45
S1 Supporting information for Regioselective Phosphinylation of Cou marins under Green LED Irradiation and Mechanism Study Qingrui Li, Xiuli Zhao, Yabo Li, Mengmeng Huang*, Jung Keun Kim and Yangjie Wu* College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P.R. China. Experimental details and spectroscopic data Contents: 1. General information .......................................................................................S2 2. Experimental Procedure ................................................................................S2 3. Control Experiments ......................................................................................S3 4. UV/VIS Absorption spectra, Cyclic Voltammetry Luminescence Quenching Experiments and Data processing .................................................S9 5. Characterization data ..................................................................................S14 6. 1 H, 13 C and 31 P NMR spectra.......................................................................S19 7. Determination of Structure of 3a ................................................................S43 Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S1

Supporting information for

Regioselective Phosphinylation of Coumarins under

Green LED Irradiation and Mechanism Study

Qingrui Li, Xiuli Zhao, Yabo Li, Mengmeng Huang*, Jung Keun Kim and Yangjie Wu*College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P.R. China.

Experimental details and spectroscopic data

Contents:

1. General information.......................................................................................S2

2. Experimental Procedure ................................................................................S2

3. Control Experiments ......................................................................................S3

4. UV/VIS Absorption spectra, Cyclic Voltammetry Luminescence Quenching Experiments and Data processing .................................................S9

5. Characterization data ..................................................................................S14

6. 1H, 13C and 31P NMR spectra.......................................................................S19

7. Determination of Structure of 3a ................................................................S43

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry.This journal is © The Royal Society of Chemistry 2017

Page 2: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S2

1. General information

All reactions were performed under Ar atmosphere using quartz tube. Solvents were dried and degassed by standard methods before they were used. Coumarins were purchased from commercial suppliers and used without further purification. Silica gel was purchased from Qing Dao Hai Yang Chemical Industry Co. 1H NMR spectra was recorded on a Bruker DPX-400 (400 MHz) spectrometer with deuteraterated chloroform or Dimethylsulfoxid-d6 as solutions, the chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0.0 ppm for tetramethylsilane. 13C NMR spectra was recorded at 100 MHz on Bruker DPX-400. The chemical shifts δ are reported relative to residual CHCl3 (δc = 77.00 ppm) or DMSO-d6 (δc = 39.52 ppm). 31P NMR spectra was recorded at 160 MHz on Bruker DPX-400, the chemical shifts δ are reported relative to H3PO4 (δ = 0 ppm) as internal standard. The multiplicity of signals is designated by the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd = doublet of doublet. Coupling constants J are reported in Hertz (Hz). High resolution mass spectra (HRMS) were obtained on an Agilent LC-MSD-Trap-XCT spectrometer with micromass MS software using electrospray ionisation (ESI). The UV/VIS Absorption spectra was recorded in DMF on a Perkin Elmer Lambda 35 Spectrometer. The Cyclic voltammetry (CV) was recorded in DMF by CHI650A. And the Luminescence Quenching Experiments were recorded using a F-4500 FL Spectrophotometer in CH3CN.

2. Experimental Procedure

6-Methylcoumarin (32.4mg, 0.2mmol), diphenylphosphine oxide (122.5 mg, 0.6 mmol), EY (6.5mg, 0.01 mmol) and benzoyl peroxide (wetted with ca. 25% H2O, 193.8mg, 0.6 mmol) were combined in CH3CN (2.0 mL) under Ar atmosphere. The mixture was stirred at room temperature under green LED lamp (3 W). After 24 hours, the reaction mixture was purified by chromatography on silica gel (elute: EtOAc/Petroleum ether 1/1-2/1, v/v) to give the desired product.

Page 3: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S3

3. Control Experiments

Scheme S1. Control experiments.

exp 1: Standard conditionsexp 2: Without EYexp 3: Without BPO

[BHT-2a+H]+ m/z = 421.2295 for exp1 [6+H]+m/z = 219.0573 for exp1[BHT-2a+H]+ m/z = 421.2301 for exp2 [6+H]+m/z = 219.0572 for exp2[BHT-2a+H]+ m/z = 421.2298 for exp3 [6+H]+m/z = 219.0573 for exp3

Ph PO

HPh

O O

PO Ph

PhBHT (3 equiv.)

3a, 0%2a1at-Bu

t-Bu

OH

5

POPh Ph

a)

3a, trace (for exp 1)33% (for exp 2)36% (for exp 3)

2aO O

PPhO

Ph

exp 1: 3a (5 mol %)exp 2: BPO (3 equiv.)exp 3: 3a (5 mol %), BPO (3 equiv.)+

O O

OPHPh

PhH

1a

3 W Green LED, CH3CN24 h, Ar

O O

H

+

b)

3b, trace4O O

PPhO

PhEY (5 mol %), BPO (3 equiv.)+

O O

OPHOPh

PhH

1b

3 W Green LED, CH3CN24 h, Ar

c)

4

+OPHOPh

Ph

WYJ-HMM-10.ESP

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5Chemical Shift (ppm)

17.992.162.014.032.074.00

7.68 7.67

7.66

7.64

7.51

7.50 7.45

7.45 7.43

7.42 7.26 6.73

3.59

3.55

1.28

0.00

WYJ-HMM-10.ESP

8.0 7.5 7.0 6.5Chemical Shift (ppm)

2.014.032.074.00

7.68

7.67

7.66

7.66

7.64

7.51

7.45 7.45

7.43

7.43

7.42

7.26

6.73 5

t-Bu

t-Bu

OHPO

PhPh

Figure S1. 1H NMR spectrum of compound 5

Page 4: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S4

º Ë´ Å_5671000FID.ESP

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30Chemical Shift (ppm)

0.00

30.1

134

.12

38.4

1

76.6

977.0

177

.32

126.

91128.

2813

1.34

131.

4313

1.62

131.

6513

5.65

152.

70

º Ë´ Å_5671000FID.ESP

136 135 134 133 132 131 130 129 128 127Chemical Shift (ppm)

126.

9112

6.96

128.

2812

8.39

131.

3413

1.43

131.

6213

1.65

135.

65

5

t-Bu

t-Bu

OHPO

PhPh

Figure S2. 13C NMR spectrum of compound 5

º Ë´ Å_5670001R.ESP

90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30Chemical Shift (ppm)

29.9

6

5

t-Bu

t-Bu

OHPO

PhPh

Figure S3. 31P NMR spectrum of compound 5

Page 5: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S5

Figure S4. HRMS spectrum of compound [BHT-2a+H]+ for exp 1

Figure S5. HRMS spectrum of compound [BHT-2a+H]+ for exp 2

Page 6: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S6

Figure S6. HRMS spectrum of compound [BHT-2a+H]+ for exp 3

At the same time, we got another substrate 4 in the control experiments a) (Scheme S1).

Figure S7. HRMS spectrum of compound [4+H]+ for exp 1

Page 7: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S7

Figure S8. HRMS spectrum of compound [4+H]+ for exp 2

Figure S9. HRMS spectrum of compound [4+H]+ for exp 3

Page 8: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S8

From the results, we guessed that the substrate 4 may be gotten by 2a with the water in Benzoyl peroxide. Next, we changed the source of 2a which is pure and doesn’t include the substrate 4 to do the experiments to confirm our guess. Scheme S3.

O O

Ph PO

HPh O O

PO Ph

Ph

3a

+

2a1a

BPO(3 eq.), CH3CN/H2O3 W Green LED, 24h

entry Solvent Yield (%)1 CH3CN (2 mL) 312 CH3CN/H2O (1.98 mL +0.02 mL) 583 CH3CN/H2O (1.96 mL +0.04 mL) 614 CH3CN/H2O (1.90 mL +0.10 mL) 645 CH3CN/H2O (1.87 mL +0.13 mL) 626 CH3CN/H2O (1.80 mL +0.20 mL) 57

Scheme S4. Photocatalytic activity of BPO

O O

Ph PO

HPh O O

PO Ph

Ph

3a

+

2a1a

BPO(3 eq.), CH3CN3 W LED, 24h

entry Light Source Yield (%)1 3 W blue LED (470 nm) 362 3 W green LED (530 nm) 333 3 W yellow-green LED (550 nm) 294 3 W orange LED (610 nm) 95 18 W CFL (compact fluorescent light bulb) trace

460 480 500 520 540 560 580 600 6200

5

10

15

20

25

30

35

40

(610 nm, 9%)

(550 nm, 29%)

(530 nm, 33%)

Orange Yellow-Green Green Blue

Yiel

d/%

Wavelength/nm

(470 nm, 36%)

Page 9: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S9

Figure S10. Photocatalytic activity of BPO

4. UV/VIS Absorption spectra, Cyclic Voltammetry Luminescence

Quenching Experiments and Data processing

1) UV/VIS Absorption spectraThe UV/VIS Absorption spectra was recorded in DMF of a 0.1 mM solution in 10

mm path length quartz cuvette on a Perkin Elmer Lambda 35 Spectrometer.

250 300 350 400 450 500 550 6000.0

0.5

1.0

1.5

2.0

2.5

Abso

rban

ce

Wavelength/nm

6-Methylcoumarin HP(O)Ph2

EY BPO All

Figure S11. Absorption spectra of 6-methyl coumarin 1a (λmax = 357 nm), diphenylphosphine oxide 2a (λmax = 278 nm), EY (λmax = 553 nm), BPO (λmax = 294 nm) in DMF(0.1 mM) and All in a mixture (Reaction ratio) of DMF.

Page 10: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S10

300 400 500 6000.0

0.2

0.4

0.6

0.8

1.0

Abso

rban

ce

Wavelength/nm

EY Na2-EY ARS EB

Figure S12. Absorption spectras of different catalysts: EY (λmax = 553 nm), Na2-EY (λmax = 556 nm), ARS (λmax = 503 nm), EB (λmax = 573 nm) in DMF (0.1 mM).

2) Cyclic VoltammetryCyclic voltammetry was measured under Ar balloon protection with conventional

three-electrode system (Reference electrode: Ag/AgCl, working electrode: Glassy

carbon, counter electrode: Pt wire, Supporting electrolyte: 0.1 M TBAPF6 in DMF) at 50 mV/sec of scan rate.

Page 11: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S11

-1.6 -1.4 -1.2 -1.0 -0.8 -0.6

-2.0 -1.5 -1.0 -0.5 0.0

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

-1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

-2.5 -2.0 -1.5 -1.0 -0.5 0.0

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

-2.0 -1.5 -1.0 -0.5 0.0

Ep/2(EY) = -1.351

Ep/2(BPO) = -1.182

Ep/2(EB) = -1.063

Ep/2(Na2-EY) = -1.359

Ep/2(ARS)=-0.767

Ep/2(6-MC)=-1.945

Ep/2(HP(O)Ph2) = -0.727

Potential vs Ag/AgCl(V)

Ep/2(3a)= -1.481

Figure S13. CV of Reaction reagents (1 mM in DMF)

Page 12: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S12

3) Luminescence Quenching ExperimentsEmission intensities were recorded using a F-4500 FL Spectrophotometer. First, all

EY solutions were excited at 520 nm and the emission intensity at 560 nm was observed. In a typical experiment, the emission spectrum of a 5×10-5 M solution of EY and different concentration of 6-methyl coumarin 1a, diphenylphosphine oxide 2a and BPO in anhydrous CH3CN in 10 mm path length quartz cuvette was collected. Next, the BPO solution was excited at 280 nm and the emission intensity at 310 nm was observed. In a typical experiment, the emission spectrum of a 5×10-5 M solution of BPO and different concentration (0.025~0.100 mM) of diphenylphosphine oxide 2a in anhydrous CH3CN in 10 mm path length quartz cuvette was collected.

540 560 580 600 620 6400

1000

2000

3000

4000

5000

6000

7000

Fluo

resc

ence

Inte

nsity

Wavelength/nm

EY(0.05 mM) EY, 6-MC(5 mM) EY, 6-MC(10 mM) EY, 6-MC(15 mM) EY, 6-MC(20 mM) EY, 6-MC(25 mM)

Figure S14. Luminescence quenching experiments of EY with 1a

540 560 580 600 620 6400

1000

2000

3000

4000

5000

6000

7000

Fluo

resc

ence

Inte

nsity

Wavelength/nm

EY(0.05 mM) EY, HP(O)Ph2(1.5 mM) EY, HP(O)Ph2(3.0 mM) EY, HP(O)Ph2(4.5 mM) EY, HP(O)Ph2(5.0 mM)

Figure S15. Luminescence quenching experiments of EY with 2a

Page 13: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S13

540 560 580 600 620 6400

1000

2000

3000

4000

5000

6000

7000

Fluo

resc

ence

Inte

nsity

Wavelength/nm

EY(0.05 mM) EY, BPO(2 mM) EY, BPO(3 mM) EY, BPO(5 mM) EY, BPO(8 mM)

Figure S16. Luminescence quenching experiments of EY with BPO

300 350 400 450 500

200

400

600

800

1000

Fluo

resc

ence

Inte

nsity

Wavelength/nm

BPO(0.05 mM) BPO, HP(O)Ph2(0.025 mM) BPO, HP(O)Ph2(0.050 mM) BPO, HP(O)Ph2(0.075 mM) BPO, HP(O)Ph2(0.100 mM)

Figure S17. Luminescence quenching experiments of BPO with 2a

Page 14: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S14

300 400 500 6000.0

0.2

0.4

0.6

0.8

1.0

Nom

alize

d in

tens

ity

Wavelength/nm

EY (UV spectrum) EY (Fluorescence Spectroscopy)

Figure S18. Nomalized experiments of UV spectrum and Fluorescence Spectroscopy about EY

4) Data processingWe could see the Reversible reduction waves of all the reagents. With these datas

in hand we calculated the excited redox potential, Eg by the IFO theory [S19].

-8

-7

-6

-5

-4

-3

Eg=3.30eV

3a-6.26

-2.96

Ener

gy le

vel/e

V Eg=2.47eV

Eg=2.16eV

Eg=1.66eV

Eg=3.47eV

Eg=4.46eVEg=4.22eV

-6.06

-3.59-3.22

-5.38

-4.57

-2.58-2.91

-4.00

-6.05

-7.86

-7.86

-3.64

-3.08

EY

BPO

HP(O)Ph2

6-MC

Na2-EY

EB

ARS

-5.32

Eg=2.24eV

Figure S19. The EHOMO, ELUMO and Eg of different reagents

Page 15: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S15

5. Characterization data

3-(diphenylphosphoryl)-6-methyl-2H-chromen-2-one (3a)1,2:

White solid (56.9 mg, 79%). mp. 235.5-237.1 °C. 1H NMR (400 MHz, O O

PPh

O

Ph

CDCl3): δ 8.85 (d, J = 14.1 Hz, 1H), 7.91 (dd, J = 12.7 Hz, J = 7.3 Hz, 4H), 7.58-7.44 (m, 8H), 7.24 (t, J = 4.2 Hz, 1H), 2.43 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 159.37 (d, J = 13.2 Hz), 154.00 (d, J = 4.4 Hz), 153.59, 135.27, 134.85, 132.43 (d, J = 2.9 Hz), 132.08 (d, J = 10.3 Hz), 131.19, 130.09, 129.08, 128.50 (d, J = 13.2 Hz), 121.31 (d, J = 102.7 Hz), 118.30 (d, J = 10.3 Hz), 116.53, 20.78. 31P NMR (162 MHz, CDCl3): δ 23.39. HRMS (ESI) calcd. for C22H18O3P (M+H)+: 361.0988, found: 361.0994.

3-(diphenylphosphoryl)-2H-chromen-2-one (3b)3,4:

White solid (51.9 mg, 75%). mp. 202.7-204.1 °C. 1H NMR (400 MHz, O O

PPh

O

Ph

CDCl3): δ 8.92 (d, J = 14.1 Hz, 1H), 7.92 (dd, J = 12.5 Hz, J = 7.7 Hz, 4H), 7.69-7.56 (m, 4H), 7.50-7.48 (m, 4H), 7.36-7.34 (m, 2H). 13C NMR (100 MHz, CDCl3): δ 159.15 (d, J = 13.1 Hz), 155.42, 154.02 (d, J = 4.6 Hz), 134.15, 132.48 (d, J = 2.3 Hz), 132.08 (d, J = 10.8 Hz), 131.06, 129.96, 128.53 (d, J = 12.3 Hz), 125.01, 121.62 (d, J = 102.5 Hz), 118.55 (d, J = 10.8 Hz), 116.83. 31P NMR (162 MHz, CDCl3): δ 23.23. HRMS (ESI) calcd. for C21H16O3P (M+H)+: 347.0832, found: 347.0839.

3-(diphenylphosphoryl)-2-oxo-2H-chromene-6-carbaldehyde (3c):

Yellow oil (44.9 mg, 60%). 1H NMR (400 MHz, CDCl3): δ 10.07 (s, O O

PPh

O

PhOHC

1H), 8.99 (d, J = 13.9 Hz, 1H), 8.18-8.16 (m, 2H), 7.91 (dd, J = 13.0 Hz, J = 7.2 Hz, 7H). 13C NMR (100 MHz, CDCl3): δ 189.62, 158.85, 153.22 (d, J = 4.6 Hz), 133.74, 133.18, 132.73 (d, J = 2.3 Hz), 132.07 (d, J = 10.8 Hz), 130.54, 129.44, 128.66 (d, J = 13.1 Hz), 124.04, 123.06, 118.72 (d, J = 10.0 Hz), 118.01. 31P NMR (162 MHz, CDCl3): δ 22.83. HRMS (ESI) calcd. for C22H16O4P (M+H)+: 375.0781, found: 375.0785.

7-(diethylamino)-3-(diphenylphosphoryl)-2H-chromen-2-one (3e):

Yellow solid (56.8 mg, 68%). mp. 170.2-174.5 °C. 1H NMR (400 O O

PPh

O

PhEt2N

MHz, CDCl3): δ 8.65 (d, J = 13.8 Hz, 1H), 7.90 (dd, J = 12.7 Hz, J = 7.2 Hz, 4H), 7.55-7.40 (m, 7H), 6.62-6.59 (m, 1H), 6.45 (s, 1H), 3.44 (q, J = 7.1 Hz, 4H), 1.22 (t, J = 7.1 Hz, 6H). 13C NMR

Page 16: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S16

(100 MHz, CDCl3): δ 160.52, 160.38, 158.54, 153.35 (d, J = 5.9 Hz), 152.49, 132.28, 132.06, 132.00, 131.95, 131.19, 130.80, 129.76, 128.31 (d, J = 12.5 Hz), 110.41 (d, J = 110.8 Hz), 109.36, 108.47 (d, J = 10.3 Hz), 96.79, 45.08, 12.42. 31P NMR (162 MHz, CDCl3): δ 24.72. HRMS (ESI) calcd. for C25H25NO3P (M+H)+: 418.1567, found: 418.1569.

3-(diphenylphosphoryl)-7-hydroxy-2H-chromen-2-one (3f):

Yellow solid (53.6 mg, 74%). mp. 294.6-295.6 °C. 1H NMR (400 O O

PPh

O

PhHO

MHz, DMSO-d6): δ 11.07 (s, 1H), 8.69 (d, J = 14.2 Hz, 1H), 7.84 (d, J = 8.9 Hz, 1H), 7.76 (dd, J = 12.1 Hz, J = 7.5 Hz, 4H), 7.64-7.61 (m, 2H), 7.55-7.54 (m, 4H), 6.86 (d, J = 6.9 Hz, 1H), 6.76 (s, 1H). 13C NMR (100 MHz, DMSO-d6): δ 164.23, 159.52 (d, J = 13.1 Hz), 157.71, 154.35 (d, J = 6.2 Hz), 132.59 (d, J = 2.3 Hz), 132.38, 132.14 (d, J = 108.7 Hz), 131.95 (d, J = 10.8 Hz), 129.00 (d, J = 12.3 Hz), 115.06 (d, J = 107.1 Hz), 114.39, 119.90 (d, J = 108.7 Hz), 111.66 (d, J = 10.8 Hz), 102.41. 31P NMR (162 MHz, DMSO-d6): δ 22.12. HRMS (ESI) calcd. for C21H16O4P (M+H)+: 363.0781, found: 363.0789.

3-(diphenylphosphoryl)-7-methoxy-2H-chromen-2-one (3g)2:

White solid (61.0 mg, 81%). mp. 172.4-174.1 °C. 1H NMR (400 O O

PPh

O

PhMeO

MHz, CDCl3): δ 8.82 (d, J = 13.8 Hz, 1H), 7.91 (dd, J = 12.6 Hz, J = 7.7 Hz, 4H), 7.58-7.55 (m, 3H), 7.50-7.46 (m, 4H), 6.91 (d, J = 8.6 Hz, 1H), 6.82 (s, 1H), 3.89 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 164.84, 159.51 (d, J = 14.6 Hz), 157.66, 153.77 (d, J = 5.4 Hz), 132.33 (d, J = 3.1 Hz), 132.03 (d, J = 10.0 Hz), 131.47, 130.63, 130.38, 128.46 (d, J = 13.1 Hz), 116.71 (d, J = 105.6 Hz), 113.46, 112.45 (d, J = 10.0 Hz), 100.54, 56.03. 31P NMR (162 MHz, CDCl3): δ 23.68. HRMS (ESI) calcd. for C22H18O4P (M+H)+: 377.0937, found: 377.0944.

3-(diphenylphosphoryl)-7-ethoxy-2H-chromen-2-one (3h)2:

White solid (55.2 mg, 71%). mp. 154.1-156.3 °C. 1H NMR (400 O O

PPh

O

PhEtO

MHz, CDCl3): δ 8.82 (d, J = 13.9 Hz, 1H), 7.90 (dd, J = 12.7 Hz, J = 7.3 Hz, 4H), 7.58-7.46 (m, 7H), 6.90-6.88 (m, 1H), 6.79 (s, 1H), 4.11 (q, J = 7.0 Hz, 2H), 1.46 (t, J = 7.0 Hz, 3H). 13C NMR (100 MHz, CDCl3): δ 164.26, 159.59 (d, J = 13.9 Hz), 157.68, 153.81 (d, J = 5.4 Hz), 132.31 (d, J = 2.3 Hz), 132.04 (d, J = 10.8 Hz), 131.49, 130.61, 130.39, 128.46 (d, J = 12.3 Hz), 116.45 (d, J = 105.6 Hz), 113.83, 112.32 (d, J = 10.8 Hz), 100.93, 64.53, 14.50. 31P NMR (162 MHz, CDCl3): δ 23.75. HRMS (ESI) calcd. for C23H20O4P (M+H)+: 391.1094, found: 391.1098.

3-(diphenylphosphoryl)-7-methyl-2H-chromen-2-one (3i)2:

Page 17: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S17

White solid (54.1 mg, 75%). mp. 190.0-191.7 °C. 1H NMR (400 MHz, O O

PPh

O

Ph

CDCl3): δ 8.87 (d, J = 14.1 Hz, 1H), 7.91 (dd, J = 12.7 Hz, J = 7.3 Hz, 4H), 7.58-7.46 (m, 7H), 7.17-7.15 (m, 2H), 2.48 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 159.41 (d, J = 13.8 Hz), 155.59, 153.93 (d, J = 4.6 Hz), 146.07, 132.40 (d, J = 2.3 Hz), 132.06 (d, J = 10.8 Hz), 131.27, 130.16, 129.15, 128.49 (d, J = 13.1 Hz), 126.27, 119.88 (d, J = 104.0 Hz) 116.92, 116.27 (d, J = 10.8 Hz). 31P NMR (162 MHz, CDCl3): δ 23.41. HRMS (ESI) calcd. for C22H18O3P (M+H)+: 361.0988, found: 361.0995.

7-(benzyloxy)-3-(diphenylphosphoryl)-2H-chromen-2-one (3j):

Yellow oil (67.0 mg, 74%). 1H NMR (400 MHz, CDCl3): δ 8.81 (d, J O O

PPh

O

PhBnO

= 13.9 Hz, 1H), 7.90 (dd, J = 12.7 Hz, J = 7.6 Hz, 4H), 7.57-7.54 (m, 3H), 7.49-7.34 (m, 9H), 6.98-6.96 (m, 1H), 6.87 (s, 1H), 5.14 (s, 2H). 13C NMR (100 MHz, CDCl3): δ 163.83, 159.50 (d, J = 13.9 Hz), 157.55, 153.75 (d, J = 4.6 Hz), 135.34, 132.35 (d, J = 3.1 Hz), 132.00 (d, J = 10.8 Hz), 131.42, 130.68, 130.32, 128.85, 128.48 (d, J = 13.1 Hz), 127.52, 116.85 (d, J = 104.8 Hz), 114.12, 112.63 (d, J = 10.0 Hz), 101.56, 70.73. 31P NMR (162 MHz, CDCl3): δ 23.68. HRMS (ESI) calcd. for C28H22O4P (M+H)+: 453.1250, found: 453.1259.

3-(diphenylphosphoryl)-6,7-dimethoxy-2H-chromen-2-one (3k):

Yellow solid (69.0 mg, 85%). mp. 264.5-267.0 °C. 1H NMR (400 O O

PPh

O

PhMeO

MeO

MHz, CDCl3): δ 8.81 (d, J = 13.9 Hz, 1H), 7.91 (dd, J = 12.7 Hz, J = 7.2 Hz, 4H), 7.58-7.46 (m, 6H), 7.00 (s, 1H), 6.84 (s, 1H), 3.95 (d, J = 13.7 Hz, 6H). 13C NMR (100 MHz, CDCl3): δ 159.67 (d, J = 13.9 Hz), 155.05, 153. 55 (d, J = 5.1 Hz), 152.20, 146.78, 132.31 (d, J = 2.9 Hz), 132.04 (d, J = 11.0 Hz), 131.51, 130.42, 128.45 (d, J = 12.5 Hz), 117.98 (d, J = 105.6 Hz), 111.45 (d, J = 11.0 Hz), 108.64, 99.57, 56.53 (d, J = 24.2 Hz). 31P NMR (162 MHz, CDCl3): δ 23.70. HRMS (ESI) calcd. for C23H20O5P (M+H)+: 407.1043, found: 407.1048.

3-(diphenylphosphoryl)-6-methoxy-4-methyl-2H-chromen-2-one (3l):

White solid (30.3 mg, 39%). mp. 213.0-215.9 °C. 1H NMR (400 O O

PPh

O

PhMeO

MHz, CDCl3): δ 7.87 (dd, J = 12.7 Hz, J = 7.3 Hz, 4H), 7.56-7.45 (m, 6H), 7.25-7.17 (m, 3H), 3.89 (s, 3H), 3.18 (d, J = 1.1 Hz, 3H). 13C NMR (100 MHz, CDCl3): δ 165.10 (d, J = 5.9 Hz), 159.76 (d, J = 14.7 Hz), 156.17, 148.32, 133.23, 132.13, 131.90 (d, J = 2.9 Hz), 131.72 (d, J = 10.3 Hz), 121.24, 121.13 (d, J = 10.3 Hz), 118.01, 117.94 (d, J = 103.4 Hz), 107.98, 55.96, 15.78 (d, J = 3.7 Hz). 31P NMR (162 MHz, CDCl3): δ 30.28. HRMS (ESI) calcd. for C23H20O4P (M+H)+:

Page 18: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S18

391.1094, found: 391.1094.

3-(di-p-tolylphosphoryl)-6-methyl-2H-chromen-2-one (3m):

Yellow oil (44.2 mg, 57%). 1H NMR (400 MHz, CDCl3): δ 8.83 O O

P(p-MeC6H4)2

O

(d, J = 14.1 Hz, 1H), 7.78 (dd, J = 12.6 Hz, J = 8.0 Hz, 4H), 7.43-7.41 (m, 2H), 7.29-7.27 (m, 4H), 7.23 (d, J = 9.1 Hz, 1H), 2.42 (s, 3H), 2.40 (s, 6H). 13C NMR (100 MHz, CDCl3): δ 159.39 (d, J = 13.9 Hz), 153.64 (d, J = 4.6 Hz), 153.53, 142.91 (d, J = 3.1 Hz), 135.10, 134.74, 132.08 (d, J = 10.8 Hz), 129.24 (d, J = 13.1 Hz), 129.03, 128.03, 126.91, 121.20 (d, J = 102.5 Hz), 118.34 (d, J = 10.2 Hz), 116.48, 21.70, 20.79. 31P NMR (162 MHz, CDCl3): δ 23.50. HRMS (ESI) calcd. for C24H22O3P (M+H)+: 389.1301, found: 389.1306.

3-(di-p-tolylphosphoryl)-7-methoxy-2H-chromen-2-one (3n):

White solid (64.7 mg, 84%). mp. 157.7-160.3 °C. 1H NMR OMeO O

P(p-MeC6H4)2

O

(400 MHz, CDCl3): δ 8.80 (d, J = 13.9 Hz, 1H), 7.78 (dd, J = 12.6 Hz, J = 8.0 Hz, 4H), 7.55 (d, J = 8.7 Hz, 1H), 7.28-7.27 (m, 4H), 6.90 (dd, J = 8.6 Hz, J = 2.2 Hz, 1H), 6.80 (s, 1H), 3.88 (s, 3H), 2.40 (s, 6H). 13C NMR (100 MHz, CDCl3): δ 164.70, 159.54 (d, J = 13.9 Hz), 157.60, 153.45 (d, J = 5.1 Hz), 142.79 (d, J = 2.2 Hz), 132.05 (d, J = 11.0 Hz), 130.58, 129.20 (d, J = 13.2 Hz), 128.31, 127.19, 117.17 (d, J = 105.6 Hz), 113.36, 112.51 (d, J = 10.3 Hz), 100.50, 56.00, 21.68. 31P NMR (162 MHz, CDCl3): δ 23.78. HRMS (ESI) calcd. for C24H22O4P (M+H)+: 405.1250, found: 405.1250.

3-(di-p-tolylphosphoryl)-6,7-dimethoxy-2H-chromen-2-one (3o):

White powder (78.1 mg, 90%). mp. 243.1-245.3 °C. 1H OMeO O

P(p-MeC6H4)2

OMeO

NMR (400 MHz, CDCl3): δ 8.78 (d, J = 13.9 Hz, 1H), 7.78 (dd, J = 12.5 Hz, J = 8.1 Hz, 4H), 7.28-7.27 (m, 4H), 6.99 (s, 1H), 6.83 (s, 1H), 3.95 (d, J = 13.8 Hz, 6H), 2.40 (s, 6H). 13C NMR (100 MHz, CDCl3): δ 159.68 (d, J = 13.9 Hz), 154.90, 153.23 (d, J = 5.4 Hz), 152.11, 146.72, 142.71 (d, J = 3.1 Hz), 132.05 (d, J = 11.6 Hz), 129.18 (d, J = 13.1 Hz), 128.36, 127.25, 117.47 (d, J = 104.8 Hz), 111.49 (d, J = 10.8 Hz), 108.64, 99.55, 56.51 (d, J = 22.4 Hz), 21.68. 31P NMR (162 MHz, CDCl3): δ 23.78. HRMS (ESI) calcd. for C25H24O5P (M+H)+: 435.1356, found: 435.1365.

3-(bis(3,5-dimethylphenyl)phosphoryl)-6-methyl-2H-chromen-2-one (3p):

Yellow oil (32.5 mg, 39%). 1H NMR (400 MHz, O O

P(m,m'-dimethyl-C6H3)2

O

Page 19: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S19

CDCl3): δ 8.80 (d, J = 13.9 Hz, 1H), 7.50 (d, J = 13.1 Hz, 4H), 7.42 (s, 2H), 7.25-7.23 (m, 1H), 7.18 (s, 2H), 2.43 (s, 3H), 2.33 (s, 12H). 13C NMR (100 MHz, CDCl3): δ 159.37 (d, J = 13.2 Hz), 153.68 (d, J = 5.1 Hz), 153.54, 138.19 (d, J = 13.2 Hz), 135.07, 134.74, 134.20 (d, J = 2.9 Hz), 130.94, 129.85, 129.49 (d, J = 11.0 Hz), 129.02, 121.73 (d, J = 101.2 Hz), 118.39 (d, J = 10.3 Hz), 116.50, 21.36, 20.78. 31P NMR (162 MHz, CDCl3): δ 24.13. HRMS (ESI) calcd. for C26H26O3P (M+H)+: 417.1614, found: 417.1620.

3-(diphenylphosphoryl)-7-hydroxyquinolin-2(1H)-one (3q):

White powder (61.9 mg, 86%). mp. 297.3-298.9 °C. 1H NMR (400 NH

O

PPh

O

PhHO

MHz, DMSO-d6): δ 12.90 (s, 1H), 11.78 (s, 1H), 10.61 (s, 1H), 8.56 (d, J = 14.3 Hz, 1H), 7.96 (d, J = 6.4 Hz, 1H), 7.78-7.73 (m, 4H), 7.58 (d, J = 5.6 Hz, 2H), 7.51 (s, 4H), 6.74 (s, 1H). 13C NMR (100 MHz, DMSO-d6): δ 167.79, 162.39, 161.36 (d, J = 11.6 Hz), 149.78 (d, J = 6.2 Hz), 143.45, 133.90, 133.35, 132.83, 132.11 (d, J = 2.3 Hz), 131.88 (d, J = 10.8 Hz), 131.86, 131.19, 129.73, 129.05, 128.71 (d, J = 12.3 Hz), 119.90 (d, J = 108.7 Hz), 113.14, 112.56 (d, J = 12.3 Hz), 99.99. 31P NMR (162 MHz, DMSO-d6): δ 23.10. HRMS (ESI) calcd. for C21H17NO3P (M+H)+: 362.0941, found: 362.0946.

References:1. J.-W., Yuan, Y.-Z., Li, L.-R., Yang, W.-P., Mai, P., Mao, Y.-M., Xiao, L.-B., Qu,

Tetrahedron, 2015, 71, 8178.2. I., Kim, M., Min, D., Kang, K., Kim, S.-W., Hong, Org. Lett., 2017, 19, 1394.3. P., Bouyssou, J., ChenauIt, Tetrahedron Letters, 1991, 32, 5341.4. L.-R., Yang, X.-C., Zhang, J.-W., Yuan, Y.-M., Xiao, P., Mao, Journal of Organometallic

Chemistry, 2016, 818, 179.

Page 20: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S20

6. 1H, 13C and 31P NMR spectra

R-264-H-5740-16.1017_000001r

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0Chemical Shift (ppm)

3.001.228.134.001.00

0.00

2.43

7.237.

257.

277.

447.

487.

497.

557.

58

7.907.91

7.93

8.83

8.87

R-264-H-5740-16.1017_000001r

9.5 9.0 8.5 8.0 7.5 7.0Chemical Shift (ppm)

1.228.134.001.00

7.237.

257.

27

7.44

7.487.48

7.49

7.56

7.58

7.887.907.91

7.93

8.83

8.87 3a

O O

PPh

O

Ph

Figure S20. 1H NMR spectrum of compound 3aWYJ-HMM-LQR_5742001R.ESP

192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

20.7

8

76.7

577

.07

77.3

9

116.

5311

8.25

118.

35

121.

8212

8.4312

8.56

129.

0813

1.19

132.

02132.

1213

2.41

135.

27

153.

5915

3.98

154.

0215

9.30

159.

43

3aO O

PPh

O

Ph

Figure S21. 13C NMR spectrum of compound 3a

Page 21: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S21

R-264-P-5741-16.10.17_000001r

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20Chemical Shift (ppm)

23.3

9

3aO O

PPh

O

Ph

Figure S22. 31P NMR spectrum of compound 3aLQR-4 1770_000001R.ESP

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0Chemical Shift (ppm)

2.074.084.224.141.00

8.94

8.90

7.94

7.92

7.91

7.69 7.

677.

577.

507.

497.

487.

367.

357.

347.

27

0.00

LQR-4 1770_000001R.ESP

9.0 8.5 8.0 7.5 7.0Chemical Shift (ppm)

2.074.084.224.141.00

8.94

8.90

7.94

7.92

7.91

7.89

7.69 7.

67

7.63

7.57

7.50

7.49

7.48

7.36

7.35

7.34

7.27

3bO O

PPh

O

Ph

Figure S23. 1H NMR spectrum of compound 3b

Page 22: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S22

º Ë´ Å_7001001R.ESP

200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

76.7

477.0

577

.37

116.

8311

8.49

118.

60125.

0112

8.47

128.

5912

9.96

132.

0213

2.13

132.

4913

4.15

154.

0415

5.42

159.

0815

9.21

º Ë´ Å_7001001R.ESP

165 160 155 150 145 140 135 130 125 120 115 110Chemical Shift (ppm)

116.

8311

8.49

118.

6012

1.09

122.

13

125.

01

128.

4712

8.59

129.

4812

9.96

132.

0213

2.13

132.

4913

4.15

153.

9915

4.04

155.

42

159.

0815

9.21

3bO O

PPh

O

Ph

Figure S24. 13C NMR spectrum of compound 3b

º Ë´ Å_6731001R.ESP

85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25Chemical Shift (ppm)

23.2

3

3bO O

PPh

O

Ph

Figure S25. 31P NMR spectrum of compound 3b

Page 23: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S23

17-hmm-1.esp

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5Chemical Shift (ppm)

7.054.001.920.971.00

TMS

10.0

7

9.01

8.97

8.18

7.93 7.91

7.90

7.52

7.50

7.48

7.26

0.00

17-hmm-1.esp

10.0 9.5 9.0 8.5 8.0 7.5 7.0Chemical Shift (ppm)

7.054.001.920.971.00

10.0

7

9.01

8.97

8.18

8.16

7.93 7.

917.

907.

88

7.61

7.58

7.53 7.

527.

507.

48

7.26

3cO O

PPh

O

PhOHC

Figure S26. 1H NMR spectrum of compound 3cº Ë´ Å_7581001R.ESP

200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

76.7

377

.04

77.3

7

118.

01128.

5912

8.72

132.

0213

2.12

132.

7413

3.18

133.

74

153.

20

158.

85

189.

62

º Ë´ Å_7581001R.ESP

160 155 150 145 140 135 130 125 120Chemical Shift (ppm)

118.

0111

8.67

118.

77

128.

5912

8.72

129.

4413

0.54

132.

0213

2.12

132.

74

133.

74

153.

2015

3.24

158.

85

3cO O

PPh

O

PhOHC

Figure S27. 13C NMR spectrum of compound 3c

Page 24: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S24

º Ë´ Å_8862001R.ESP

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15Chemical Shift (ppm)

22.8

3

3cO O

PPh

O

PhOHC

Figure S28. 31P NMR spectrum of compound 3c

º Ë´ Å_4180001R.ESP

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0Chemical Shift (ppm)

6.044.061.060.997.334.191.01

TMS

1.20

1.22

1.24

3.41

3.43

3.45

3.466.45

6.45

6.59

6.60

6.61

6.62

7.26

7.44

7.45

7.46

7.47

7.537.87

7.89

7.90

7.92

8.63

8.67

º Ë´ Å_4180001R.ESP

7.5 7.0 6.5Chemical Shift (ppm)

1.060.997.334.19

6.45

6.45

6.59

6.60

6.61

6.62

7.26

7.40

7.427.

447.

457.45

7.46

7.47

7.51

7.53

7.537.877.87

7.89

7.907.90

7.92

3eO O

PPh

O

PhEt2N

Figure S29. 1H NMR spectrum of compound 3e

Page 25: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S25

º Ë´ Å_8202001R.ESP

192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

0.03

12.4

2

45.0

8

76.7

377

.05

77.3

7

96.7

9

108.

4210

8.52

109.

3610

9.86

110.

96

128.

2512

8.37

130.

8013

1.95

132.

0613

2.28

152.

4915

3.32

158.

5416

0.38

160.

52

º Ë´ Å_8202001R.ESP

168 160 152 144 136 128 120 112 104 96Chemical Shift (ppm)

96.7

9

108.

4210

8.5210

9.36

109.

8611

0.96

128.

2512

8.37

130.

8013

1.95

132.

0613

2.28

152.

4915

3.32

153.

3815

8.54

160.

3816

0.52

3eO O

PPh

O

PhEt2N

Figure S30. 13C NMR spectrum of compound 3e

º Ë´ Å_8852001R.ESP

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25Chemical Shift (ppm)

24.7

2

3eO O

PPh

O

PhEt2N

Figure S31. 31P NMR spectrum of compound 3e

Page 26: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S26

º Ë´ Å_8720001r

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5Chemical Shift (ppm)

0.950.964.092.143.971.101.001.00

DMSO

Water

11.0

7

8.71

8.67 7.

85 7.83

7.78

7.76

7.75

7.62

7.54

7.54

6.87

6.76

0.00

º Ë´ Å_8720001r

8.5 8.0 7.5 7.0Chemical Shift (ppm)

0.950.964.092.143.971.101.00

8.71

8.67 7.85 7.83

7.78

7.76

7.75

7.73

7.64

7.62

7.55

7.54

7.54

6.87

6.85

6.76 3f

O O

PPh

O

Ph

OH

Figure S32. 1H NMR spectrum of compound 3f

WYJ-HMM-12.ESP

200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

39.3

339

.54

39.7

539

.96

40.1

640

.38

40.5

9

102.

41

111.

6011

1.71

114.

3911

4.52

115.

59128.

9412

9.06

131.

8913

2.00

132.

3813

2.60

132.

68

154.

3215

4.38

157.

7115

9.45

159.

5816

4.23

WYJ-HMM-12.ESP

165 160 155 150 145 140 135 130 125 120 115 110 105 100Chemical Shift (ppm)

102.

41

111.

6011

1.7111

4.39

114.

5211

5.59

128.

9412

9.06

131.

6013

1.89

132.

0013

2.60

132.

68

154.

3215

4.38

157.

7115

9.45

159.

58164.

23

3fO O

PPh

O

Ph

OH

Figure S33. 13C NMR spectrum of compound 3f

Page 27: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S27

º Ë´ Å_8721001R.ESP

85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20Chemical Shift (ppm)

22.1

2

3fO O

PPh

O

Ph

OH

Figure S34. 31P NMR spectrum of compound 3f

R-280-7310_000001r

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0Chemical Shift (ppm)

3.000.991.027.174.110.99

8.84

8.80

7.93 7.

917.

907.

88 7.56

7.48

7.46

7.27

6.92

6.82

3.89

0.00

R-280-7310_000001r

9.0 8.5 8.0 7.5 7.0Chemical Shift (ppm)

0.991.027.174.110.99

8.84

8.80

7.93 7.

917.

907.

88

7.58

7.56

7.55

7.48

7.46

7.27

6.92

6.90

6.82

3gO O

PPh

O

Ph

MeO

Figure S35. 1H NMR spectrum of compound 3g

Page 28: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S28

º Ë´ Å_7471001R.ESP

192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

56.0

3

76.7

877

.09

77.4

1

100.

54

112.

4011

2.50

113.

4611

6.19

117.

23

128.

39128.

5213

0.63

131.

9813

2.08

132.

34

153.

7415

3.79

157.

6615

9.44

159.

5816

4.84

3gO O

PPh

O

Ph

MeO

Figure S36. 13C NMR spectrum of compound 3g

º Ë´ Å_6751001R.ESP

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20Chemical Shift (ppm)

23.6

8

3gO O

PPh

O

Ph

MeO

Figure S37. 31P NMR spectrum of compound 3g

Page 29: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S29

17-HMM-1.ESP

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0Chemical Shift (ppm)

2.992.000.940.956.743.840.96

8.83

8.80

7.92 7.

917.

897.

877.

587.

56 7.54 7.

487.

467.

27

6.90

6.79

4.14

4.12

4.10

4.09

1.48

1.46

1.45

0.07

0.00

17-HMM-1.ESP

9.0 8.5 8.0 7.5 7.0 6.5Chemical Shift (ppm)

0.940.956.743.840.96

8.83

8.80

7.92

7.91

7.89

7.87

7.58

7.56 7.54

7.48

7.47

7.46

7.27

6.90

6.88

6.79

3hO O

PPh

O

Ph

EtO

Figure S38. 1H NMR spectrum of compound 3h

º Ë´ Å_7561001R.ESP

192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

14.5

0

64.5

3

76.7

577

.07

77.3

8

100.

93

112.

2611

2.37

113.

8311

5.92

116.

97

128.

3912

8.52

130.

6113

1.98

132.

0913

2.30

153.

7815

7.68

159.

5215

9.6616

4.26

3hO O

PPh

O

Ph

EtO

Figure S39. 13C NMR spectrum of compound 3h

Page 30: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S30

º Ë´ Å_6761001R.ESP

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20Chemical Shift (ppm)

23.7

5

3hO O

PPh

O

Ph

EtO

Figure S40. 31P NMR spectrum of compound 3h

R-279-7300_000001R.ESP

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5Chemical Shift (ppm)

3.002.017.094.001.01

0.00

2.48

7.15

7.177.

467.

487.48

7.55

7.58

7.88

7.907.91

7.93

8.85

8.88

3iO O

PPh

O

Ph

Figure S41. 1H NMR spectrum of compound 3i

Page 31: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S31

º Ë´ Å_7011001R.ESP

192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

22.1

3

76.7

677

.08

77.4

0

116.

2211

6.32

116.

92

120.

39

126.

2712

8.42

128.

5612

9.15

131.

2713

2.00

132.

1113

2.41

146.

07

153.

9515

5.59

159.

3415

9.48

º Ë´ Å_7011001R.ESP

160 155 150 145 140 135 130 125 120 115Chemical Shift (ppm)

116.

2211

6.32

116.

92

119.

3612

0.39

126.

2712

8.42

128.

5612

9.15

130.

1613

1.27

132.

0013

2.11

132.

41

146.

07

153.

9015

3.95

155.

59

159.

3415

9.48

3iO O

PPh

O

Ph

Figure S42. 13C NMR spectrum of compound 3i

º Ë´ Å_7301001R.ESP

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20Chemical Shift (ppm)

23.4

1

3iO O

PPh

O

Ph

Figure S43. 31P NMR spectrum of compound 3i

Page 32: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S32

º Ë´ Å_7480001r

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5Chemical Shift (ppm)

2.000.991.018.973.044.080.99

8.83

8.79

7.92 7.

907.

897.

877.

55 7.47

7.41

7.39

7.38

7.37

7.34

6.98

6.87

5.14

0.00

º Ë´ Å_7480001r

9.0 8.5 8.0 7.5 7.0 6.5Chemical Shift (ppm)

0.991.018.973.044.080.99

8.83

8.79

7.92 7.

907.

897.

87

7.57

7.55

7.54

7.47

7.41

7.39

7.38

7.37

7.36

7.35

7.26 6.

986.

966.

87

3jO O

PPh

O

Ph

BnO

Figure S44. 1H NMR spectrum of compound 3j

º Ë´ Å_7481001R.ESP

200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

70.7

3

76.7

777.0

877

.40

101.

56

112.

5811

2.68

114.

1211

6.33

117.

37

127.

5212

8.4112

8.54

128.

8513

0.68

131.

9913

2.09

132.

3613

5.34

153.

7715

7.55

159.

57163.

83

º Ë´ Å_7481001R.ESP

165 160 155 150 145 140 135 130 125 120 115 110 105 100Chemical Shift (ppm)

101.

56

112.

5811

2.68

114.

1211

6.33

117.

37

127.

5212

8.4112

8.54

128.

8513

0.32

130.

6813

1.99

132.

0913

2.36

135.

34

153.

7215

3.77

157.

5515

9.43

159.

57

163.

83

3jO O

PPh

O

Ph

BnO

Figure S45. 13C NMR spectrum of compound 3j

Page 33: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S33

P_8961001R.ESP

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20Chemical Shift (ppm)

23.6

8

3jO O

PPh

O

Ph

BnO

Figure S46. 31P NMR spectrum of compound 3j

º Ë´ Å_8910001r

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5Chemical Shift (ppm)

6.081.011.016.043.991.00

8.82

8.79

7.93

7.91

7.90

7.58

7.56

7.50

7.49

7.48

7.48

7.47

7.46

7.27

7.00

6.84

3.96 3.93

0.00

º Ë´ Å_8910001r

9.5 9.0 8.5 8.0 7.5 7.0 6.5Chemical Shift (ppm)

1.011.016.043.991.00

8.82

8.79

7.93 7.

917.

907.

88

7.58

7.54

7.50 7.

497.

487.

487.

477.

46

7.27

7.00

6.84

3kO O

PPh

O

Ph

MeO

MeO

Figure S47. 1H NMR spectrum of compound 3k

Page 34: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S34

º Ë´ Å_8912001R.ESP

200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

56.4

156

.65

76.7

677

.08

77.3

9

99.5

7

108.

6411

1.39

111.

5011

6.45

117.

50

128.

3912

8.51

130.

4213

1.98

132.

0913

2.32

146.

7815

2.20

153.

5215

3.57

155.

0515

9.59

159.

73

º Ë´ Å_8912001R.ESP

160 155 150 145 140 135 130 125 120 115 110 105 100Chemical Shift (ppm)

99.5

7

108.

64

111.

3911

1.50

116.

4511

7.50

128.

3912

8.51

130.

4213

1.51

131.

9813

2.09

132.

32

146.

78

152.

2015

3.52

153.

5715

5.05

159.

5915

9.73

3kO O

PPh

O

Ph

MeO

MeO

Figure S48. 13C NMR spectrum of compound 3k

º Ë´ Å_8911001R.ESP

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20Chemical Shift (ppm)

23.7

0

3kO O

PPh

O

Ph

MeO

MeO

Figure S49. 31P NMR spectrum of compound 3k

Page 35: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S35

º Ë´ Å_8050001r

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5Chemical Shift (ppm)

2.933.003.996.133.96

TMS

7.90 7.

887.

87

7.56

7.54

7.48

7.47

7.46

7.45

7.26

7.24

7.22

7.20

7.20

3.89

3.18

º Ë´ Å_8050001r

8.0 7.5 7.0Chemical Shift (ppm)

3.996.133.96

7.90 7.

887.

877.

85

7.56

7.54 7.

49 7.48

7.47

7.46

7.45

7.26

7.24

7.22

7.20

7.20

7.18 3l

O O

PPh

O

Ph

MeO

Figure S50. 1H NMR spectrum of compound 3l

º Ë´ Å_8054001R.ESP

200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

15.7

615

.8055

.96

76.7

477

.07

77.3

9

107.

98

117.

4211

8.01

121.

1812

1.24

128.

2612

8.39

131.

6713

1.77

131.

8813

1.91

132.

1313

3.23

148.

32

156.

1715

9.68

159.

83

165.

13

º Ë´ Å_8054001R.ESP

165 160 155 150 145 140 135 130 125 120 115 110Chemical Shift (ppm)

107.

98

117.

4211

8.01

121.

0812

1.18

121.

24

128.

2612

8.39

128.

47

131.

6713

1.77

131.

9113

2.13

133.

23

148.

32

156.

17

159.

6815

9.83

165.

0716

5.13

3lO O

PPh

O

Ph

MeO

Figure S51. 13C NMR spectrum of compound 3l

Page 36: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S36

º Ë´ Å_8052001R.ESP

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20Chemical Shift (ppm)

30.2

8

3lO O

PPh

O

Ph

MeO

Figure S52. 31P NMR spectrum of compound 3l

º Ë´ Å_7490001R.ESP

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0Chemical Shift (ppm)

5.853.030.983.942.034.021.00

2.40

2.42

7.227.

247.

277.

287.

417.

437.

757.777.78

7.80

8.81

8.84

º Ë´ Å_7490001R.ESP

9.0 8.5 8.0 7.5 7.0Chemical Shift (ppm)

0.983.942.034.021.00

7.22

7.24

7.277.28

7.29

7.41

7.43

7.757.

777.78

7.80

8.81

8.84

3mO O

P(p-MeC6H4)2

O

Figure S53. 1H NMR spectrum of compound 3m

Page 37: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S37

º Ë´ Å_7492001R.ESP

200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

20.7

921

.70

76.7

877

.11

77.4

2

116.

4811

8.39

121.

1912

2.2112

6.91

128.

0312

9.03

129.

17129.

3013

2.02

132.

1313

4.74

135.

10

142.

92

153.

5315

3.66

159.

3215

9.45

3mO O

P(p-MeC6H4)2

O

º Ë´ Å_7492001R.ESP

160 155 150 145 140 135 130 125 120 115Chemical Shift (ppm)

116.

4811

8.29

118.

39

121.

1912

2.2112

6.91

128.

0312

9.03

129.

17129.

30

132.

0213

2.13

134.

7413

5.10

142.

8914

2.92

153.

5315

3.62

153.

66

159.

3215

9.45

Figure S54. 13C NMR spectrum of compound 3m

º Ë´ Å_7491001R.ESP

85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25Chemical Shift (ppm)

23.5

0

3mO O

P(p-MeC6H4)2

O

Figure S55. 31P NMR spectrum of compound 3m

Page 38: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S38

º Ë´ Å_8070001r

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5Chemical Shift (ppm)

6.073.010.961.024.101.024.051.00

8.81

8.78

7.80 7.

787.

777.

757.

567.

54

7.28

7.27

6.91

6.90

6.80

3.88

2.40

0.00

º Ë´ Å_8070001r

9.0 8.5 8.0 7.5 7.0 6.5Chemical Shift (ppm)

0.961.024.101.024.051.00

8.81

8.78

7.80 7.

787.

777.

757.

56 7.54

7.28

7.27

6.91

6.90

6.80

3nOMeO O

P(p-MeC6H4)2

O

Figure S56. 1H NMR spectrum of compound 3n

º Ë´ Å_8071001R.ESP

192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

21.6

8

56.0

0

76.7

677

.08

77.3

9

100.

50

112.

4611

2.56

113.

3611

6.64

117.

69

127.

1912

8.31

129.

1312

9.26

130.

5813

1.99

132.

10

142.

80

153.

47

157.

6015

9.47

159.

61164.

70

º Ë´ Å_8071001R.ESP

165 160 155 150 145 140 135 130 125 120 115 110 105 100Chemical Shift (ppm)

100.

50

112.

4611

2.56

113.

36

116.

6411

7.6912

7.19

128.

3112

9.13

129.

2613

0.58

131.

9913

2.10

142.

80

153.

4215

3.47

157.

6015

9.47

159.

61

164.

70

3nOMeO O

P(p-MeC6H4)2

O

Figure S57. 13C NMR spectrum of compound 3n

Page 39: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S39

º Ë´ Å_8072001R.ESP

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20Chemical Shift (ppm)

23.7

8

3nOMeO O

P(p-MeC6H4)2

O

Figure S58. 31P NMR spectrum of compound 3n

º Ë´ Å_8190001R.ESP

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0Chemical Shift (ppm)

6.176.031.021.073.994.081.00

0.00

2.40

3.93

3.96

6.83

6.99

7.27

7.28

7.75

7.777.78

7.80

8.76

8.80

º Ë´ Å_8190001R.ESP

8.5 8.0 7.5 7.0Chemical Shift (ppm)

1.021.073.994.081.00

6.83

6.99

7.27

7.28

7.757.777.78

7.80

8.76

8.80

3oOMeO O

P(p-MeC6H4)2

O

MeO

Figure S59. 1H NMR spectrum of compound 3o

Page 40: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S40

º Ë´ Å_8192001R.ESP

192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

21.6

8

56.3

956

.62

76.7

577

.06

77.3

8

99.5

5

108.

6411

1.44

111.

5411

6.94

117.

99

127.

2512

8.36

129.

1112

9.24

131.

9913

2.10

142.

7814

6.72

152.

1115

3.20

153.

2515

4.90

159.

6115

9.75

º Ë´ Å_8192001R.ESP

160 155 150 145 140 135 130 125 120 115 110 105 100Chemical Shift (ppm)

99.5

5

108.

6411

1.44

111.

54

116.

9411

7.99

127.

2512

8.36

129.

1112

9.24131.

9913

2.10

142.

7514

2.78

146.

72

152.

1115

3.20

153.

2515

4.90

159.

6115

9.75

3oOMeO O

P(p-MeC6H4)2

O

MeO

Figure S60. 13C NMR spectrum of compound 3o

º Ë´ Å_8191001R.ESP

85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20Chemical Shift (ppm)

23.7

8

3oOMeO O

P(p-MeC6H4)2

O

MeO

Figure S61. 31P NMR spectrum of compound 3o

Page 41: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S41

º Ë´ Å_9110001r

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5Chemical Shift (ppm)

12.023.152.091.082.024.051.01

8.81

8.78

7.51

7.48

7.42

7.25

7.18

2.43

2.33

º Ë´ Å_9110001r

8.5 8.0 7.5 7.0Chemical Shift (ppm)

2.091.082.024.051.01

8.81

8.78

7.51

7.48

7.42

7.27 7.

25

7.18

3pO O

P(m,m'-dimethyl-C6H3)2

O

Figure S62. 1H NMR spectrum of compound 3p

º Ë´ Å_9111001r

192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

159.

4315

9.30

153.

7015

3.54

138.

2513

8.12

137.

8513

5.07

134.

2313

4.20

129.

8512

9.54

129.

4312

9.02

122.

23

118.

4411

8.33

116.

50

77.4

0 77.0

876

.76

21.3

620

.78

º Ë´ Å_9111001r

170 165 160 155 150 145 140 135 130 125 120 115 110Chemical Shift (ppm)

159.

4315

9.30 15

3.70

153.

6515

3.54

138.

2513

8.12

137.

8513

5.07 13

4.23

134.

2013

0.94

129.

8512

9.54

129.

4312

9.02

122.

2312

1.23

118.

4411

8.33

116.

50

3pO O

P(m,m'-dimethyl-C6H3)2

O

Figure S63. 13C NMR spectrum of compound 3p

Page 42: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S42

º Ë´ Å_8231001R.ESP

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20Chemical Shift (ppm)

24.1

3

3pO O

P(m,m'-dimethyl-C6H3)2

O

Figure S64. 31P NMR spectrum of compound 3p

× ÀÃæ_7700001R.ESP

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Chemical Shift (ppm)

1.284.382.114.131.251.001.011.000.68

DMSO-d6

-0.0

1

2.50

3.36

6.73

7.50

7.757.

787.

94

8.53

8.56

10.6

0

11.7

7

12.8

9

3qNH

O

PPh

O

Ph

OH

Figure S65. 1H NMR spectrum of compound 3q

Page 43: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S43

º Ë´ Å_7703001R.ESP

192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

39.3

339

.54

39.7

439

.96

40.1

640

.37

40.5

8

99.9

9

112.

5011

2.62

113.

14

119.

3612

0.44

128.

6512

8.77

129.

0512

9.73

131.

8213

1.93

132.

12

133.

3513

3.90

143.

45

149.

7514

9.81

161.

3016

1.41

162.

39

167.

79

º Ë´ Å_7703001R.ESP

168 160 152 144 136 128 120 112 104Chemical Shift (ppm)

99.9

9

112.

5011

2.6211

3.14

119.

3612

0.44

128.

6512

8.7712

9.05

129.

7313

1.19

131.

8213

1.93

133.

3513

3.90

143.

45

149.

7514

9.81

161.

3016

1.4116

2.39

167.

79

3qNH

O

PPh

O

Ph

OH

Figure S66. 13C NMR spectrum of compound 3q

º Ë´ Å_7701001R.ESP

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20Chemical Shift (ppm)

23.1

0

3qNH

O

PPh

O

Ph

OH

Figure S67. 31P NMR spectrum of compound 3q

Page 44: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S44

7. Determination of Structure of 3a

The structure of 3a was determined by the X-ray diffraction. Recrystallized from EtOH/dichloromethane. Further information can be found in the CIF file. This crystal was deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC 1521144.

Table 1 Crystal data and structure refinement for 3a.

Identification code 201610158

Empirical formula C22H17O3P

Formula weight 360.32

Temperature/K 293(2)

Crystal system monoclinic

Space group P21/n

a/Å 8.6045(3)

b/Å 21.7424(7)

c/Å 10.3736(4)

α/° 90

β/° 109.450(4)

γ/° 90

Volume/Å3 1829.96(12)

Z 4

ρcalcg/cm3 1.308

Page 45: Experimental details and spectroscopic data4. UV/VIS AbsorptionFigure S10.spectra, Photocatalytic Cyclic activity Voltammetry of BPO Luminescence Quenching Experiments and Data processing

S45

μ/mm-1 1.482

F(000) 752.0

Crystal size/mm3 0.21 × 0.18 × 0.16

Radiation CuKα (λ = 1.54184)

2Θ range for data

collection/°8.132 to 141.596

Index ranges-10 ≤ h ≤ 6, -16 ≤ k ≤

26, -6 ≤ l ≤ 12

Reflections collected 6869

Independent reflections3406 [Rint = 0.0236, Rsigma =

0.0319]

Data/restraints/paramet

ers3406/5/252

Goodness-of-fit on F2 1.037

Final R indexes [I>=2σ

(I)]R1 = 0.0432, wR2 = 0.1132

Final R indexes [all

data]R1 = 0.0531, wR2 = 0.1228

Largest diff. peak/hole

/ e Å-30.35/-0.21