Fatigue Failure Analysis

Embed Size (px)

Citation preview

  • 8/19/2019 Fatigue Failure Analysis

    1/27

    FATIGUE FAILURE ANALYSIS

    Aditya Kumar Maharana

    Mechanical Engineering

    M-Tech, 2nd Year 

  • 8/19/2019 Fatigue Failure Analysis

    2/27

    OUTLINE

    • Fatigue Failure

    • Why study Fatigue?

    •  Type of Fluctuating stresses

    • S-N Curve

    • Endurance Limit and Correction factors

    • Fatigue Stress Concentration factor

    • Eect of ean Stress and !esign for Finite life

  • 8/19/2019 Fatigue Failure Analysis

    3/27

    "t has #een recogni$ed that a metal su#%ected to arepetitive or &uctuating stress 'ill fail at a stress muchlo'er than that re(uired to cause failure on a singleapplication of load) Failures occurring under conditions ofdynamic loading are called fatigue failures)

    Fatigue Failure

    Fatigue failure is characteri$ed #y three stages *

    Crack Initiation

    Crack Propagation

    Final Fracture

  • 8/19/2019 Fatigue Failure Analysis

    4/27

     +ac, hammer

    component sho'sno yielding #eforefracture)

    Crac, initiation site

    Fracture $one

    .ropagation $one striation

  • 8/19/2019 Fatigue Failure Analysis

    5/27

    /01 .orsche timingpulley

    Crac, started at the 2llet

  • 8/19/2019 Fatigue Failure Analysis

    6/27

    3ear tooth failure

    Cran, shaft

  • 8/19/2019 Fatigue Failure Analysis

    7/27

    4a'aii 5loha Flight 067 a 8oeing 979 an upper part of theplane:s ca#in area rips o in mid-&ight) etal fatigue 'as thecause of the failure)

  • 8/19/2019 Fatigue Failure Analysis

    8/27

    Fatigue Failure – Type of Fluctuating Stresses

    σa

    =

    σmax 

      σmin

    2

    5lternating stress

    ean stress

    σm

    σmax    σmin

    0

    <

  • 8/19/2019 Fatigue Failure Analysis

    9/27

    Fatigue Failure, S-N Curve

     Test specimen geometry for =)=)oore rotating #eam machine) Thesurface is polished in the a>ialdirection) 5 constant #ending load isapplied)

    otor

    Load

    =otating #eam machine applies fully reverse #endingstress

     Typical testing apparatus pure #ending

  • 8/19/2019 Fatigue Failure Analysis

    10/27

    Fatigue Failure, S-N Curve

    Finitelife

    Innitelife

    N  103

    S′e

     ; endurance limit of the specimenSe‘

  • 8/19/2019 Fatigue Failure Analysis

    11/27

    Relationship Between Endurance i!it and "lti!ate

    Strength

    Steel

    Se ;@

    A)BSut

    AA ,si

    9AA .a

    Sut D 0AA ,si 6AA

    .aSut > 0AA

    ,siSut > 6AA

    .a

    Steel

    A)6Sut

    Se ;@

    Sut 

  • 8/19/2019 Fatigue Failure Analysis

    12/27

    Correction Factors for Speci!en#s Endurance i!it

     ; endurance limit of the specimen in2nite life

    I AG

    Se@

    For materials e>hi#iting a ,nee in the S-N curve at AG 

    cycles

     ; endurance limit of the actual component in2nite

    life I AG

    Se

    N

    S Se

    AGA7

     ; fatigue strength of the specimen in2nite life I

    B>A1

    Sf @

     ; fatigue strength of the actual component in2nite life

    I B>A1

    Sf 

    For materials that do not e>hi#it a ,nee in the S-N curvethe in2nite life ta,en at B>A1 cycles

    N

    S Sf 

    B>A1A7

  • 8/19/2019 Fatigue Failure Analysis

    13/27

    Correction Factors for Speci!en#s Endurance i!it

    Se ; Cload  Csize  Csurf Ctemp  Crel Se@

    Load factor Cload 

    .ure#ending Cload =

    .ure a>ial Cload = A)9

    Com#ined loading Cload =

    .ure torsion Cload = if von ises stress is used use

    A)B99 if von ises stress is NJTused)

  • 8/19/2019 Fatigue Failure Analysis

    14/27

    Correction Factors for Speci!en#s Endurance i!it

    Si$e factor Csize

    Larger parts fail at lo'er stresses than smaller parts) This is mainly due to the higher pro#a#ility of &a's#eing present in larger components)

    For solid round cross section

    d D A)7 in) 1mm

    Csize =

    A)7 in) K d D A

    in)

    Csize = )1G/d-A)A/9

    1 mm K d D 0BAmm

    Csize = )1/d-A)A/9

    "f the component is larger than A in) useCsize = )G

  • 8/19/2019 Fatigue Failure Analysis

    15/27

    Correction Factors for Speci!en#s Endurance i!it

    For non rotating components use the /B area approach to

    calculate the e(uivalent diameter) Then use this e(uivalentdiameter in the previous e(uations to calculate the si$e factor)

    dequiv  ;

     A/B

    A)A9GGM0  dd 95

  • 8/19/2019 Fatigue Failure Analysis

    16/27

    Correction Factors for Speci!en#s Endurance i!it

    Surface factor Csurf 

     The rotating #eam test specimen has a polished surface)ost components do not have a polished surface)Scratches and imperfections on the surface act li,e astress raisers and reduce the fatigue life of a part) seeither the graph or the e(uation 'ith the ta#le sho'n#elo')

    Csurf = A Sutb

  • 8/19/2019 Fatigue Failure Analysis

    17/27

    Correction Factors for Speci!en#s Endurance i!it

     Temperature factor Ctemp

    4igh temperatures reduce the fatigue life of acomponent) For accurate results use an environmentalcham#er and o#tain the endurance limit e>perimentallyat the desired temperature)

    For operating temperature #elo' 6BA oC 16A oF thetemperature factor should #e ta,en as one)

    Ctemp = for  T D 6BAo

    C 16Ao

    F

  • 8/19/2019 Fatigue Failure Analysis

    18/27

    Correction Factors for Speci!en#s Endurance i!it

    =elia#ility factor Crel

     The relia#ility correction factor accounts for thescatter and uncertainty of material properties

    endurance limit)

  • 8/19/2019 Fatigue Failure Analysis

    19/27

    Fatigue Stress Concentration Factor, $ f E>perimental data sho's that the actual stress concentration factor

    is not as high as indicated #y the theoretical value K t) The stressconcentration factor seems to #e sensitive to the notch radius andthe ultimate strength of the material)

    K f  ; < K t  qNotchsensitivityfactor

  • 8/19/2019 Fatigue Failure Analysis

    20/27

    %esign process – Fully Reversed oading for &nfinite ife 

    !etermine the ma>imum alternating applied stress

    σa , interms of the si$e and cross sectional pro2le

    Select material O Sy Sut

    se the design e(uation to calculate thesi$e Se

    K f σa = n

    Choose a safety factor O n

    !etermine all modifying factors and calculate theendurance limit of the component O Se

    !etermine the fatigue stress concentrationfactor K f 

    "nvestigate dierent cross sections pro2les optimi$e for si$eor 'eight

     Pou may also assume a pro2le and si$e calculate thealternating stress and determine the safety factor) "terate until

    you o#tain the desired safety factor

  • 8/19/2019 Fatigue Failure Analysis

    21/27

    %esign for Finite ife

    Sn = a Nb

      equation of the fatigue line

    N

    S

    Se

    AGA7

    5

    8

    N

    S

    Sf 

    B>A1A7

    5

    8

    .oint 5Sn = ./Sut

    N ; A7.oint 5

    Sn = ./Sut

    N ; A7

    .oint 8

    Sn = Sf 

    N ;1

    .oint 8

    Sn = Se

    N ; AG

  • 8/19/2019 Fatigue Failure Analysis

    22/27

    The Effect of 'ean Stress on Fatigue ife

    ean stress e>ist ifthe loading is of arepeating or&uctuating type)

    ean stress

    5lternatin

    g stress

    σm

    σa

    Se

    SySoder#erg lineSut

    Goodman line

    Gerber curve

    Sy  Yield line

  • 8/19/2019 Fatigue Failure Analysis

    23/27

    The Effect of 'ean Stress on Fatigue ife 'odified (ood!an

    %iagra!

    ean stress

    5lternating stress

    σm

    σa

    Sut

    Goodman line

    Sy Yield line

    Sy

    Se

    Safe $oneC

  • 8/19/2019 Fatigue Failure Analysis

    24/27

    - Syc

    The Effect of 'ean Stress on Fatigue ife

    'odified (ood!an %iagra!

  • 8/19/2019 Fatigue Failure Analysis

    25/27

    The Effect of 'ean Stress on Fatigue ife

    'odified (ood!an %iagra!

    AFatigueσm D A

    σa ;Senf 

    σa + σm ;Sy

    n y 

     Pield

    σa +

    σm ;

    Sy

    n y 

     Pield

    nf Se

    1=

    Sut 

    σa

      σm

    +nfinite life

  • 8/19/2019 Fatigue Failure Analysis

    26/27

    )pplying Stress Concentration factor to )lternating and

    'ean Co!ponents of Stress

    !etermine the fatigue stress concentration factor K f  apply

    directly to the alternating stress O K f  σa 

    "f K f σmax  < Sy then there is no yielding at the notch use

    K fm ; K f and multiply the mean stress #y K fm O K fm σm 

    "f K f σmax  > Sy then there is local yielding at the notch materialat the notch is strain-hardened) The eect of stressconcentration is reduced)Calculate the stress concentration factor for the meanstress using the follo'ing e(uation

    K fm ;S

    yK 

    f  σ

    a

    σm

    nf Se

    ;

    Sut 

    K f  σa K fmσm< "n2nite life

    Fatigue design e(uation

  • 8/19/2019 Fatigue Failure Analysis

    27/27

    Thank You