24
Aldrin Isaac Co-author RFC7432 Juniper Networks EVPN VXLAN Demystified

EVPN VXLAN Demystified · 2019. 5. 10. · Why EVPN for Network Virtualization? • Most pragmatic reason ⇒ there’s no better open alternative at this time • Gathering strong

  • Upload
    others

  • View
    16

  • Download
    0

Embed Size (px)

Citation preview

  • Aldrin IsaacCo-author RFC7432Juniper Networks

    EVPN VXLANDemystified

  • Infrastructure Subsystems -- Requirements

    Infrastructure as a Service

    Infrastructure Resource Optimization

    Physical Infrastructure

  • Network Subsystems -- Requirements

    Network Virtualization

    Traffic Optimization

    WAN FabricLAN Fabric

    LAN WAN

    Workload Optimization

    Network Virtualization

  • Network Subsystems -- Solutions

    EVPN + Overlay Controller

    MPLE TE + MPLS TE Controller

    IP/MPLS BackboneIP Fabric

    LAN WAN

    Workload Controller

  • Network Modularity and EVPN

    EVPN

    IP Network

    BGP

  • IGP

    BGP

    Network Modularity and EVPN

  • Why EVPN for Network Virtualization?

    • Most pragmatic reason ⇒ there’s no better open alternative at this time• Gathering strong interest and adoption across multiple domains

    • Built on top of trusted robust technologies – BGP and IP networks

    • Simplified end-to-end network using a common technology across all multiple domains.• Translates to talent availability and fungibility, common tools, predictability, lower cost, etc

    • Robust machinery for control and data plane scaling with minimum blast radius

    • Seamless integration between IP and Ethernet forwarding paradigms with flexible overlay types and topologies

    • All-active Ethernet multi-homing with end-to-end traffic load balancing

    • Standards-based control plane based federation between autonomous systems

    • Standards-based and operator-friendly network virtualization platform for SDN

  • 8

    A Simple Network Virtualization Overlay Reference Model

    Tenant 1

    VLAN2VLAN1

    E2E1E4E3

    Tenant 2

    VLAN4VLAN3

    E5 E6E7 E8

    • For this talk, “tenants” are groups of location-independent endpoints where:

    • Groups manifest as subnets that are routed to other groups of the same tenant (i.e. east-west) via a distributed routing function

    • Tenants are routed to other tenants and to external destinations (i.e. north-south) through service function chains

    • Tenants and groups are implemented as IP and Ethernet overlay virtual networks

    • The network virtualization edge (NVE) function may be implemented on

    • ToR switch: to support physical end-systems

    • Virtual routers: to support virtual end-points

    • Note: NVE are also referred to as PE in SP networks, or VTEP in VXLAN networks.

    SF

    VRF2 VRF1 VRF2

    E4

    VRF1 VRF2

    E3 E8E7E6E5

    VRF1

    E1 E2

    OverlayEdge

    VXLAN overlay data plane

    BGP Route Reflectors

    “NVE”“VTEP”“PE”

    VLAN2 VLAN3 VLAN4VLAN1VLAN3 VLAN4 VLAN1 VLAN2

  • IP EVPN

    Broadcast DomainEVPN Tag

    VXLAN VNI

    Broadcast DomainEVPN Tag

    VXLAN VNI

    Ethernet EVPNaka EVI zz

    Virtual Switchaka MAC-VRF

    Physical Switch

    Physical Switch Physical Switch

    EVPN Parallels with Classical Networks

    VTEPNVE / PE

    VLAN Table

    VLAN Table

    VLAN Table

    VLAN Table

    VLAN Table

    VLAN Table

    VLAN Table

    VLAN Table

    Virtual Routeraka VRF

    Physical Router

    Physical Router

    Physical Router

    EVPN Network Classical Network

    IRB Interfaces

    IP Fabric

    Multi-Tenant Single-Tenant

  • MP-BGP Route Reflector

    VTEP 2

    VTEP 3

    BGP-based VPNs Overview

    VTEP 1MP-BGP

    EVPN

    IPVPN-A

    Broadcast DomainEVPN Tag

    VXLAN VNI

    Broadcast DomainEVPN Tag

    VXLAN VNI

    EVI-A

    Export local routes with Route Target 1111:1111

    Import remote routes with Route Target 1111:1111

    Export local routes with Route Target 2222:2222

    Import remote routes with Route Target 2222:2222

    MAC-VRF-A BGP Policy

    VRF-A BGP Policy

    MAC-VRF-A

    VRF-A

    VLAN 10EVPN Tag 100

    VXLAN VNI 100

    VLAN 20EVPN Tag 200

    VXLAN VNI 200

    IP Fabric

    Tunnels

    L3 Routes

    L2 Routes

    L1 Routes

  • L1: Ethernet Multi-Homing • Type-4 Ethernet Segment (ES) Route

    • Designated Forwarder (DF) election

    • Type-1 Ethernet A-D Route• Per ES

    • Split horizon, Fast convergence• Per EVI (ES:Tag)

    • Aliasing

    • Type-7 Multicast Join Sync Route• Selective IP multicast support

    • Type-8 Multicast Leave Sync Route• Selective IP multicast support

    L2: Ethernet Bridging• Type-2 MAC/IP route

    • MAC-Only• MAC unicast forwarding

    • MAC + IP• ARP Proxy

    • Type-3 Inclusive Multicast Ethernet Tag (IMET) Route• BUM forwarding

    • Type-6 Selective Multicast Ethernet Tag (SMET) Route• Selective IP multicast forwarding

    EVPN Route Types – Modularity by OSI Layer

    L3: IP Routing• Type-5 IP Prefix Route

    • IP Unicast Forwarding

  • Unicast• L1: Type-1 Ethernet A-D Route per ES

    • Fast convergence

    • L1: Type-1 Ethernet A-D Route per EVI• Aliasing

    • L2: Type-2 MAC/IP route• MAC unicast forwarding, ARP Proxy **

    • L3: Type-5 Prefix Route Route• IP forwarding

    EVPN Route Types – Modularity by Unicast / Multicast

    BUM and IP Multicast• L1: Type-1 Ethernet A-D Route per ES

    • Split horizon

    • L1: Type-4 Ethernet Segment (ES) Route• Designated Forwarder (DF) election

    • L1: Type-7 Multicast Join Sync Route• Selective IP multicast support

    • L1: Type-8 Multicast Leave Sync Route• Selective IP multicast support

    • L2: Type-3 Inclusive Multicast Ethernet Tag (IMET) Route• BUM forwarding

    • L2: Type-6 Selective Multicast Ethernet Tag (SMET) Route **• Selective IP multicast forwarding

  • MAC-VRF-TMAC-VRF-T

    Pure Bridging Overlay

    VTEP1 VTEP2

    VLAN1 VLAN2

    L2 EVPN

    VLAN1VLAN2

    H2 H3H1 H4

    Type-2 MAC, Type-3 IMET

    ← MAC →

  • VTEP3

    VTEP1 VTEP2← MAC/IP →

    ← MAC/IP →

    MAC-VRF-T

    VLAN1 VLAN2

    VRF-T

    ← MAC/IP →

    MAC-VRF-TMAC-VRF-T

    Centrally Routed Bridging Overlay (CRB)

    VLAN1 VLAN2

    L2 EVPN

    VLAN1VLAN2

    H2 H3H1 H4

    Type-2 MAC, Type-3 IMET

    Type-2 MAC, MAC+IP

    Type-2 MAC, MAC+IP

    CRB Access

    CRB Access

    CRB Gateway

  • ← MAC/IP →

    MAC-VRF-TMAC-VRF-T

    VLAN1 VLAN2 VLAN1VLAN2

    Edge Routed Bridging Overlay (ERB)

    VTEP1 VTEP2

    ← Host IP →

    IP EVPNVRF-T VRF-T

    L2 EVPN

    H2 H3H1 H4

    Type-2 MAC, Type-3 IMET

    Local

    Type-5 IP Host

    , Type-2 MAC, MAC+IP

  • IP Routed Overlay -- Full Mesh Topology

    VTEP3

    VTEP1 VTEP2

    Tk →

    VRF-T VRF-T← TjT i →

    ← Tj

    VRF-T

    Import RT-TExport RT-T

    Import RT-TExport RT-T

    Import RT-TExport RT-T

    ← T k

    Ti →

    Type-5 IP Prefix

    H1 H2

    IP EVPN

  • VTEP3

    ← Aggregates

    IP Routed Overlay -- Hub-and-spoke/Directional Topology

    VTEP1 VTEP2

    G →

    VRF-X VRF-X

    ← G

    Xi →← Xj

    VRF-G

    Import RT-GExport RT-X

    Import RT-GExport RT-X

    Import RT-XExport RT-G

    Type-5 IP PrefixBorder

    IP EVPN

  • MAC-VRF-TMAC-VRF-T

    Edge Routed Bridging with IP Border Gateway

    VTEP3

    VTEP1 VTEP2

    ← Host IP →

    Default →

    IP EVPN

    VLAN1

    VRF-T VRF-T

    VLAN2

    L2 EVPN

    VLAN1VLAN2

    H2 H3H1 H4

    ← D

    efault

    Host IP

    →← Host IP

    Type-2 MAC, Type-3 IMET

    Local

    Type-5 IP Host

    Type-5 IP Prefix← Aggregates VRF-G

    ← MAC/IP →

    Border

  • VR

    F-L9

    BD-L2-1

    BD-L2-2

    Tenant-L2

    VR

    F-L8

    BD-L1-1

    BD-L1-2

    Tenant-L1

    BD-R

    9-2

    Tenant-R2

    VR

    F-R

    8 BD

    -R8-

    1BD

    -R8-

    2

    Tenant-R1

    BD-R

    8-FW

    1

    ERB CRB

    Bridged

    VR

    F-SF1-L

    SF1-L

    BD-SF1-L

    ERBH & S L3VN

    ServiceFunction

    GW1aL3

    GW1bL3

    Gateway

    SF1aL3

    SF1bL3

    VR

    F-SF1-R

    BD-SF1-R

    SF1-R

    VR

    F-SF1-L

    SF2-L

    IPERB H & SL3VN

    ServiceFunction

    SF2aL1

    SF2bL1

    SF2-R

    VR

    F-SF1-R

    VR

    F-SF1-L

    BD-SF1-L

    GW1-L

    IP H & SL3VN

    ERBERB

    Service Chaining with these Building Blocks

  • Ethernet Multihoming

    • EVPN supports N-way Ethernet multihoming where N can be greater than 2

    • No ICL link required

    • Multi-homed end-systems are identified in the overlay by unique Ethernet Segment ID (ESI).

    • EVPN Auto-ESI -- ESI generated automatically from LACP system-id or from BPDU root bridge snooping

    LAG Trunk

    VLAN1 VLAN2 VLAN1 VLAN2 VLAN1 VLAN2

    VLAN1 VLAN2

    ESI-2ESI-1 ESI-2ESI-1 ESI-2ESI-1

    LAG

    VTEP3VTEP2VTEP1

  • BD1

    BD1

    VTEP 1

    VTEP 2

    Source

    Receivers

    BD1

    VTEP 3

    Receivers

    “Stateless” IP Core

    • Overlay replication uses “over-the-top” signaling• No hop-by-hop per-flow or per-group multicast

    signaling or BUM state in underlay• No traditional underlay multicast protocols

    translates to lean core network design• Multicast convergence “same as” unicast

    convergence on transit link or node failure• Selective IP multicast replication capability allows

    for IP multicast flow to only be replicated by an ingress VTEP only to egress VTEP that have at least one active receiver for that flow

    • Further optimizations possible with Assisted Replication (AR) and Optimized Inter-Subnet Replication (OISM)

    Pure Overlay BUM Replication

  • EVPN ARP Proxy -- Synchronization and Suppression

    • ARP synchronization keeps the per-subnet ARP tables of tenant VRFs synchronized

    • MAC-to-IP bindings are learned by Access VTEP from the Sender field of local ARP request and reply packets and advertised as Type-2 MAC+IP routes

    • With distributed ARP broadcast suppression, Leaf VTEP will proxy respond to local ARP requests using the same synchronized MAC-to-IP bindings

    • Reduces the impact of ARP broadcast on routers and hosts

    ARP Suppression

    OriginalARP response

    GeneratedARP response

    GeneratedARP response

    VTEP3

    H2 H3

    ARP request ARP request

    1 3

    4

    VTEP2

    H1

    VTEP1

    Subnet 1 Subnet 1 Subnet 1

    MAC/IP Route2

    Flow 2

    ARP Synchronization

    VRF1VRF1

    ARP request

    ARP response

    Flow 1

    15

    3

    MAC/IP Route

    24

    Leaf

    Gateway

  • Closing Thoughts

    • EVPN based networks are only as complex as they need to be• Most use cases can be satisfied with only a few key building blocks • Complexity is proportional to the functionality required

    • EVPN VXLAN is an open standard. Equivalent proprietary technology is not any simpler.

    23

  • Thank You