Click here to load reader
View
14
Download
0
Embed Size (px)
Fatigue Analysis Techniques
Darrell Socie Mechanical Engineering
University of Illinois
Fatigue Analysis Techniques
! Load-Life ! Stress-Life ! BS 5400 ( Eurocode 3 ) ! Strain-Life ! Crack Growth
Common Features
! Constant amplitude test data ! Rainflow ! Linear damage
Load-Life Data
10
100
1000
1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7
Cycles
L at
er al
F o
rc e,
kN
Stress-Life Data
100
1000
10000
1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7
Cycles
St re
ss A
m pl
it ud
e, M
P a
BS 5400 ( Eurocode 3 ) Data
100
200
300
400
B
C
D
E
F F2 G W 0
105 106 107 108
S tr
es s
R an
g e ,M
P a Steel
BS 5400 ( Eurocode 3 ) Data
0
25
50
75
100
125
105
B
C
D E
F
Aluminum
106 107 108
S tr
es s
R an
g e ,M
P a
Cycles
BS 5400 ( Eurocode 3 ) Weld Class F
Strain-Life Data ∆ε - 2Nf
0.00001
0.0001
0.001
0.01
0.1
1
1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7
Reversals
S tr
ai n
A m
p lit
u d
e
Strain-Life Data σ − ε
0
100
200
300
400
500
600
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
Strain Amplitude
S tr
es s
A m
p lit
u d
e
Crack Growth Data
1E-12
1E-11
1E-10
1E-9
1E-8
1E-7
1E-6
1.00E+00 1.00E+01 1.00E+02
Cyclic Stress Intensity, MPa m
C ra
ck G
ro w
th R
at e,
m /c
yc le
Rainflow Counting
A C
B D
E
F
G
H
I
Hysteresis Loops
A C
B D
E
F
G
H
I
A, I
B
C
D, F
E
G
H
Damage Accumulation
! Miner’s Linear Damage Rule
" Σ Ni / Nf = 1
Load-Life
! Major Assumption " Loads used to generate
baseline data are the same as service loading
Load-Life
! Advantages " Actual test of structure " Manufacturing and local stress
concentration effects automatically included
" Stress analysis is not needed
Load-Life
! Limitations " Actual test of structure " New tests required for each
change in material, loading or geometry
" Mean stress effects can not be included
Stress-Life
! Major Assumptions " Nominal stresses and material
strength control fatigue life " Accurate determination of Kf
for each geometry and material
Notched S-N Curve
10
100
1000
10000
1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07
Cycles
S tr
es s
A m
p lit
u d
e
Kt or Kf
Stress-Life
! Advantages " Changes in material and
geometry can easily be evaluated
" Large emperical database for steel with standard notch shapes
Stress-Life
! Limitations " Does not account for notch
root plasticity " Mean stress effects are often
in error " Requires emperical Kf for good
results
BS 5400 ( Eurocode 3 )
! Major Assumptions " Complex weld geometries can
be described by a standard classification
" Crack growth dominates fatigue life
" Results independant of material and mean stress for structural steels
BS 5400 ( Eurocode 3 )
10
100
1000
1E+05 1E+06 1E+07 1E+08
Cycles
S tr
es s
R an
g e,
M P
a
Fatigue Limit
No Fatigue Limit
BS 5400 ( Eurocode 3 )
! Advantages " Manufacturing effects are
directly included " Large emperical database
exists
BS 5400 ( Eurocode 3 )
! Limitations " Difficult to determine weld
class for complex shapes " No benifit for improving
manufacturing process
Welded Structure
Strain-Life
! Major Assumptions " Local stresses and strains
control fatigue behavior " Accurate determination of Kf
Strain-Life
! Advantages " Plasticity effects " Mean stress effects
Mean Strain Example
Tensile Mean Stress
Compressive Mean Stress
Neuber’s Rule
0
200
400
600
800
1000
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
Strain
S tr
es s
K S ef 2 ∆ ∆ ∆σ ∆ε=
Strain-Life
! Limitations " Requires emperical Kf " Long life situations where
surface finish and processing variables are important
Crack Growth
! Major Assumptions " Nominal stress and crack size
control fatigue life " Accurate determination of
initial crack size
Crack Growth
! Advantage " Only method to directly deal
with cracks
Crack Growth
! Limitations
" Sequence effects ∆Keff = f ( ∆K )
" ∆K = E ∆e Y( a ) √ a " Accurate determination of ai
Crack Closure
Crack Opened Crack Closed
Crack Opening Load
Damaging portion of loading history
Nondamaging portion of loading history
Opening load
Applications
! Material Selection / Improvement
! Fillet Weld ! Scaling / Editing Load
Histories ! Crack Size / Shape
Transmission History
-600
-400
-200
0
200
400
600
800
1000
N o
m in
al S
tr ai
n
Material Properties
BHN 187 277 336 410 545
σ f ' ,MPa 1668 2978 3902 4593 5666
b -0.149 -0.158 -0.159 -0.167 -0.170
ε f ' 0.556 0.700 0.563 0.381 0.068
c -0.522 -0.578 -0.595 -0.589 -0.603
K’, MPa 1460 1743 2051 2381 4438
n’ 0.234 0.189 0.163 0.172 0.169
E, GPa 206 206 208 206 205
Strength Variation
0
100
200
300
400
500
600
1E+03 1E+04 1E+05 1E+06 1E+07
Blocks
H ar
d n
es s,
B H
N
Kf Variation
1.5
2
2.5
3
3.5
4
4.5
1E+03 1E+04 1E+05 1E+06 1E+07
Blocks
F at
ig u
e N
o tc
h F
ac to
r
Scale Factor Variation
0
0.5
1
1.5
2
1E+03 1E+04 1E+05 1E+06 1E+07
Blocks
S ca
le F
ac to
r
Cycle Histogram
0
1500
range (uE)
-1000
1000
mea n (u
E)
0
25
co un
ts
ε-N Damage
0
1500
range (uE)
-50
50
mea n st
ress
0
10
% da
m ag
e
Weld Geometry
Crack Depth
Geometry Factor
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0.0 0.2 0.4 0.6 0.8 1.0 a/W
Y (
a/ W
)
Crack Length
0
0.001
0.002
0.003
0.004
0.005
0 200 400 600 800 1000
Blocks
C ra
ck L
en g
th ,m