle repulsion strength.

担当 鹿野豊(内線 3893)

名前 大学 滞在期間 受入担当氏名Francis N.C. Paraan State University of New York, 3/17-3/31 鹿野

Stony Brook (Phillippine)

FGIP-Guest student の滞在スケジュール

教員、修士課程大学院生の参加も歓迎します。

東工大 基礎・物性物理学専攻「物理学リーダーシップ」

FGIP:Foreign Graduate Student Invitation Program

外国人博士課程大学院生の短期招待・共同研究

FGIP-Student Forum セミナー

http://www.phys.titech.ac.jp/leadership/fgip/FGIP-Student Forum 事務局 小林慶鑑(内線2369)

Page 2: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Some aspects of the one-dimensionalinteracting boson gas

Harmonic confinement and extractable entanglement byfixed number projections

Francis N. C. ParaanAdvisor: Vladimir E. Korepin

Department of Physics & AstronomyState University of New York at Stony Brook

29 March 2011Tokyo Institute of Technology

FNCP Interacting bosons in 1D 1/31

Page 3: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Outline

1 MotivationLieb-Liniger modelExperiments

2 Harmonically confined bosonsThomas-Fermi approximationStrong interaction limit

3 Extractable entanglement by projectionsCoarse-grained measurements

FNCP Interacting bosons in 1D 2/31

Page 4: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Lieb-Liniger modelExperiments

Hamiltonian

With repulsive coupling constant c > 0 [Lieb & Liniger, 1963],

Many-body hamiltonian

H = −N∑

i=1

∂2

∂x2i

+ 2c∑〈i, j〉

δ(xi − xj). (1)

The eigenstates are specified by a set of quasi-momenta {k}that satisfy the Bethe equations.

FNCP Interacting bosons in 1D 3/31

Page 5: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Lieb-Liniger modelExperiments

Exact solution

Bethe ansatz

χ(x) =1N∑{P}

(−1)[P]eikP ·x∏m<n

kPm − kPn − ic sgn(xn − xm). (2)

With periodic boundary conditions:

Bethe equations

e−ikmL = −N∏

n=1

km − kn + ickm − kn − ic

. (3)

FNCP Interacting bosons in 1D 4/31

Page 6: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Lieb-Liniger modelExperiments

Lieb-Liniger (LL) equations

Continuum limit gives LL equations:

Quasi-momentum distribution f (k)

1 + 2c∫ K

−K

f (x) dxc2 + (x− k)2 = 2πf (k), (4)

coupled to

Normalization ∫ K

−Kf (k) dk = ρ, (5)

where ρ = N/L is the number density.

FNCP Interacting bosons in 1D 5/31

Page 7: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Lieb-Liniger modelExperiments

Quasi-momentum distribution

Γ = 0.0340

Γ = 0.1214

Γ = 0.4051

Γ = 4.993Γ = ¥

-3 -2 -1 0 1 2 30.0

0.5

1.0

1.5

2.0

Κ

fHΚL

The distribution of quasi-momenta κ = k/ρ is sharply peaked aboutκ = 0 in the noninteracting limit and uniform in the free fermion limit.

(γ ≡ c/ρ)

[Lieb & Liniger, 1963]

FNCP Interacting bosons in 1D 6/31

Page 8: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Lieb-Liniger modelExperiments

Ground state energy and chemical potential

Ε � Ρ2

Μ � Ρ2

0 20 40 60 80 1000

2

4

6

8

10

Γ

The ground state energy per particle ε = ρ2e(γ) and chemicalpotential µ = ρ2(3e− γe′) saturate to the free fermion values

(e =∫κ2 f̃ (κ) dκ).

[Lieb & Liniger, 1963]

FNCP Interacting bosons in 1D 7/31

Page 9: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Lieb-Liniger modelExperiments

Quasi-1D Bose gas

Under tight transverse harmonic confinement, the potential

3D interaction pseudopotential

U(r) = g3Dδ(r)∂

∂r(r· ) (6)

leads to the effective Q1D potential [Olshanii, 1998]

Q1D interaction potential

U1D(x) = g1Dδ(x). (7)

g1D is a simple function of g3D and the transverse length scale.

FNCP Interacting bosons in 1D 8/31

Page 10: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Lieb-Liniger modelExperiments

Bosons in optical lattices

Haller et al., Science 325, 1224 H2009L

The Q1D equation of state of the confined LL gas has beenmeasured in recent experiments. [Kinoshita et al., 2004]

FNCP Interacting bosons in 1D 9/31

Page 11: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Lieb-Liniger modelExperiments

Bosons in optical lattices

Haller et al., Science 325, 1224 H2009L

The Q1D equation of state of the confined LL gas has beenmeasured in recent experiments. [Kinoshita et al., 2004]

FNCP Interacting bosons in 1D 9/31

Page 12: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Thomas-Fermi approximationStrong interaction limit

Harmonically confined bosons

Many-body hamiltonian

H =

N∑i=1

−12∂2

∂x2i

+12

x2i + c

∑〈i, j〉

δ(xi − xj). (8)

Solved in the Thomas-Fermi (TF) approximation by Dunjko etal. (2004) and Ma & Yang (2009).

Difficulty: Translational invariance is broken.

FNCP Interacting bosons in 1D 10/31

Page 13: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Thomas-Fermi approximationStrong interaction limit

Harmonically confined bosons

Many-body hamiltonian

H =

N∑i=1

−12∂2

∂x2i

+12

x2i + c

∑〈i, j〉

δ(xi − xj). (8)

Solved in the Thomas-Fermi (TF) approximation by Dunjko etal. (2004) and Ma & Yang (2009).

Difficulty: Translational invariance is broken.

FNCP Interacting bosons in 1D 10/31

Page 14: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Thomas-Fermi approximationStrong interaction limit

Thomas-Fermi approximation

Assume that the energy can be locally described by theLieb-Liniger energy + the external confining potential.

Ground state energy

E0 =

∫e0(x) +

x2

2ρ(x) dx. (9)

where e0 ≡ c3βζ(β) is the homogeneous ground state energydensity and β = ρ/c = δN/cδx.

FNCP Interacting bosons in 1D 11/31

Page 15: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Thomas-Fermi approximationStrong interaction limit

TF approximation

∆x

ΡHxL

FNCP Interacting bosons in 1D 12/31

Page 16: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Thomas-Fermi approximationStrong interaction limit

Local thermodynamics

Fundamental equation

d(e0δx) = −pd(δx) + µlocd(δN) (10)

gives

Local equations of state

p = c3β2ζ ′(β), β = ρ(x)/c, (11)

µloc = c2[ζ(β) + βζ ′(β)]. (12)

Static hydrodynamic equilibrium is explicitly demonstrated.

FNCP Interacting bosons in 1D 13/31

Page 17: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Thomas-Fermi approximationStrong interaction limit

Local thermodynamics

Fundamental equation

d(e0δx) = −pd(δx) + µlocd(δN) (10)

gives

Local equations of state

p = c3β2ζ ′(β), β = ρ(x)/c, (11)

µloc = c2[ζ(β) + βζ ′(β)]. (12)

Static hydrodynamic equilibrium is explicitly demonstrated.

FNCP Interacting bosons in 1D 13/31

Page 18: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Thomas-Fermi approximationStrong interaction limit

Equilibrium density profiles

Extremizing the energy functional E0[ρ] at constant N =∫ρ dx

gives

TF density

G2c2

N− x2

2N=µloc

N=

c2

N

[ζ(β) + βζ ′(β)

]. (13)

G2c2 is a Lagrange multiplier that fixes N (or√

N/c).

FNCP Interacting bosons in 1D 14/31

Page 19: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Thomas-Fermi approximationStrong interaction limit

Local chemical potential

∆x

G2 c2

Μloc

FNCP Interacting bosons in 1D 15/31

Page 20: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Thomas-Fermi approximationStrong interaction limit

Equilibrium density profiles

N1�2 �c = 20.0

N1�2 �c = 0+

-1.0 -0.5 0.0 0.5 1.0x¢

0.2

0.4

0.6

0.8

1.0

1.2

Ρ¢

[x′ = x/√

2N; ρ′ = ρ/√

2N]

√N/c→ 0+ yields an elliptical Tonks-Girardeau profile,√N/c� 1 yields a parabolic mean field profile. [Ma & Yang, 2010]

FNCP Interacting bosons in 1D 16/31

Page 21: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Thomas-Fermi approximationStrong interaction limit

Strong interaction limit

Many-body hamiltonian

H =

N∑i=1

−12∂2

∂x2i

+12

x2i + c

∑〈i, j〉

δ(xi − xj). (14)

Aim: Obtain 1/c corrections to the ground state energy andchemical potential.

[FP & Korepin, 2010]

FNCP Interacting bosons in 1D 17/31

Page 22: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Thomas-Fermi approximationStrong interaction limit

Fermion-Boson mapping

Bosonic Schrödinger equation

[H0 + cV̂b]Ψb = EbΨb (15)

is mapped to

Fermionic Schrödinger equation

[H0 + c−1V̂ f]Φf = EfΦf, Ψb = AΦf. (16)

A is a unit anti-symmetrizer∏

i<j sgn(xj − xi).

FNCP Interacting bosons in 1D 18/31

Page 23: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Thomas-Fermi approximationStrong interaction limit

Fermionic pseudopotential

Matrix elements

〈ϕf|c−1V̂ f|φf〉 = −4c

∑i<j

∫lim

rij→0

[∂ϕf∗

∂rij

∂φf

∂rij

]dRij, (17)

with rij = xj − xi and Rij = 12(xj + xi). [Cheon & Shigehara, 1999]

Pseudopotential is a sum of two-particle potential operators.

FNCP Interacting bosons in 1D 19/31

Page 24: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Thomas-Fermi approximationStrong interaction limit

First order perturbation

With ΦfTG = N!−1/2 det[ψn(xm)], Slater determinant of oscillator

orbitals,

δE = 〈ΦfTG|c

−1V̂ f|ΦTGf〉

=1c

√2π3

N−1∑l=1

Γ(l− 12)

Γ(l + 1)

l−1∑k=0

(l− k)2Γ(k − 12)

Γ(k + 1)3F2

[32 ,−k,−l32−k, 3

2−l; 1]

(18)

where E0 ≈ ETG + δE = 12~ωN2 + δE.

FNCP Interacting bosons in 1D 20/31

Page 25: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Thomas-Fermi approximationStrong interaction limit

Asymptotic behavior of perturbation

1 5 10 50 100 500 10000.2

0.5

1.0

2.0

5.0

10.0

N

-c∆

E�N

2

Exact result (solid) and asymptotic large N behavior (dashed).

Correction behaves as δE/ETG ∼ 2α0√

N/c, with α0 ≈ −0.408.

FNCP Interacting bosons in 1D 21/31

Page 26: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Thomas-Fermi approximationStrong interaction limit

Two particles

ETG

0 5 10 15 20 25 301.0

1.2

1.4

1.6

1.8

2.0

2.2

c

E0

Exact ground state energy (solid) and first order 1/c result (dashed).

FNCP Interacting bosons in 1D 22/31

Page 27: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Thomas-Fermi approximationStrong interaction limit

Thermodynamic limit

Require an extensive E0 as N →∞

ETG = 12~ωN2 ∝ N ⇒ ωN → constant

⇒√

N/c→ constant. (19)

FNCP Interacting bosons in 1D 23/31

Page 28: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Thomas-Fermi approximationStrong interaction limit

Thermodynamic limitAsymptotic 1

2~ωN2 → ETG forms

E0 ≈ ETG[1 + 2α0/g], g = c/√

N (20)

µ ≈ µTG[1 + 52α0/g], (21)

0.0 0.2 0.4 0.6 0.8 1.00.20

0.25

0.30

0.35

0.40

0.45

0.50

N1�2�c º 1�Γ

E�N

2

Thomas-Fermi result (solid) and first order 1/c result (dashed).

FNCP Interacting bosons in 1D 24/31

Page 29: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Thomas-Fermi approximationStrong interaction limit

Summary of results

• We obtained 1/c corrections to ground state energy andchemical potential of the harmonically confined LL gas.

• For a consistent extensive energy as N →∞, we musthave

√N/c→ constant.

• Open problems:• Second-order perturbation requires knowledge of form

factors.

FNCP Interacting bosons in 1D 25/31

Page 30: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Coarse-grained measurements

Extracting entanglement from the LL gas

Aim: Measure entanglement obtained from fixed number purestate projections of the LL ground state.

(with J. Molina-Vilaplana, V. E. Korepin, and S. Bose)

A

B

FNCP Interacting bosons in 1D 26/31

Page 31: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

Coarse-grained measurements

Extracting entanglement from the LL gas

Manuscript in preparation: Some slides not available online.

FNCP Interacting bosons in 1D 27/31

Page 32: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

SummaryAcknowledgmentsReferences

Summary

• We quantified the entanglement extractable from fixednumber projections of the LL ground state.

• Balanced fixed number projections yield optimumentanglement.

• Open problem:• Fixed number projections are not eigenstates of the LL

hamiltonian→ non-trivial time evolution.

FNCP Interacting bosons in 1D 28/31

Page 33: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

SummaryAcknowledgmentsReferences

Acknowledgments

• NSF Grant No. DMS-0905744• Foreign Graduate Student Invitation Program• Prof. Akio Hosoya• Y. Shikano and H. Katsura

FNCP Interacting bosons in 1D 29/31

Page 34: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

SummaryAcknowledgmentsReferences

References

T. Cheon and T. Shigehara, Phys. Rev. Lett. 82, 2536 (1999).

V. Dunjko, V. Lorent, and M. Olshanii, Phys. Rev. Lett. 86, 5413 (2001).

T. Kinoshita, T. Wenger and D. S. Weiss, Science 305, 1125 (2004).

E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).

Z.-Q. Ma and C. N. Yang, Chin. Phys. Lett. 26, 120506 (2009).

Z.-Q. Ma and C. N. Yang, Chin. Phys. Lett. 27, 020506 (2010).

J. Molina-Vilaplana, S. Bose, and V. E. Korepin, Int. J. Quantum. Inf. 6, 739(2008).

M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).

F. N. C. P. and V. E. Korepin, Phys. Rev. A 82, 065603 (2010).

FNCP Interacting bosons in 1D 30/31

Page 35: FGIP-Student Forum セミナーinfo.phys.sci.titech.ac.jp/uploads/info/C1002/I1907_1718...FNCP Interacting bosons in 1D 8/31 Motivation Harmonically confined bosons Extractable entanglement

MotivationHarmonically confined bosons

Extractable entanglement by projectionsSummary and References

SummaryAcknowledgmentsReferences

Slater-Condon Rule for two-particle potentials

Let V̂ = 12∑

k 6=l v̂(k, l) andΨ be a Slater determinant of orbitals φi.

vklmn = 〈φkφl|v̂|φmφn〉, (22)

〈Ψ|V̂|Ψ〉 =12

∑k,l

vklkl − vkllk. (23)

FNCP Interacting bosons in 1D 31/31