44
Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 1 ESE 570 MOS INVERTERS STATIC CHARACTERISTICS

Ese570 inv stat12

Embed Size (px)

Citation preview

Page 1: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 1

ESE 570 MOS INVERTERS STATIC CHARACTERISTICS

Page 2: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 2

Vin

Vout

0

Logic “0” = 0 VLogic “1” = V

DD V

Page 3: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 3

VDD

0VDD

VOLV

T0n

VOH

≤ VDD

VOL

≥ 0

Page 4: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 4

Page 5: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 5

Slope of VTC or

inverter gain

Page 6: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 6Minimum area nMOS, pMOS transistor layouts limited by design rules

Pstatic = VDD ID

Tj = T

a + ΘP

Θ -> Thermal Resistance (oC/W) (W)

(oC) (oC)

Steady-State (Static) Output Voltage Behavior

P → Pstatic

, Pdynamic

P static=V DD

2[ I D V in=V OLI D V in=V OH ]

Page 7: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 7

Area=16∗82=12822

6

2 4

3

16

84

2

6

2

3144

5 5

3

24

Area=24∗142=3362

Minimum pMOS Layout

Minimum nMOS Layout

Minimum Area MOS Transistor Layouts

1

E2 = 2λ

Relevant Design Rules

4

Page 8: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 8

VSB

kn' = KP

n

kn'

Page 9: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 9

NMOS driver transistor

A

C

B

“Visual” Representation of the Resistive-Load Inverter

Page 10: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 10

Vin = V

OL < V

T0,n => nMOS Cut-off

Vout

= VOH

= VDD

VDD

CALCULTION OF VOH

Page 11: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 11

Vin = V

DDimplies

CALCULTION OF VOL

Page 12: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 12

-1

VIL

@ Vin = V

IL

CALCULTION OF VIL

Page 13: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 13

VIH

CALCULTION OF VIH

Page 14: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 14

CALCULTION OF VIH CONT.

Page 15: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 15

CALCULTION OF Vth

Page 16: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 16VT0n

VDD

0 VDD

Page 17: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 17

-> VT0n

-> VT0n

-> VT0n

-> 0

VDD

Vout

VDD

VinV

T0n

knR

L -> ∞

0

semi-ideal VTC

Take Limit as knR

L -> ∞

Page 18: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 18

1

Vout = VOL

P staticaverage=V DD

2[ I D V in=V OL I D V in=V OH ]

ID(V

in = “1”) = I

L =

P(Vin = “0”) = 0

Pstatic

(average)

Page 19: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 19

NO UNIQUE W/L, RL

5−0.2=30 x10−6

2WL RL [2 5−10.2−0.22]

Multiplying by RL

WL

RL=2.05 x 105

WL

RL=2V DD−V OL

k n' 2V DD−V T0nV OL−V OL

2 =

25−0.230 x 10−625−10.2−0.22

Page 20: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 20

WL

RL=2.05 x 105

P staticaverage =V DD

2V DD−V OL

RL

Pstatic

(average) [mW]

Page 21: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 21

VOL

= 0.147 V or 8.503 V ?

Page 22: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 22

Preferred Design

Page 23: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 23

VSB,d

VSB,L

VSB,L

≠ 0

SATURATED NMOS ENHANCEMENT-LOAD INVERTER

Page 24: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 24

SATURATED NMOS ENHANCEMENT-LOAD INVERTER

Page 25: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 25

NMOS DEPLETION-LOAD INVERTER

Page 26: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 26

=> VGSp

= Vin - V

DD

=> VDSp

= Vout

- VDD

IDn

= IDp

Page 27: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 27

V DD

-1

-1

V ILV IH

Vin

Vout

VT0n V

DD+V

T0p

A E

A

E

-VT0n

-VT0p

LIN

SATLIN

SAT

Vout

= Vin - V

T0n

Vout

= Vin - V

T0p

LIN&

OFF

LIN&

OFF

“Visual” Representation of the CMOS Inverter

V th

Page 28: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 28

V th V DD

-1

-1

V ILV IH

Vin

Vout

VT0n V

DD+V

T0p

A E

-VT0n

-VT0p

LIN

SATLIN

SAT

Vout

= Vin - V

T0n

Vout

= Vin - V

T0p

LIN&

SAT

LIN&

SAT

“Visual” Representation of the CMOS Inverter

SAT&

SAT

Page 29: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 29

V th−V T0p

V th−V T0n V out

V in=∞

V th

V th V DD

-1

-1

V ILV IH

Vout

= Vin - V

T0p

Vout

= Vin - V

T0n

IDn

= IDp

(iff λ = 0)

-VT0n

Page 30: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 30

0 =

= 0

IDn

= IDp = 0

IDn

= IDp = 0

Page 31: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 31

Eq.(1)

IDn

= IDp

Page 32: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 32

k n'

2WL

n2V in−V T0n=

k p'

2WL

p[2V out−V DD2 V in−V DD−V T0p

d V out

d V in]

VIL

VIL

(-1)

¿[−2 V out−V DDd V out

d V in](-1)

(1)Eq.(1)

Eq.(2)

SOLVE Eq. (1) and Eq. (2) for Vout

and VIL

or use simulation.

Page 33: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 33

IDn

= IDp

Page 34: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 34

Eq.(3)

Eq.(4)

SOLVE Eq. (3) and Eq. (4) for Vout

and VIH

or use simulation.

Page 35: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 35

IDn

= IDp

Page 36: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 36

RECALL THAT

Setting for Vin = V

th and solving for V

th

wherek R=

k n' W /Ln

k p' W /L p

=n W /Lnp W /Lp

np

Eq.(5)

Usually Ln = L

p is set to min L:

k R=k n

' W /Lnk p

' W /L p

=n W n

p W p

Page 37: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 37

If Vth is set to

If, also

ideal Vth

Eq.(5)

Solving Eq.(5) for kR

DESIGN OF CMOS INVERTERS

V th=V T0n 1

k RV DDV T0p

1 1k R

k R=V DDV T0p−V th

V th−V T0n

2

k R=0.5V DDV T0p

0.5V DD−V T0n

2

V th=V th ideal =12

V DD

Symmetric CMOS InverterIf V

th(ideal) and V

T0n = - V

T0p = V

T0k Rsymetric=1

Important design Eq. for CMOS inverter VTC.

Eq.(5)

Page 38: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 38

Vth (v

olts

)

1/kR

V th=V T0n 1

k RV DDV T0p

1 1k R

VDD

= 5V; VT0n

= - VT0p

= 1 V

Vth vs. 1/k

R

1k R

=p W p

n W n

where Ln = L

p

Page 39: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 39

W /Lp≈2.52 W /Ln

FROM Eq. (1) and Eq. (2)

FROM Eq. (3) and Eq. (4)

Symmetric CMOS inverter Vth(ideal)

and VT0n

= - VT0p

= VT0

=>k Rsymetric=1

Page 40: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 40

V IL=V out−12

V DD

2V IL V DD−4 V IL V T0=−V T02 −V T0 V DD

34

V DD2

V IL2 −2V IL V T0V T0

2

V IL2V DD−4V T0=34

V DD2 −V T0 V DD−V T0

2V IL=

183V DD2V T0V DD−2V T0

V DD−2V T0

DERIVE: for Symmetric CMOS Inverter

Eq.(1)

Symmetric CMOS inverter: Vth = V

DD/2, V

T0n = - V

T0p = V

T0 and k

R = 1

Eq.(2) =>

Substitute V out=V IL12

V DD into Eq.(1), i.e.

.=2V IL2 −2V IL V DD2V IL V T0−V IL V DDV DD

2 −V T0 V DD−V IL2 V IL V DD−

14

V DD2

, Vin = V

IL and Sym-Inv Cond.

QED

Page 41: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 41

EXAMPLE: Compute the noise margins for a symmetric CMOS inverter has been designed to achieve V

th = V

DD/2, where V

DD = 5 V

and VT0n

= - VT0p

= 1 V.

NMH = NM

L = 2.5 V > V

DD/2

RECALL

NM H=V OH−V IH=V DD−58

V DD−28

V T0=38

V DD28

V T0

NM L=V IL−V OL=V IL=38

V DD28

V T0=38

V DD28

V T0

0

V DD

1.

2.

1.

Ideal NM =>

1. NMH, NM

L > V

DD/2 = 1.25 V

Page 42: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 42

Pstatic

= 0

Pstatic

Page 43: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 43

Smaller Area Layout

If the inverter cell is part of a standard cell library, it will adhere to the cell layout protocols.

Page 44: Ese570 inv stat12

Kenneth R. Laker, University of Pennsylvania, updated 13Feb12 44

Pstatic

> 0

VDD

≥ Vout

> - VT0p