102
EQUIPMENT SEISMIC ANCHORAGE THERMOFISHER SCIENTIFIC FREEZERS 2012-0432-DC-001 REV. 1 PREPARED FOR: THERMOFISHER SCIENTIFIC CONTACT: ANDREW GARROD 275 AIKEN ROAD, ASHEVILLE, NC 28804 828-658-2862 PREPARED BY: TOBOLSKI|WATKINS ENGINEERING, INC. PROJECT MANAGER: MATTHEW TOBOLSKI, PHD, SE 9246 LIGHTWAVE AVE, SUITE 140 SAN DIEGO, CA 92123 858-381-5843 TWEI Contract: 2011-0432-CO-001, rev. 0 Effective Date: 9/12/2012

Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Embed Size (px)

Citation preview

Page 1: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

EQUIPMENT SEISMIC ANCHORAGE – THERMOFISHER SCIENTIFIC FREEZERS

2012-0432-DC-001

REV. 1

PREPARED FOR: THERMOFISHER SCIENTIFIC CONTACT: ANDREW GARROD 275 AIKEN ROAD, ASHEVILLE, NC 28804 828-658-2862 PREPARED BY: TOBOLSKI|WATKINS ENGINEERING, INC. PROJECT MANAGER: MATTHEW TOBOLSKI, PHD, SE 9246 LIGHTWAVE AVE, SUITE 140 SAN DIEGO, CA 92123 858-381-5843 TWEI Contract: 2011-0432-CO-001, rev. 0 Effective Date: 9/12/2012

Page 2: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

AUTHORIZATION FOR RELEASE OF CALCULATION

Calculation Title: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers

Calculation Number.: 2012-0432-DC-001 Rev. No.:1 Analyzed System: ThermoFisher Scientific Freezers Total Number of Pages (including this cover sheet): 91 Total Number of Attachments: 1 Purpose of Revision: Revision based on TFS and QuickHold! Inputs

ORIGINATOR James Linjun Yan, PhD, PE 09/12/2012 Print Name Signature Date

REVIEWER Matthew Tobolski, PhD, SE 09/12/2012 Print Name Signature Date

INDEPENDENT REVIEWER (if required) NA Print Name Signature Date

FINAL APPROVER Matthew Tobolski, PhD, SE 09/12/2012 Print Name Signature Date

Page 3: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Equipment Seismic Anchorage – ThermoFisher Scientific Freezers Page 2

2012-0432-DC-001, revision 0 9/12/2012

Document History Rev. Date Reason for Revision Revised by 0 8/3/2012 Initial Issue James Linjun Yan,

PhD, PE 1 9/12/2012 Revision based on TFS and

QuickHold! Inputs James Linjun Yan, PhD, PE

List of Effective Pages Section Pages Revision

Body 86 1 Attachment A 15 1

Page 4: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Equipment Seismic Anchorage – ThermoFisher Scientific Freezers Page 3

2012-0432-DC-001, revision 0 9/12/2012

Executive Summary TWEI has been retained to develop a series of anchorage design details and calculations for seismic restraint of a series of freezer products by ThermoFisher Scientific. These anchor details are designed using an off-the-shelf system provided by QuakeHOLD! Industrial for use with systems in California or other seismic regions. A total of 15 different freezers (as defined by cut sheets in Appendix A) were covered by this study. For each freezer, a kit for seismic restraint (per TWEI drawing 2012-0432-DD-001) will be provided, including the following essential components:

• A frame of unistrut installed against the freezer’s base on all four sides to resist seismic shear.

• A strap with pretension force wrapping around the freezer from side to side, which is tied down to the unistrut frame to resist the unit overturning due to seismic force.

• Post-installed anchors (Hilti 1/2in dia. KB-TZ anchors with min 2in embedment per ICC-ES ESR 1917) for the connection of the unistrut frame to supporting concrete slab by others, to resist seismic shear and uplift force due to overturning.

A systematical check of each system was performed to ensure a complete load path can be established to provide the expected seismic restraint mechanism. The detailed calculations are documented in this report and the main design considerations are summarized below:

• Code standards: IBC 2009 and ASCE 7-05. • Design seismic force for each freezer is developed per ASCE 7-05 Chapter 13 for

nonstructural components, with the following seismic parameters: o Component amplification factor, ap = 2.5 o Component response modification factor, Rp = 6 o Component important factor, Ip = 1.0

• Consideration of Center Gravity (C.G.): o Maximum height of C.G. is 2/3 of overall unit height. o Maximum 10% eccentricity of C.G. each horizontal direction.

• The supporting structure provided by others is a normal weight concrete slab of minimum 4.5in thickness and minimum compression strength, fc’=2500psi.

• Maximum site demands (in terms of short period spectral acceleration, SDS) considered for each freezer of different installation heights are summarized in the table on next page.

Please note that this study is only limited to ensure structural adequacy of the seismic restraint system provided for each freezer, which does not include structural integrity check of freezer itself.

Page 5: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Equipment Seismic Anchorage – ThermoFisher Scientific Freezers Page 4

2012-0432-DC-001, revision 0 9/12/2012

Note: h: Average roof height of building with respect to the building base. z: Height in building of unit installation with respect to the building base.

Page 6: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Equipment Seismic Anchorage – ThermoFisher Scientific Freezers Page 5

2012-0432-DC-001, revision 0 9/12/2012

Table of Contents Document History ......................................................................................................................................2

List of Effective Pages ................................................................................................................................2

Executive Summary ...................................................................................................................................3

Table of Contents ........................................................................................................................................5

Section 1. Seismic Restraint Design of Freezers for z/h=0 ...................................................................6

Section 2. Seismic Restraint Design of Freezers for z/h=1 ...................................................................7

Section 3. Check of Post-Installed Anchors.............................................................................................8

Appendix A. Cut Sheets of ThermoFisher Scientific Freezers .............................................................9

Page 7: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Equipment Seismic Anchorage – ThermoFisher Scientific Freezers Page 6

2012-0432-DC-001, revision 0 9/12/2012

Section 1. Seismic Restraint Design of Freezers for z/h=0

Page 8: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 550 lbf per unit cut sheetUnit width B 24 in per unit cut sheetUnit depth D 26.2 in per unit cut sheetUnit height H 73.62 in per unit cut sheet

Caster out to out distance Dc 21.3 in per unit cut sheet

Unistrut spacing in side to side direction Sss 26.63 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 22.93 in Sfb = Dc+1 5/8"

CG location Hcg 49.08 in Hcg = H*2/3CG eccentricity in side to side direction ess 2.40 in ess = 0.1B

CG eccentricity in front to back direction efb 2.62 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 2.5Average roof height of structure h 1 normalized height

Height in structure of component attachment z 0 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 229.17 lbf Eq. 13.3-1Max seismic design force Fp,max 2200.00 lbf Eq. 13.3-2Min seismic design force Fp,min 412.50 lbf Eq. 13.3-3

Final seismic design force Fp 412.50 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 20245.50 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 2400.75 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 17844.75 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 670.23 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 20245.50 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 1945.35 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 18300.15 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 798.26 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 798.26 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.38 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 121

Page 6.1

Page 9: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 121

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 inMax distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1340.45 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.22 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1596.52 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.26 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 495.00 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 25.00 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.08 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 335.11 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 206.25 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 399.13 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 51.56 lbf Vu3 = Fp/8

Page 6.2

Page 10: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 800 lbf per unit cut sheetUnit width B 28 in per unit cut sheetUnit depth D 33 in per unit cut sheetUnit height H 79.23 in per unit cut sheet

Caster out to out distance Dc 26.5 in per unit cut sheet

Unistrut spacing in side to side direction Sss 30.63 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 28.13 in Sfb = Dc+1 5/8"

CG location Hcg 52.82 in Hcg = H*2/3CG eccentricity in side to side direction ess 2.80 in ess = 0.1B

CG eccentricity in front to back direction efb 3.30 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 2.3Average roof height of structure h 1 normalized height

Height in structure of component attachment z 0 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 306.67 lbf Eq. 13.3-1Max seismic design force Fp,max 2944.00 lbf Eq. 13.3-2Min seismic design force Fp,min 552.00 lbf Eq. 13.3-3

Final seismic design force Fp 552.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 29156.64 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 4404.40 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 24752.24 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 808.24 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 29156.64 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 3788.40 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 25368.24 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 901.98 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 901.98 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.43 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 inMax distance of end anchors to the end of unistrut Danchor 6.5 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 232

Page 6.3

Page 11: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 232

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1616.47 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.27 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1803.96 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.30 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 772.80 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 29.00 in L = B+1"

Capcity reduction factor f 0.96 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5791.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.13 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 404.12 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 276.00 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 450.99 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 69.00 lbf Vu3 = Fp/8

Page 6.4

Page 12: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1000 lbf per unit cut sheetUnit width B 34 in per unit cut sheetUnit depth D 33 in per unit cut sheetUnit height H 79.23 in per unit cut sheet

Caster out to out distance Dc 26.5 in per unit cut sheet

Unistrut spacing in side to side direction Sss 36.63 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 28.13 in Sfb = Dc+1 5/8"

CG location Hcg 52.82 in Hcg = H*2/3CG eccentricity in side to side direction ess 3.40 in ess = 0.1B

CG eccentricity in front to back direction efb 3.30 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 2Average roof height of structure h 1 normalized height

Height in structure of component attachment z 0 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 333.33 lbf Eq. 13.3-1Max seismic design force Fp,max 3200.00 lbf Eq. 13.3-2Min seismic design force Fp,min 600.00 lbf Eq. 13.3-3

Final seismic design force Fp 600.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 31692.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 7456.25 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 24235.75 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 661.73 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 31692.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 5381.25 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 26310.75 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 935.49 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 935.49 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.45 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 inMax distance of end anchors to the end of unistrut Danchor 6.5 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 303

Page 6.5

Page 13: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 303

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1323.45 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.22 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1870.99 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.31 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1020.00 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 35.00 in L = B+1"

Capcity reduction factor f 0.94 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5671.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.18 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 330.86 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 300.00 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 467.75 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 75.00 lbf Vu3 = Fp/8

Page 6.6

Page 14: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1100 lbf per unit cut sheetUnit width B 56.5 in per unit cut sheetUnit depth D 31.5 in per unit cut sheetUnit height H 79.23 in per unit cut sheet

Caster out to out distance Dc 23.2 in per unit cut sheet

Unistrut spacing in side to side direction Sss 59.13 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 24.83 in Sfb = Dc+1 5/8"

CG location Hcg 52.82 in Hcg = H*2/3CG eccentricity in side to side direction ess 5.65 in ess = 0.1B

CG eccentricity in front to back direction efb 3.15 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1.6Average roof height of structure h 1 normalized height

Height in structure of component attachment z 0 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 293.33 lbf Eq. 13.3-1Max seismic design force Fp,max 2816.00 lbf Eq. 13.3-2Min seismic design force Fp,min 528.00 lbf Eq. 13.3-3

Final seismic design force Fp 528.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 27888.96 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 15256.18 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 12632.79 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 213.66 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 27888.96 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 5909.48 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 21979.49 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 885.38 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 885.38 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.42 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 454a

Page 6.7

Page 15: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 454a

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 427.32 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.07 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1770.75 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.29 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1491.60 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 57.50 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.25 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 106.83 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 264.00 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 442.69 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 66.00 lbf Vu3 = Fp/8

Page 6.8

Page 16: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1250 lbf per unit cut sheetUnit width B 56.5 in per unit cut sheetUnit depth D 33 in per unit cut sheetUnit height H 79.23 in per unit cut sheet

Caster out to out distance Dc 26.5 in per unit cut sheet

Unistrut spacing in side to side direction Sss 59.13 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 28.13 in Sfb = Dc+1 5/8"

CG location Hcg 52.82 in Hcg = H*2/3CG eccentricity in side to side direction ess 5.65 in ess = 0.1B

CG eccentricity in front to back direction efb 3.30 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1.7Average roof height of structure h 1 normalized height

Height in structure of component attachment z 0 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 354.17 lbf Eq. 13.3-1Max seismic design force Fp,max 3400.00 lbf Eq. 13.3-2Min seismic design force Fp,min 637.50 lbf Eq. 13.3-3

Final seismic design force Fp 637.50 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 33672.75 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 16738.75 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 16934.00 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 286.41 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 33672.75 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 7533.75 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 26139.00 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 929.39 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 929.39 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.44 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 504b

Page 6.9

Page 17: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 504b

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 572.82 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.09 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1858.77 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.31 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1800.94 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 57.50 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.30 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 143.21 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 318.75 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 464.69 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 79.69 lbf Vu3 = Fp/8

Page 6.10

Page 18: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1600 lbf per unit cut sheetUnit width B 85 in per unit cut sheetUnit depth D 33 in per unit cut sheetUnit height H 79.23 in per unit cut sheet

Caster out to out distance Dc 26.5 in per unit cut sheet

Unistrut spacing in side to side direction Sss 87.63 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 28.13 in Sfb = Dc+1 5/8"

CG location Hcg 52.82 in Hcg = H*2/3CG eccentricity in side to side direction ess 8.50 in ess = 0.1B

CG eccentricity in front to back direction efb 3.30 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1.4Average roof height of structure h 1 normalized height

Height in structure of component attachment z 0 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 373.33 lbf Eq. 13.3-1Max seismic design force Fp,max 3584.00 lbf Eq. 13.3-2Min seismic design force Fp,min 672.00 lbf Eq. 13.3-3

Final seismic design force Fp 672.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 35495.04 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 35030.00 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 465.04 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 5.31 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 35495.04 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 10676.40 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 24818.64 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 882.44 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 882.44 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.42 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 755

Page 6.11

Page 19: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 755

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 10.61 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.00 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1764.88 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.29 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 2856.00 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 86.00 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.48 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 2.65 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 336.00 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 441.22 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 84.00 lbf Vu3 = Fp/8

Page 6.12

Page 20: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1350 lbf per unit cut sheetUnit width B 33.3 in per unit cut sheetUnit depth D 29.5 in per unit cut sheetUnit height H 77.9 in per unit cut sheet

Caster out to out distance Dc 24.3 in per unit cut sheet

Unistrut spacing in side to side direction Sss 35.93 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 25.93 in Sfb = Dc+1 5/8"

CG location Hcg 51.93 in Hcg = H*2/3CG eccentricity in side to side direction ess 3.33 in ess = 0.1B

CG eccentricity in front to back direction efb 2.95 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1.5Average roof height of structure h 1 normalized height

Height in structure of component attachment z 0 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 337.50 lbf Eq. 13.3-1Max seismic design force Fp,max 3240.00 lbf Eq. 13.3-2Min seismic design force Fp,min 607.50 lbf Eq. 13.3-3

Final seismic design force Fp 607.50 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 31549.50 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 11852.33 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 19697.18 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 548.29 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 31549.50 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 8110.13 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 23439.38 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 904.12 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 904.12 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.43 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 136

Page 6.13

Page 21: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 136

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1096.57 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.18 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1808.24 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.30 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1011.49 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 34.30 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.17 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 274.14 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 303.75 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 452.06 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 75.94 lbf Vu3 = Fp/8

Page 6.14

Page 22: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1300 lbf per unit cut sheetUnit width B 23 in per unit cut sheetUnit depth D 35.9 in per unit cut sheetUnit height H 78 in per unit cut sheet

Caster out to out distance Dc 30.3 in per unit cut sheet

Unistrut spacing in side to side direction Sss 25.63 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 31.93 in Sfb = Dc+1 5/8"

CG location Hcg 52.00 in Hcg = H*2/3CG eccentricity in side to side direction ess 2.30 in ess = 0.1B

CG eccentricity in front to back direction efb 3.59 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1.6Average roof height of structure h 1 normalized height

Height in structure of component attachment z 0 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 346.67 lbf Eq. 13.3-1Max seismic design force Fp,max 3328.00 lbf Eq. 13.3-2Min seismic design force Fp,min 624.00 lbf Eq. 13.3-3

Final seismic design force Fp 624.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 32448.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 7926.43 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 24521.58 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 956.94 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 32448.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 9328.87 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 23119.14 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 724.17 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 956.94 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.46 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 3007

Page 6.15

Page 23: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 3007

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1913.88 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.32 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1448.34 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.24 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 717.60 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 24.00 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.12 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 478.47 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 312.00 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 362.09 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 78.00 lbf Vu3 = Fp/8

Page 6.16

Page 24: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1600 lbf per unit cut sheetUnit width B 28.4 in per unit cut sheetUnit depth D 35.9 in per unit cut sheetUnit height H 78 in per unit cut sheet

Caster out to out distance Dc 30.3 in per unit cut sheet

Unistrut spacing in side to side direction Sss 31.03 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 31.93 in Sfb = Dc+1 5/8"

CG location Hcg 52.00 in Hcg = H*2/3CG eccentricity in side to side direction ess 2.84 in ess = 0.1B

CG eccentricity in front to back direction efb 3.59 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1.6Average roof height of structure h 1 normalized height

Height in structure of component attachment z 0 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 426.67 lbf Eq. 13.3-1Max seismic design force Fp,max 4096.00 lbf Eq. 13.3-2Min seismic design force Fp,min 768.00 lbf Eq. 13.3-3

Final seismic design force Fp 768.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 39936.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 11760.08 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 28175.92 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 908.17 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 39936.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 11481.68 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 28454.32 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 891.29 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 908.17 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.43 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 4008

Page 6.17

Page 25: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 4008

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1816.34 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.30 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1782.57 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.30 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1090.56 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 29.40 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.18 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 454.08 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 384.00 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 445.64 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 96.00 lbf Vu3 = Fp/8

Page 6.18

Page 26: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1850 lbf per unit cut sheetUnit width B 34 in per unit cut sheetUnit depth D 35.9 in per unit cut sheetUnit height H 78 in per unit cut sheet

Caster out to out distance Dc 30.3 in per unit cut sheet

Unistrut spacing in side to side direction Sss 36.63 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 31.93 in Sfb = Dc+1 5/8"

CG location Hcg 52.00 in Hcg = H*2/3CG eccentricity in side to side direction ess 3.40 in ess = 0.1B

CG eccentricity in front to back direction efb 3.59 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1.5Average roof height of structure h 1 normalized height

Height in structure of component attachment z 0 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 462.50 lbf Eq. 13.3-1Max seismic design force Fp,max 4440.00 lbf Eq. 13.3-2Min seismic design force Fp,min 832.50 lbf Eq. 13.3-3

Final seismic design force Fp 832.50 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 43290.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 16552.88 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 26737.13 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 730.02 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 43290.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 13733.48 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 29556.53 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 925.81 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 925.81 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.44 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 5009a

Page 6.19

Page 27: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 5009a

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1460.05 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.24 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1851.62 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.31 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1415.25 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 35.00 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.24 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 365.01 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 416.25 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 462.91 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 104.06 lbf Vu3 = Fp/8

Page 6.20

Page 28: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1500 lbf per unit cut sheetUnit width B 33.3 in per unit cut sheetUnit depth D 35.75 in per unit cut sheetUnit height H 77.9 in per unit cut sheet

Caster out to out distance Dc 30.5 in per unit cut sheet

Unistrut spacing in side to side direction Sss 35.93 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 32.13 in Sfb = Dc+1 5/8"

CG location Hcg 51.93 in Hcg = H*2/3CG eccentricity in side to side direction ess 3.33 in ess = 0.1B

CG eccentricity in front to back direction efb 3.58 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1.7Average roof height of structure h 1 normalized height

Height in structure of component attachment z 0 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 425.00 lbf Eq. 13.3-1Max seismic design force Fp,max 4080.00 lbf Eq. 13.3-2Min seismic design force Fp,min 765.00 lbf Eq. 13.3-3

Final seismic design force Fp 765.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 39729.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 12291.30 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 27437.70 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 763.75 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 39729.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 10489.50 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 29239.50 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 910.18 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 910.18 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.43 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 179b

Page 6.21

Page 29: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 179b

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1527.50 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.25 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1820.36 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.30 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1273.73 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 34.30 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.21 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 381.87 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 382.50 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 455.09 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 95.63 lbf Vu3 = Fp/8

Page 6.22

Page 30: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 2100 lbf per unit cut sheetUnit width B 39.6 in per unit cut sheetUnit depth D 35.9 in per unit cut sheetUnit height H 78 in per unit cut sheet

Caster out to out distance Dc 30.3 in per unit cut sheet

Unistrut spacing in side to side direction Sss 42.23 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 31.93 in Sfb = Dc+1 5/8"

CG location Hcg 52.00 in Hcg = H*2/3CG eccentricity in side to side direction ess 3.96 in ess = 0.1B

CG eccentricity in front to back direction efb 3.59 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1.4Average roof height of structure h 1 normalized height

Height in structure of component attachment z 0 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 490.00 lbf Eq. 13.3-1Max seismic design force Fp,max 4704.00 lbf Eq. 13.3-2Min seismic design force Fp,min 882.00 lbf Eq. 13.3-3

Final seismic design force Fp 882.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 45864.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 22332.56 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 23531.45 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 557.29 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 45864.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 16109.00 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 29755.01 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 932.03 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 932.03 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.44 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 60010a

Page 6.23

Page 31: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 60010a

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1114.57 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.18 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1864.06 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.31 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1746.36 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 40.60 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.29 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 278.64 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 441.00 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 466.01 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 110.25 lbf Vu3 = Fp/8

Page 6.24

Page 32: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1650 lbf per unit cut sheetUnit width B 40.7 in per unit cut sheetUnit depth D 35.75 in per unit cut sheetUnit height H 77.9 in per unit cut sheet

Caster out to out distance Dc 30.5 in per unit cut sheet

Unistrut spacing in side to side direction Sss 43.33 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 32.13 in Sfb = Dc+1 5/8"

CG location Hcg 51.93 in Hcg = H*2/3CG eccentricity in side to side direction ess 4.07 in ess = 0.1B

CG eccentricity in front to back direction efb 3.58 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1.6Average roof height of structure h 1 normalized height

Height in structure of component attachment z 0 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 440.00 lbf Eq. 13.3-1Max seismic design force Fp,max 4224.00 lbf Eq. 13.3-2Min seismic design force Fp,min 792.00 lbf Eq. 13.3-3

Final seismic design force Fp 792.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 41131.20 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 16836.02 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 24295.18 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 560.77 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 41131.20 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 11950.54 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 29180.66 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 908.35 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 908.35 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.43 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 2310b

Page 6.25

Page 33: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 2310b

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1121.53 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.19 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1816.69 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.30 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1611.72 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 41.70 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.27 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 280.38 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 396.00 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 454.17 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 99.00 lbf Vu3 = Fp/8

Page 6.26

Page 34: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 2500 lbf per unit cut sheetUnit width B 45.3 in per unit cut sheetUnit depth D 35.9 in per unit cut sheetUnit height H 78 in per unit cut sheet

Caster out to out distance Dc 30.3 in per unit cut sheet

Unistrut spacing in side to side direction Sss 47.93 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 31.93 in Sfb = Dc+1 5/8"

CG location Hcg 52.00 in Hcg = H*2/3CG eccentricity in side to side direction ess 4.53 in ess = 0.1B

CG eccentricity in front to back direction efb 3.59 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1.2Average roof height of structure h 1 normalized height

Height in structure of component attachment z 0 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 500.00 lbf Eq. 13.3-1Max seismic design force Fp,max 4800.00 lbf Eq. 13.3-2Min seismic design force Fp,min 900.00 lbf Eq. 13.3-3

Final seismic design force Fp 900.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 46800.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 32063.63 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 14736.38 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 307.49 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 46800.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 20414.63 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 26385.38 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 826.48 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 826.48 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.39 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 70011a

Page 6.27

Page 35: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 70011a

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 614.98 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.10 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1652.96 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.27 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 2038.50 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 46.30 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.34 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 153.74 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 450.00 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 413.24 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 112.50 lbf Vu3 = Fp/8

Page 6.28

Page 36: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1800 lbf per unit cut sheetUnit width B 46.7 in per unit cut sheetUnit depth D 35.75 in per unit cut sheetUnit height H 77.9 in per unit cut sheet

Caster out to out distance Dc 30.5 in per unit cut sheet

Unistrut spacing in side to side direction Sss 49.33 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 32.13 in Sfb = Dc+1 5/8"

CG location Hcg 51.93 in Hcg = H*2/3CG eccentricity in side to side direction ess 4.67 in ess = 0.1B

CG eccentricity in front to back direction efb 3.58 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1.5Average roof height of structure h 1 normalized height

Height in structure of component attachment z 0 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 450.00 lbf Eq. 13.3-1Max seismic design force Fp,max 4320.00 lbf Eq. 13.3-2Min seismic design force Fp,min 810.00 lbf Eq. 13.3-3

Final seismic design force Fp 810.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 42066.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 21591.90 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 20474.10 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 415.09 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 42066.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 13486.50 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 28579.50 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 889.63 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 889.63 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.42 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 2811b

Page 6.29

Page 37: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 2811b

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 830.17 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.14 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1779.27 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.29 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1891.35 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 47.70 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.32 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 207.54 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 405.00 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 444.82 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 101.25 lbf Vu3 = Fp/8

Page 6.30

Page 38: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Equipment Seismic Anchorage – ThermoFisher Scientific Freezers Page 7

2012-0432-DC-001, revision 0 9/12/2012

Section 2. Seismic Restraint Design of Freezers for z/h=1

Page 39: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 550 lbf per unit cut sheetUnit width B 24 in per unit cut sheetUnit depth D 26.2 in per unit cut sheetUnit height H 73.62 in per unit cut sheet

Caster out to out distance Dc 21.3 in per unit cut sheet

Unistrut spacing in side to side direction Sss 26.63 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 22.93 in Sfb = Dc+1 5/8"

CG location Hcg 49.08 in Hcg = H*2/3CG eccentricity in side to side direction ess 2.40 in ess = 0.1B

CG eccentricity in front to back direction efb 2.62 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1.7Average roof height of structure h 1 normalized height

Height in structure of component attachment z 1 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 467.50 lbf Eq. 13.3-1Max seismic design force Fp,max 1496.00 lbf Eq. 13.3-2Min seismic design force Fp,min 280.50 lbf Eq. 13.3-3

Final seismic design force Fp 467.50 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 22944.90 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 3361.05 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 19583.85 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 735.54 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 22944.90 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 2723.49 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 20221.41 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 882.07 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 882.07 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.42 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 121

Page 7.1

Page 40: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 121

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 inMax distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1471.09 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.24 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1764.14 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.29 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 561.00 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 25.00 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.09 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 367.77 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 233.75 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 441.03 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 58.44 lbf Vu3 = Fp/8

Page 7.2

Page 41: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 800 lbf per unit cut sheetUnit width B 28 in per unit cut sheetUnit depth D 33 in per unit cut sheetUnit height H 79.23 in per unit cut sheet

Caster out to out distance Dc 26.5 in per unit cut sheet

Unistrut spacing in side to side direction Sss 30.63 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 28.13 in Sfb = Dc+1 5/8"

CG location Hcg 52.82 in Hcg = H*2/3CG eccentricity in side to side direction ess 2.80 in ess = 0.1B

CG eccentricity in front to back direction efb 3.30 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1.4Average roof height of structure h 1 normalized height

Height in structure of component attachment z 1 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 560.00 lbf Eq. 13.3-1Max seismic design force Fp,max 1792.00 lbf Eq. 13.3-2Min seismic design force Fp,min 336.00 lbf Eq. 13.3-3

Final seismic design force Fp 560.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 29579.20 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 6206.20 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 23373.00 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 763.20 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 29579.20 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 5338.20 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 24241.00 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 861.90 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 861.90 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.41 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 inMax distance of end anchors to the end of unistrut Danchor 6.5 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 232

Page 7.3

Page 42: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 232

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1526.40 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.25 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1723.80 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.29 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 784.00 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 29.00 in L = B+1"

Capcity reduction factor f 0.96 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5791.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.14 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 381.60 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 280.00 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 430.95 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 70.00 lbf Vu3 = Fp/8

Page 7.4

Page 43: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1000 lbf per unit cut sheetUnit width B 34 in per unit cut sheetUnit depth D 33 in per unit cut sheetUnit height H 79.23 in per unit cut sheet

Caster out to out distance Dc 26.5 in per unit cut sheet

Unistrut spacing in side to side direction Sss 36.63 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 28.13 in Sfb = Dc+1 5/8"

CG location Hcg 52.82 in Hcg = H*2/3CG eccentricity in side to side direction ess 3.40 in ess = 0.1B

CG eccentricity in front to back direction efb 3.30 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1.2Average roof height of structure h 1 normalized height

Height in structure of component attachment z 1 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 600.00 lbf Eq. 13.3-1Max seismic design force Fp,max 1920.00 lbf Eq. 13.3-2Min seismic design force Fp,min 360.00 lbf Eq. 13.3-3

Final seismic design force Fp 600.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 31692.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 9842.25 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 21849.75 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 596.58 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 31692.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 7103.25 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 24588.75 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 874.27 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 874.27 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.42 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 inMax distance of end anchors to the end of unistrut Danchor 6.5 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 303

Page 7.5

Page 44: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 303

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1193.16 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.20 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1748.53 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.29 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1020.00 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 35.00 in L = B+1"

Capcity reduction factor f 0.94 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5671.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.18 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 298.29 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 300.00 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 437.13 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 75.00 lbf Vu3 = Fp/8

Page 7.6

Page 45: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1100 lbf per unit cut sheetUnit width B 56.5 in per unit cut sheetUnit depth D 31.5 in per unit cut sheetUnit height H 79.23 in per unit cut sheet

Caster out to out distance Dc 23.2 in per unit cut sheet

Unistrut spacing in side to side direction Sss 59.13 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 24.83 in Sfb = Dc+1 5/8"

CG location Hcg 52.82 in Hcg = H*2/3CG eccentricity in side to side direction ess 5.65 in ess = 0.1B

CG eccentricity in front to back direction efb 3.15 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1Average roof height of structure h 1 normalized height

Height in structure of component attachment z 1 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 550.00 lbf Eq. 13.3-1Max seismic design force Fp,max 1760.00 lbf Eq. 13.3-2Min seismic design force Fp,min 330.00 lbf Eq. 13.3-3

Final seismic design force Fp 550.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 29051.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 18412.63 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 10638.38 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 179.93 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 29051.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 7132.13 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 21918.88 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 882.94 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 882.94 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.42 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 454a

Page 7.7

Page 46: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 454a

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 359.86 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.06 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1765.87 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.29 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1553.75 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 57.50 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.26 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 89.97 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 275.00 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 441.47 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 68.75 lbf Vu3 = Fp/8

Page 7.8

Page 47: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1250 lbf per unit cut sheetUnit width B 56.5 in per unit cut sheetUnit depth D 33 in per unit cut sheetUnit height H 79.23 in per unit cut sheet

Caster out to out distance Dc 26.5 in per unit cut sheet

Unistrut spacing in side to side direction Sss 59.13 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 28.13 in Sfb = Dc+1 5/8"

CG location Hcg 52.82 in Hcg = H*2/3CG eccentricity in side to side direction ess 5.65 in ess = 0.1B

CG eccentricity in front to back direction efb 3.30 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1Average roof height of structure h 1 normalized height

Height in structure of component attachment z 1 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 625.00 lbf Eq. 13.3-1Max seismic design force Fp,max 2000.00 lbf Eq. 13.3-2Min seismic design force Fp,min 375.00 lbf Eq. 13.3-3

Final seismic design force Fp 625.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 33012.50 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 20923.44 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 12089.06 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 204.47 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 33012.50 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 9417.19 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 23595.31 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 838.94 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 838.94 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.40 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 504b

Page 7.9

Page 48: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 504b

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 408.93 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.07 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1677.89 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.28 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1765.63 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 57.50 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.30 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 102.23 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 312.50 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 419.47 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 78.13 lbf Vu3 = Fp/8

Page 7.10

Page 49: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1600 lbf per unit cut sheetUnit width B 85 in per unit cut sheetUnit depth D 33 in per unit cut sheetUnit height H 79.23 in per unit cut sheet

Caster out to out distance Dc 26.5 in per unit cut sheet

Unistrut spacing in side to side direction Sss 87.63 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 28.13 in Sfb = Dc+1 5/8"

CG location Hcg 52.82 in Hcg = H*2/3CG eccentricity in side to side direction ess 8.50 in ess = 0.1B

CG eccentricity in front to back direction efb 3.30 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 0.9Average roof height of structure h 1 normalized height

Height in structure of component attachment z 1 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 720.00 lbf Eq. 13.3-1Max seismic design force Fp,max 2304.00 lbf Eq. 13.3-2Min seismic design force Fp,min 432.00 lbf Eq. 13.3-3

Final seismic design force Fp 720.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 38030.40 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 40680.00 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap -2649.60 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss -30.24 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 38030.40 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 12398.40 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 25632.00 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 911.36 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 911.36 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.43 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 755

Page 7.11

Page 50: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432LRF 755

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 -60.48 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR -0.01 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1822.72 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.30 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 3060.00 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 86.00 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.51 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 -15.12 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 360.00 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 455.68 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 90.00 lbf Vu3 = Fp/8

Page 7.12

Page 51: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1350 lbf per unit cut sheetUnit width B 33.3 in per unit cut sheetUnit depth D 29.5 in per unit cut sheetUnit height H 77.9 in per unit cut sheet

Caster out to out distance Dc 24.3 in per unit cut sheet

Unistrut spacing in side to side direction Sss 35.93 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 25.93 in Sfb = Dc+1 5/8"

CG location Hcg 51.93 in Hcg = H*2/3CG eccentricity in side to side direction ess 3.33 in ess = 0.1B

CG eccentricity in front to back direction efb 2.95 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 0.9Average roof height of structure h 1 normalized height

Height in structure of component attachment z 1 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 607.50 lbf Eq. 13.3-1Max seismic design force Fp,max 1944.00 lbf Eq. 13.3-2Min seismic design force Fp,min 364.50 lbf Eq. 13.3-3

Final seismic design force Fp 607.50 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 31549.50 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 14222.79 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 17326.71 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 482.30 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 31549.50 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 9732.15 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 21817.35 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 841.56 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 841.56 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.40 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 136

Page 7.13

Page 52: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 136

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 964.60 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.16 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1683.11 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.28 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1011.49 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 34.30 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.17 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 241.15 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 303.75 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 420.78 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 75.94 lbf Vu3 = Fp/8

Page 7.14

Page 53: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1300 lbf per unit cut sheetUnit width B 23 in per unit cut sheetUnit depth D 35.9 in per unit cut sheetUnit height H 78 in per unit cut sheet

Caster out to out distance Dc 30.3 in per unit cut sheet

Unistrut spacing in side to side direction Sss 25.63 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 31.93 in Sfb = Dc+1 5/8"

CG location Hcg 52.00 in Hcg = H*2/3CG eccentricity in side to side direction ess 2.30 in ess = 0.1B

CG eccentricity in front to back direction efb 3.59 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1Average roof height of structure h 1 normalized height

Height in structure of component attachment z 1 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 650.00 lbf Eq. 13.3-1Max seismic design force Fp,max 2080.00 lbf Eq. 13.3-2Min seismic design force Fp,min 390.00 lbf Eq. 13.3-3

Final seismic design force Fp 650.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 33800.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 9566.38 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 24233.63 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 945.70 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 33800.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 11258.98 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 22541.03 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 706.06 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 945.70 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.45 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 3007

Page 7.15

Page 54: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 3007

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1891.40 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.31 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1412.12 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.23 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 747.50 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 24.00 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.13 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 472.85 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 325.00 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 353.03 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 81.25 lbf Vu3 = Fp/8

Page 7.16

Page 55: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1600 lbf per unit cut sheetUnit width B 28.4 in per unit cut sheetUnit depth D 35.9 in per unit cut sheetUnit height H 78 in per unit cut sheet

Caster out to out distance Dc 30.3 in per unit cut sheet

Unistrut spacing in side to side direction Sss 31.03 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 31.93 in Sfb = Dc+1 5/8"

CG location Hcg 52.00 in Hcg = H*2/3CG eccentricity in side to side direction ess 2.84 in ess = 0.1B

CG eccentricity in front to back direction efb 3.59 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1Average roof height of structure h 1 normalized height

Height in structure of component attachment z 1 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 800.00 lbf Eq. 13.3-1Max seismic design force Fp,max 2560.00 lbf Eq. 13.3-2Min seismic design force Fp,min 480.00 lbf Eq. 13.3-3

Final seismic design force Fp 800.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 41600.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 14193.20 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 27406.80 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 883.38 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 41600.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 13857.20 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 27742.80 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 869.00 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 883.38 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.42 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 4008

Page 7.17

Page 56: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 4008

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1766.76 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.29 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1738.00 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.29 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1136.00 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 29.40 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.19 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 441.69 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 400.00 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 434.50 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 100.00 lbf Vu3 = Fp/8

Page 7.18

Page 57: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1850 lbf per unit cut sheetUnit width B 34 in per unit cut sheetUnit depth D 35.9 in per unit cut sheetUnit height H 78 in per unit cut sheet

Caster out to out distance Dc 30.3 in per unit cut sheet

Unistrut spacing in side to side direction Sss 36.63 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 31.93 in Sfb = Dc+1 5/8"

CG location Hcg 52.00 in Hcg = H*2/3CG eccentricity in side to side direction ess 3.40 in ess = 0.1B

CG eccentricity in front to back direction efb 3.59 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 0.9Average roof height of structure h 1 normalized height

Height in structure of component attachment z 1 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 832.50 lbf Eq. 13.3-1Max seismic design force Fp,max 2664.00 lbf Eq. 13.3-2Min seismic design force Fp,min 499.50 lbf Eq. 13.3-3

Final seismic design force Fp 832.50 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 43290.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 19863.45 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 23426.55 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 639.63 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 43290.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 16480.17 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 26809.83 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 839.78 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 839.78 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.40 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 5009a

Page 7.19

Page 58: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 5009a

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1279.27 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.21 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1679.55 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.28 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1415.25 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 35.00 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.24 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 319.82 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 416.25 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 419.89 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 104.06 lbf Vu3 = Fp/8

Page 7.20

Page 59: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1500 lbf per unit cut sheetUnit width B 33.3 in per unit cut sheetUnit depth D 35.75 in per unit cut sheetUnit height H 77.9 in per unit cut sheet

Caster out to out distance Dc 30.5 in per unit cut sheet

Unistrut spacing in side to side direction Sss 35.93 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 32.13 in Sfb = Dc+1 5/8"

CG location Hcg 51.93 in Hcg = H*2/3CG eccentricity in side to side direction ess 3.33 in ess = 0.1B

CG eccentricity in front to back direction efb 3.58 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1.1Average roof height of structure h 1 normalized height

Height in structure of component attachment z 1 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 825.00 lbf Eq. 13.3-1Max seismic design force Fp,max 2640.00 lbf Eq. 13.3-2Min seismic design force Fp,min 495.00 lbf Eq. 13.3-3

Final seismic design force Fp 825.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 42845.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 14925.15 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 27919.85 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 777.17 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 42845.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 12737.25 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 30107.75 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 937.21 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 937.21 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.45 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 179b

Page 7.21

Page 60: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 179b

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1554.34 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.26 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1874.41 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.31 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1373.63 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 34.30 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.23 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 388.59 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 412.50 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 468.60 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 103.13 lbf Vu3 = Fp/8

Page 7.22

Page 61: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 2100 lbf per unit cut sheetUnit width B 39.6 in per unit cut sheetUnit depth D 35.9 in per unit cut sheetUnit height H 78 in per unit cut sheet

Caster out to out distance Dc 30.3 in per unit cut sheet

Unistrut spacing in side to side direction Sss 42.23 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 31.93 in Sfb = Dc+1 5/8"

CG location Hcg 52.00 in Hcg = H*2/3CG eccentricity in side to side direction ess 3.96 in ess = 0.1B

CG eccentricity in front to back direction efb 3.59 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 0.85Average roof height of structure h 1 normalized height

Height in structure of component attachment z 1 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 892.50 lbf Eq. 13.3-1Max seismic design force Fp,max 2856.00 lbf Eq. 13.3-2Min seismic design force Fp,min 535.50 lbf Eq. 13.3-3

Final seismic design force Fp 892.50 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 46410.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 26294.78 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 20115.22 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 476.38 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 46410.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 18967.04 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 27442.96 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 859.61 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 859.61 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.41 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 60010a

Page 7.23

Page 62: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 60010a

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 952.76 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.16 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1719.21 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.28 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1767.15 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 40.60 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.30 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 238.19 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 446.25 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 429.80 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 111.56 lbf Vu3 = Fp/8

Page 7.24

Page 63: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1650 lbf per unit cut sheetUnit width B 40.7 in per unit cut sheetUnit depth D 35.75 in per unit cut sheetUnit height H 77.9 in per unit cut sheet

Caster out to out distance Dc 30.5 in per unit cut sheet

Unistrut spacing in side to side direction Sss 43.33 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 32.13 in Sfb = Dc+1 5/8"

CG location Hcg 51.93 in Hcg = H*2/3CG eccentricity in side to side direction ess 4.07 in ess = 0.1B

CG eccentricity in front to back direction efb 3.58 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 1Average roof height of structure h 1 normalized height

Height in structure of component attachment z 1 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 825.00 lbf Eq. 13.3-1Max seismic design force Fp,max 2640.00 lbf Eq. 13.3-2Min seismic design force Fp,min 495.00 lbf Eq. 13.3-3

Final seismic design force Fp 825.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 42845.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 20319.34 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 22525.66 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 519.92 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 42845.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 14423.06 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 28421.94 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 884.73 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 884.73 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.42 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 2310b

Page 7.25

Page 64: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 2310b

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1039.85 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.17 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1769.46 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.29 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1678.88 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 41.70 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.28 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 259.96 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 412.50 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 442.36 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 103.13 lbf Vu3 = Fp/8

Page 7.26

Page 65: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 2500 lbf per unit cut sheetUnit width B 45.3 in per unit cut sheetUnit depth D 35.9 in per unit cut sheetUnit height H 78 in per unit cut sheet

Caster out to out distance Dc 30.3 in per unit cut sheet

Unistrut spacing in side to side direction Sss 47.93 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 31.93 in Sfb = Dc+1 5/8"

CG location Hcg 52.00 in Hcg = H*2/3CG eccentricity in side to side direction ess 4.53 in ess = 0.1B

CG eccentricity in front to back direction efb 3.59 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 0.8Average roof height of structure h 1 normalized height

Height in structure of component attachment z 1 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 1000.00 lbf Eq. 13.3-1Max seismic design force Fp,max 3200.00 lbf Eq. 13.3-2Min seismic design force Fp,min 600.00 lbf Eq. 13.3-3

Final seismic design force Fp 1000.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 52000.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 35950.13 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 16049.88 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 334.90 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 52000.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 22889.13 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 29110.88 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 911.85 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 911.85 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.43 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 70011a

Page 7.27

Page 66: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 70011a

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 669.79 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.11 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1823.70 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.30 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 2265.00 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 46.30 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.38 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 167.45 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 500.00 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 455.93 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 125.00 lbf Vu3 = Fp/8

Page 7.28

Page 67: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

1. Unit Basic Information

Unit weight Wp 1800 lbf per unit cut sheetUnit width B 46.7 in per unit cut sheetUnit depth D 35.75 in per unit cut sheetUnit height H 77.9 in per unit cut sheet

Caster out to out distance Dc 30.5 in per unit cut sheet

Unistrut spacing in side to side direction Sss 49.33 in Sss = B+1"+1 5/8"Unistrut spacing in front to back direction Sfb 32.13 in Sfb = Dc+1 5/8"

CG location Hcg 51.93 in Hcg = H*2/3CG eccentricity in side to side direction ess 4.67 in ess = 0.1B

CG eccentricity in front to back direction efb 3.58 in efb = 0.1D

2. Seismic Force Calculation

Short period spectral response acceleration SDS 0.9Average roof height of structure h 1 normalized height

Height in structure of component attachment z 1 normalized heightComponent repsonse amplication factor ap 2.5

Component repsonse modification factor Rp 6Component important factor Ip 1

Seismic design force Fp 810.00 lbf Eq. 13.3-1Max seismic design force Fp,max 2592.00 lbf Eq. 13.3-2Min seismic design force Fp,min 486.00 lbf Eq. 13.3-3

Final seismic design force Fp 810.00 lbf min(Fp,max, max(Fp, Fp,min))

3. Load Combinations

(1.2 + 0.2SDS)D + Ex Section 2.3.2 basic load comb 5 for x dir(1.2 + 0.2SDS)D + Ey Section 2.3.2 basic load comb 5 for y dir(0.9 - 0.2SDS)D + Ex Section 2.3.2 basic load comb 7 for x dir(0.9 - 0.2SDS)D + Ey Section 2.3.2 basic load comb 7 for y dir

4. Check of Strap4.1 Side to Side Direction

Overturning moment due to seismic foce MOT 42066.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 25910.28 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sss/2-ess)Resisting moment by strap MR.strap 16155.72 lbf-in MR.strap = MOT - MR.grav

Required strap froce for side to side direction Fss 327.54 lbf Fss = MR.strap/Sss

4.2 Front to Back Direction

Overturning moment due to seismic foce MOT 42066.00 lbf-in MOT = Fp*Hcg

Resisting moment by gravity MR.grav 16183.80 lbf-in MR.grav = (0.9-0.2*SDS)Wp*(Sfb/2-efb)Resisting moment by strap MR.strap 25882.20 lbf-in MR.strap = MOT - MR.grav

Required strap froce for front to back direction Ffb 805.67 lbf Ffb = MR.strap/(Sfb/2*2)

4.3 Check of Strap

Tested allowable capacity of strap Ta 1500 lbf per information of QuakHold Part No. 44627-11 with 2" StrapMax strap force Fmax 805.67 lbf Fmax = max(Fss, Ffb)

Demand capacity ratio DCR 0.38 O.K. DCR = Fmax/(1.4Ta), O.K. if DCR < 1.

5. Check of Unistrut

Unistrut allowable bending capacity for any dir. bending Ma 5070 lbf-in for 1 5/8in unistrut P1000 12GAModified bending capacity for HS/T Section Ma 4309.5 lbf-in for 1 5/8in unistrut P1000T 12GA

Max spacing of anchors next to strap Sanchor 8 in

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 2811b

Page 7.29

Page 68: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Project Name: Cal. No.: 2012-0432-DC-002, r0Project No.: Originator: JY

Item: Reviewer: MTConfiguratoin No.: Date: 9/12/2012

Tobolski Watkins Engineering, Inc.

Notes:

Description Variable Value Units Equation / Reference

Sesimic Restraints of Freezers1. Seismic force is determined per Section 13.3 of ASCE 7.2. Strap is tied down by eye bolt to unistrut, which is anchored to slab below by (2) post installed anchors of max 8in spacing. 3. In addition, for unistrut on the side, one post installed anchor is provided at max 6.5in from each end.

Freezers (Thermo Fisher Scientific)0432ULT 2811b

Max distance of end anchors to the end of unistrut Danchor 6.5 in

5.1 Side to Side Direction

Unistrut on one side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 655.07 lbf-in Mu1 = Fss*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.11 O.K. DCR = Mu1/ØMn

Unistrut on the other side resisting seismic shear by anchor shear

5.2 Front to Back Direction

Unistrut on each side resisting strap force by bending in vertical direction

Ultimate moment in unistrut due to strap force Mu1 1611.34 lbf-in Mu1 = Ffb*Sanchor/4Unbraced length L 8 in

Capcity reduction factor f 1 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 6033.30 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.27 O.K. DCR = Mu1/ØMn

Unistrut on front and back sides resisting seismic shear by sideway bending

Ultimate moment in unistrut due to seismic shear Mu2 1891.35 lbf-in Mu2 = Fp/2*0.1*BUnbraced length L 47.70 in L = B+1"

Capcity reduction factor f 0.99 per unistruct catalog page 56 for P1000 beam.Unistrut ultimate bending capacity ØMn 5972.97 lbf-in ØMn = f*1.4*Ma

Demand capacity ratio DCR 0.32 O.K. DCR = Mu2/ØMn

6. Calculation of Post Installed Anchor Force6.1 Side to Side Direction

Anchor bolts of unistrut on one side resisting tension only (Case 1 for anchor check)

Ultimate tension force in anchor Tu1 163.77 lbf Tu1 = Fss/2

End anchor bolts of unistrut on the other side resisting shear only (Case 2 for anchor check)

Ultimate shear force in anchor Vu2 405.00 lbf Vu2 = Fp/2

6.2 Front to Back Direction

Anchor bolts of unistruts on both sides resisting both tension and shear (Case 3 for anchor check)

Ultimate tension force in anchor Tu3 402.84 lbf Tu3 = Ffb/2Ultimate shear force in anchor Vu3 101.25 lbf Vu3 = Fp/8

Page 7.30

Page 69: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Equipment Seismic Anchorage – ThermoFisher Scientific Freezers Page 8

2012-0432-DC-001, revision 0 9/12/2012

Section 3. Check of Post-Installed Anchors

Page 70: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Page 8.1

Summary of Anchor Force

z/h = 0

z/h = 1

Configuration Unit Demand Case 1 Case 2Name SDS Tu1 Vu2 Tu3 Vu3

(lbf) (lbf) (lbf) (lbf)1 LRF 12 2.50 335.11 206.25 399.13 51.562 LRF 23 2.30 404.12 276.00 450.99 69.003 LRF 30 2.00 330.86 300.00 467.75 75.00

4a LRF 45 1.60 106.83 264.00 442.69 66.004b LRF 50 1.70 143.21 318.75 464.69 79.695 LRF 75 1.40 2.65 336.00 441.22 84.006 ULT 13 1.50 274.14 303.75 452.06 75.947 ULT 300 1.60 478.47 312.00 362.09 78.008 ULT 400 1.60 454.08 384.00 445.64 96.00

9a ULT 500 1.50 365.01 416.25 462.91 104.069b ULT 17 1.70 381.87 382.50 455.09 95.63

10a ULT 600 1.40 278.64 441.00 466.01 110.2510b ULT 23 1.60 280.38 396.00 454.17 99.0011a ULT 700 1.20 153.74 450.00 413.24 112.5011b ULT 28 1.50 207.54 405.00 444.82 101.25Max Max 478.47 450.00 467.75 112.50

Case 3

Configuration Unit Demand Case 1 Case 2Name SDS Tu1 Vu2 Tu3 Vu3

(lbf) (lbf) (lbf) (lbf)1 LRF 12 1.70 367.77 233.75 441.03 58.442 LRF 23 1.40 381.60 280.00 430.95 70.003 LRF 30 1.20 298.29 300.00 437.13 75.00

4a LRF 45 1.00 89.97 275.00 441.47 68.754b LRF 50 1.00 102.23 312.50 419.47 78.135 LRF 75 0.90 -15.12 360.00 455.68 90.006 ULT 13 0.90 241.15 303.75 420.78 75.947 ULT 300 1.00 472.85 325.00 353.03 81.258 ULT 400 1.00 441.69 400.00 434.50 100.00

9a ULT 500 0.90 319.82 416.25 419.89 104.069b ULT 17 1.10 388.59 412.50 468.60 103.13

10a ULT 600 0.85 238.19 446.25 429.80 111.5610b ULT 23 1.00 259.96 412.50 442.36 103.1311a ULT 700 0.80 167.45 500.00 455.93 125.0011b ULT 28 0.90 163.77 405.00 402.84 101.25Max Max 472.85 500.00 468.60 125.00

Case 3

Page 71: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

www.hilti.us Profis Anchor 2.3.0

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

|

Page:Project:Sub-Project I Pos. No.:Date:

10432Case 19/11/2012

Specifier's comments:

1 Input data

Anchor type and diameter: Kwik Bolt TZ - CS 1/2 (2)

Effective embedment depth: hef = 2.000 in., hnom = 2.375 in.

Material: Carbon Steel

Evaluation Service Report:: ESR 1917

Issued I Valid: 5/1/2011 | 5/1/2013

Proof: design method ACI 318 / AC193

Stand-off installation: - (Recommended plate thickness: not calculated)

Profile: no profile

Base material: cracked concrete, 2500, fc' = 2500 psi; h = 4.500 in.

Reinforcement: tension: condition B, shear: condition B; no supplemental splitting reinforcement present

edge reinforcement: none or < No. 4 bar

Seismic loads (cat. C, D, E, or F) yes (D.3.3.6)

Geometry [in.] & Loading [lb, in.lb]

Page 8.2

Page 72: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

www.hilti.us Profis Anchor 2.3.0

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

|

Page:Project:Sub-Project I Pos. No.:Date:

20432Case 19/11/2012

2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y 1 478 0 0 0

max. concrete compressive strain: - [‰]max. concrete compressive stress: - [psi]resulting tension force in (x/y)=(0.000/0.000): 0 [lb]resulting compression force in (x/y)=(0.000/0.000): 0 [lb]

3 Tension load

Load Nua [lb] Capacity ffffNn [lb] Utilization bbbbN = Nua/ffffNn Status

Steel Strength* 478 8029 6 OK

Pullout Strength* N/A N/A N/A N/A

Concrete Breakout Strength** 478 469 102 not recommended

* anchor having the highest loading **anchor group (anchors in tension)

3.1 Steel Strength

Nsa = ESR value refer to ICC-ES ESR 1917f Nsteel ≥ Nua ACI 318-08 Eq. (D-1)

Variables

n Ase,N [in.2] futa [psi] 1 0.10 106000

Calculations

Nsa [lb] 10705

Results

Nsa [lb] fsteel f Nsa [lb] Nua [lb]

10705 0.750 8029 478

Page 8.3

OK for 2% Minor Overstress

Page 73: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

www.hilti.us Profis Anchor 2.3.0

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

|

Page:Project:Sub-Project I Pos. No.:Date:

30432Case 19/11/2012

3.2 Concrete Breakout Strength

Ncb = ( ANc

ANc0) yed,N yc,N ycp,N Nb ACI 318-08 Eq. (D-4)

f Ncb ≥ Nua ACI 318-08 Eq. (D-1)ANc see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)

ANc0 = 9 h2ef ACI 318-08 Eq. (D-6)

yec,N = (1

1 + 2 e'

N

3 hef) ≤ 1.0 ACI 318-08 Eq. (D-9)

yed,N = 0.7 + 0.3 ( ca,min

1.5hef) ≤ 1.0 ACI 318-08 Eq. (D-11)

ycp,N = MAX(ca,min

cac, 1.5hef

cac) ≤ 1.0 ACI 318-08 Eq. (D-13)

Nb = kc l √f'c h1.5ef ACI 318-08 Eq. (D-7)

Variables

hef [in.] ec1,N [in.] ec2,N [in.] ca,min [in.] yc,N 2.000 0.000 0.000 ∞ 1.000

cac [in.] kc l f

'c [psi]

5.500 17 1 2500

Calculations

ANc [in.2] ANc0 [in.2] yec1,N yec2,N yed,N ycp,N Nb [lb] 36.00 36.00 1.000 1.000 1.000 1.000 2404

Results

Ncb [lb] fconcrete fseismic

fnonductile

f Ncb [lb] Nua [lb]

2404 0.650 0.750 0.400 469 478

Page 8.4

Page 74: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

www.hilti.us Profis Anchor 2.3.0

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

|

Page:Project:Sub-Project I Pos. No.:Date:

40432Case 19/11/2012

4 Shear load

Load Vua [lb] Capacity ffffVn [lb] Utilization bbbbV = Vua/ffffVn Status

Steel Strength* N/A N/A N/A N/A

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength* N/A N/A N/A N/A

Concrete edge failure in direction ** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (relevant anchors)

5 Warnings

• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the loading!

• Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to ACI 318, Part D.4.4(c).

• Refer to the manufacturer's product literature for cleaning and installation instructions.

• Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI318 or the relevant standard!

• An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-08 Appendix D, Part D.3.3.4 this requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. In lieu of D.3.3.4 and D.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6. An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving "non-structural components" as defined in ASCE 7, Section 13.4.2. An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving "wall out-of-plane forces" as defined in ASCE 7, Equation 12.11-1 or Equation 12.14-10.

• It is the responsibility of the user when inputting values for brittle reduction factors (fnonductile) different than those noted in ACI 318-08, Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08, ASCE 7 and the governing building code. Selection of fnonductile = 1.0 as a means of satisfying ACI 318-08, Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level <= the design strengths calculated per ACI 318-08, Part D.3.3.3.

Fastening does not meet the design criteria!

Page 8.5

OK for 2% Minor Overstress

Page 75: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

www.hilti.us Profis Anchor 2.3.0

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

|

Page:Project:Sub-Project I Pos. No.:Date:

50432Case 19/11/2012

6 Installation data

Anchor plate, steel: - Anchor type and diameter: Kwik Bolt TZ - CS, 1/2 (2)Profile: - Installation torque: 480.001 in.lbHole diameter in the fixture: - Hole diameter in the base material: 0.500 in.Plate thickness (input): - Hole depth in the base material: 2.375 in.Recommended plate thickness: - Minimum thickness of the base material: 4.000 in.Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.Coordinates Anchor in.

Anchor x y c-x c+x

c-y

c+y

1 0.000 0.000 - - - -

7 Remarks; Your Cooperation Duties

• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

Page 8.6

Page 76: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

www.hilti.us Profis Anchor 2.3.0

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

|

Page:Project:Sub-Project I Pos. No.:Date:

10432Case 29/11/2012

Specifier's comments:

1 Input data

Anchor type and diameter: Kwik Bolt TZ - CS 1/2 (2)

Effective embedment depth: hef = 2.000 in., hnom = 2.375 in.

Material: Carbon Steel

Evaluation Service Report:: ESR 1917

Issued I Valid: 5/1/2011 | 5/1/2013

Proof: design method ACI 318 / AC193

Stand-off installation: - (Recommended plate thickness: not calculated)

Profile: no profile

Base material: cracked concrete, 2500, fc' = 2500 psi; h = 4.500 in.

Reinforcement: tension: condition B, shear: condition B; no supplemental splitting reinforcement present

edge reinforcement: none or < No. 4 bar

Seismic loads (cat. C, D, E, or F) yes (D.3.3.6)

Geometry [in.] & Loading [lb, in.lb]

Page 8.7

Page 77: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

www.hilti.us Profis Anchor 2.3.0

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

|

Page:Project:Sub-Project I Pos. No.:Date:

20432Case 29/11/2012

2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y 1 0 500 0 500

max. concrete compressive strain: - [‰]max. concrete compressive stress: - [psi]resulting tension force in (x/y)=(0.000/0.000): 0 [lb]resulting compression force in (x/y)=(0.000/0.000): 0 [lb]

3 Tension load

Load Nua [lb] Capacity ffffNn [lb] Utilization bbbbN = Nua/ffffNn Status

Steel Strength* N/A N/A N/A N/A

Pullout Strength* N/A N/A N/A N/A

Concrete Breakout Strength** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (anchors in tension)

Page 8.8

Page 78: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

www.hilti.us Profis Anchor 2.3.0

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

|

Page:Project:Sub-Project I Pos. No.:Date:

30432Case 29/11/2012

4 Shear load

Load Vua [lb] Capacity ffffVn [lb] Utilization bbbbV = Vua/ffffVn Status

Steel Strength* 500 3572 14 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 500 505 100 OK

Concrete edge failure in direction ** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength

Vseis = ESR value refer to ICC-ES ESR 1917f Vsteel ≥ Vua ACI 318-08 Eq. (D-2)

Variables

n Ase,V [in.2] futa [psi] 1 0.10 106000

Calculations

Vsa [lb] 5495

Results

Vsa [lb] fsteel f Vsa [lb] Vua [lb]

5495 0.650 3572 500

4.2 Pryout Strength

Vcp = kcp [(ANc

ANc0) yed,N yc,N ycp,N Nb] ACI 318-08 Eq. (D-30)

f Vcp ≥ Vua ACI 318-08 Eq. (D-2)ANc see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)

ANc0 = 9 h2ef ACI 318-08 Eq. (D-6)

yec,N = (1

1 + 2 e'

N

3 hef) ≤ 1.0 ACI 318-08 Eq. (D-9)

yed,N = 0.7 + 0.3 ( ca,min

1.5hef) ≤ 1.0 ACI 318-08 Eq. (D-11)

ycp,N = MAX(ca,min

cac, 1.5hef

cac) ≤ 1.0 ACI 318-08 Eq. (D-13)

Nb = kc l √f'c h1.5ef ACI 318-08 Eq. (D-7)

Variables

kcp hef [in.] ec1,N [in.] ec2,N [in.] ca,min [in.]

1 2.000 0.000 0.000 ∞

yc,N cac [in.] kc l f

'c [psi]

1.000 5.500 17 1 2500

Calculations

ANc [in.2] ANc0 [in.2] yec1,N yec2,N yed,N ycp,N Nb [lb] 36.00 36.00 1.000 1.000 1.000 1.000 2404

Results

Vcp [lb] fconcrete fseismic

fnonductile

f Vcp [lb] Vua [lb]

2404 0.700 0.750 0.400 505 500

Page 8.9

Page 79: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

www.hilti.us Profis Anchor 2.3.0

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

|

Page:Project:Sub-Project I Pos. No.:Date:

40432Case 29/11/2012

5 Warnings

• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the loading!

• Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to ACI 318, Part D.4.4(c).

• Refer to the manufacturer's product literature for cleaning and installation instructions.

• Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI318 or the relevant standard!

• An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-08 Appendix D, Part D.3.3.4 this requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. In lieu of D.3.3.4 and D.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6. An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving "non-structural components" as defined in ASCE 7, Section 13.4.2. An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving "wall out-of-plane forces" as defined in ASCE 7, Equation 12.11-1 or Equation 12.14-10.

• It is the responsibility of the user when inputting values for brittle reduction factors (fnonductile) different than those noted in ACI 318-08, Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08, ASCE 7 and the governing building code. Selection of fnonductile = 1.0 as a means of satisfying ACI 318-08, Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level <= the design strengths calculated per ACI 318-08, Part D.3.3.3.

Fastening meets the design criteria!

Page 8.10

Page 80: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

www.hilti.us Profis Anchor 2.3.0

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

|

Page:Project:Sub-Project I Pos. No.:Date:

50432Case 29/11/2012

6 Installation data

Anchor plate, steel: - Anchor type and diameter: Kwik Bolt TZ - CS, 1/2 (2)Profile: - Installation torque: 480.001 in.lbHole diameter in the fixture: - Hole diameter in the base material: 0.500 in.Plate thickness (input): - Hole depth in the base material: 2.375 in.Recommended plate thickness: - Minimum thickness of the base material: 4.000 in.Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.Coordinates Anchor in.

Anchor x y c-x c+x

c-y

c+y

1 0.000 0.000 - - - -

7 Remarks; Your Cooperation Duties

• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

Page 8.11

Page 81: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

www.hilti.us Profis Anchor 2.3.0

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

|

Page:Project:Sub-Project I Pos. No.:Date:

10432Case 39/11/2012

Specifier's comments:

1 Input data

Anchor type and diameter: Kwik Bolt TZ - CS 1/2 (2)

Effective embedment depth: hef = 2.000 in., hnom = 2.375 in.

Material: Carbon Steel

Evaluation Service Report:: ESR 1917

Issued I Valid: 5/1/2011 | 5/1/2013

Proof: design method ACI 318 / AC193

Stand-off installation: - (Recommended plate thickness: not calculated)

Profile: no profile

Base material: cracked concrete, 2500, fc' = 2500 psi; h = 4.500 in.

Reinforcement: tension: condition B, shear: condition B; no supplemental splitting reinforcement present

edge reinforcement: none or < No. 4 bar

Seismic loads (cat. C, D, E, or F) yes (D.3.3.6)

Geometry [in.] & Loading [lb, in.lb]

Page 8.12

Page 82: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

www.hilti.us Profis Anchor 2.3.0

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

|

Page:Project:Sub-Project I Pos. No.:Date:

20432Case 39/11/2012

2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y 1 469 103 0 103

max. concrete compressive strain: - [‰]max. concrete compressive stress: - [psi]resulting tension force in (x/y)=(0.000/0.000): 0 [lb]resulting compression force in (x/y)=(0.000/0.000): 0 [lb]

3 Tension load

Load Nua [lb] Capacity ffffNn [lb] Utilization bbbbN = Nua/ffffNn Status

Steel Strength* 469 8029 6 OK

Pullout Strength* N/A N/A N/A N/A

Concrete Breakout Strength** 469 469 101 not recommended

* anchor having the highest loading **anchor group (anchors in tension)

3.1 Steel Strength

Nsa = ESR value refer to ICC-ES ESR 1917f Nsteel ≥ Nua ACI 318-08 Eq. (D-1)

Variables

n Ase,N [in.2] futa [psi] 1 0.10 106000

Calculations

Nsa [lb] 10705

Results

Nsa [lb] fsteel f Nsa [lb] Nua [lb]

10705 0.750 8029 469

Page 8.13

OK for 1% Minor Overstress

Page 83: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

www.hilti.us Profis Anchor 2.3.0

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

|

Page:Project:Sub-Project I Pos. No.:Date:

30432Case 39/11/2012

3.2 Concrete Breakout Strength

Ncb = ( ANc

ANc0) yed,N yc,N ycp,N Nb ACI 318-08 Eq. (D-4)

f Ncb ≥ Nua ACI 318-08 Eq. (D-1)ANc see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)

ANc0 = 9 h2ef ACI 318-08 Eq. (D-6)

yec,N = (1

1 + 2 e'

N

3 hef) ≤ 1.0 ACI 318-08 Eq. (D-9)

yed,N = 0.7 + 0.3 ( ca,min

1.5hef) ≤ 1.0 ACI 318-08 Eq. (D-11)

ycp,N = MAX(ca,min

cac, 1.5hef

cac) ≤ 1.0 ACI 318-08 Eq. (D-13)

Nb = kc l √f'c h1.5ef ACI 318-08 Eq. (D-7)

Variables

hef [in.] ec1,N [in.] ec2,N [in.] ca,min [in.] yc,N 2.000 0.000 0.000 ∞ 1.000

cac [in.] kc l f

'c [psi]

5.500 17 1 2500

Calculations

ANc [in.2] ANc0 [in.2] yec1,N yec2,N yed,N ycp,N Nb [lb] 36.00 36.00 1.000 1.000 1.000 1.000 2404

Results

Ncb [lb] fconcrete fseismic

fnonductile

f Ncb [lb] Nua [lb]

2404 0.650 0.750 0.400 469 469

Page 8.14

Page 84: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

www.hilti.us Profis Anchor 2.3.0

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

|

Page:Project:Sub-Project I Pos. No.:Date:

40432Case 39/11/2012

4 Shear load

Load Vua [lb] Capacity ffffVn [lb] Utilization bbbbV = Vua/ffffVn Status

Steel Strength* 103 3572 3 OK

Steel failure (with lever arm)* N/A N/A N/A N/A

Pryout Strength** 103 505 21 OK

Concrete edge failure in direction ** N/A N/A N/A N/A

* anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength

Vseis = ESR value refer to ICC-ES ESR 1917f Vsteel ≥ Vua ACI 318-08 Eq. (D-2)

Variables

n Ase,V [in.2] futa [psi] 1 0.10 106000

Calculations

Vsa [lb] 5495

Results

Vsa [lb] fsteel f Vsa [lb] Vua [lb]

5495 0.650 3572 103

4.2 Pryout Strength

Vcp = kcp [(ANc

ANc0) yed,N yc,N ycp,N Nb] ACI 318-08 Eq. (D-30)

f Vcp ≥ Vua ACI 318-08 Eq. (D-2)ANc see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)

ANc0 = 9 h2ef ACI 318-08 Eq. (D-6)

yec,N = (1

1 + 2 e'

N

3 hef) ≤ 1.0 ACI 318-08 Eq. (D-9)

yed,N = 0.7 + 0.3 ( ca,min

1.5hef) ≤ 1.0 ACI 318-08 Eq. (D-11)

ycp,N = MAX(ca,min

cac, 1.5hef

cac) ≤ 1.0 ACI 318-08 Eq. (D-13)

Nb = kc l √f'c h1.5ef ACI 318-08 Eq. (D-7)

Variables

kcp hef [in.] ec1,N [in.] ec2,N [in.] ca,min [in.]

1 2.000 0.000 0.000 ∞

yc,N cac [in.] kc l f

'c [psi]

1.000 5.500 17 1 2500

Calculations

ANc [in.2] ANc0 [in.2] yec1,N yec2,N yed,N ycp,N Nb [lb] 36.00 36.00 1.000 1.000 1.000 1.000 2404

Results

Vcp [lb] fconcrete fseismic

fnonductile

f Vcp [lb] Vua [lb]

2404 0.700 0.750 0.400 505 103

Page 8.15

Page 85: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

www.hilti.us Profis Anchor 2.3.0

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

|

Page:Project:Sub-Project I Pos. No.:Date:

50432Case 39/11/2012

5 Combined tension and shear loads

bN bV z Utilization bN,V [%] Status

1.000 0.204 1.000 101 not recommended

bNV = (bN + bV) / 1.2 <= 1

6 Warnings

• To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the loading!

• Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to ACI 318, Part D.4.4(c).

• Refer to the manufacturer's product literature for cleaning and installation instructions.

• Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI318 or the relevant standard!

• An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-08 Appendix D, Part D.3.3.4 this requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. In lieu of D.3.3.4 and D.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6. An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving "non-structural components" as defined in ASCE 7, Section 13.4.2. An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving "wall out-of-plane forces" as defined in ASCE 7, Equation 12.11-1 or Equation 12.14-10.

• It is the responsibility of the user when inputting values for brittle reduction factors (fnonductile) different than those noted in ACI 318-08, Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08, ASCE 7 and the governing building code. Selection of fnonductile = 1.0 as a means of satisfying ACI 318-08, Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level <= the design strengths calculated per ACI 318-08, Part D.3.3.3.

Fastening does not meet the design criteria!

Page 8.16

OK for 1% Minor Overstress

OK for 1% Minor Overstress

Page 86: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

www.hilti.us Profis Anchor 2.3.0

Input data and results must be checked for agreement with the existing conditions and for plausibility!PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:Specifier:Address:Phone I Fax:E-Mail:

|

Page:Project:Sub-Project I Pos. No.:Date:

60432Case 39/11/2012

7 Installation data

Anchor plate, steel: - Anchor type and diameter: Kwik Bolt TZ - CS, 1/2 (2)Profile: - Installation torque: 480.001 in.lbHole diameter in the fixture: - Hole diameter in the base material: 0.500 in.Plate thickness (input): - Hole depth in the base material: 2.375 in.Recommended plate thickness: - Minimum thickness of the base material: 4.000 in.Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.Coordinates Anchor in.

Anchor x y c-x c+x

c-y

c+y

1 0.000 0.000 - - - -

8 Remarks; Your Cooperation Duties

• Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.

• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

Page 8.17

Page 87: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

Equipment Seismic Anchorage – ThermoFisher Scientific Freezers Page 9

2012-0432-DC-001, revision 0 9/12/2012

Appendix A. Cut Sheets of ThermoFisher Scientific Freezers

Page 88: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

73.60

O.D.  O

F  SHELL  

HOUSING,  A

ND  

CASTE

RS

1869.4

56.37

O.D.  O

FEXTE

RIOR  SHELL

1431.8

2.63

 CASTE

R66.8

24.00

O.D.  O

F  EXTE

RIOR  SHELL

609.6

14.60

370.8

52.37

I.D.  O

F  INTE

RIOR

1330.2

51.81

CLE

AR  DOOR

OPENING

1316.0

5.00

127.0

20.00

508.0

2.00

 WALL

THICKNESS  (T

YP.)

50.8

1"  ACCESS  PORT

ON  REAR  W

ALL

5  SHELV

ES

1.31

GLA

SS  DOOR

THICKNESS

33.3

1.875

DOOR  HANDLE

47.63

27.25

692.2

.50

GASKET  

THICKNESS

12.7

23.75

603.3

29.44

747.8

27.56

700.0

2.00

50.8

29.25

743.0

43.37

1101.6

CONDENSATE

 SUMP

BREAKER  STR

IP

CASTE

RS  (4)

BOTT

LES  W

/BRACKETS

FOR  TEMPERATU

RE

PROBEELE

CTR

ICAL

PLU

G  CONNECTION

.281

7.14

20.00

I.D.  O

F  INTE

RIORS

508.0

21.75

552.5

2.313

58.75

19.44

CLE

AR  DOOR

OPENING

493.8

TOP  VIEW  SHOWN  LESS  DOOR  FOR  

CLA

RIFICATION  TO  ILLU

STR

ATE

INTE

RIOR  DIMENSIONS

23.13

587.590

°

NOTE

S: I.D.  =  IN

NER  DIMENSION

1.O.D.  =  OUTE

R  DIMENSION

2.DUAL  DIMENSION  IN

CH  OVER  MM

3.

-­60816

10-­18-­2011

INITIAL  R

ELEA

SERE

VEC

N#DA

TEDE

SCRIPT

ION

REVISION

S

AB

THE  INFO

RMAT

ION  CO

NTAINE

D  HE

REIN    IS

 TH

E  PR

OPRIET

ARY  DA

TA  OF  TH

ERMO

 FISH

ER  SCIEN

TIFIC.  IT  IS

 NOT

 TO  BE

 RE

PROD

UCED

 OR  DISC

LOSE

D  IN  W

HOLE

 OR

 IN  PAR

T  WITHO

UT  PRIOR

   WRITT

EN  

CONS

ENT  OF

 THE

RMO  FISH

ER  SCIEN

TIFIC.

DO  NOT

 SCA

LE  THIS  DR

AWING.

275  AIKEN  ROAD

ASHEVILLE

,  NC  28804

TITLE

SIZE

SHEET    3    O

F    3      

DWG.  N

O.

B1

2So

lidWo

rks  20

07-­10

-­25CDE

F E D C B A

F

34

56

78

998

76

54

32

1

3rd  ANGLE

PROJECTION

322350

1204  +4C  

LABORATORY  REFRIGERATOR

GLASS  DOOR

Paga A1

Page 89: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

14.60

HOUSING

370.8

79.23

O.D.  O

F  SHELL  

HOUSING,  A

ND  

CASTE

RS

2012.4

62.00

O.D.  O

FEXTE

RIOR  SHELL

1574.8

2.63

 CASTE

R66.8

28.00

O.D.  O

F  EXTE

RIOR  SHELL

711.2

20.00

508.0

5.00

127.0

2.00

 WALL

THICKNESS  (T

YP)

50.8

57.44

CLE

AR  DOOR

OPENNING

1459.0

58.00

I.D.  O

FINTE

RIOR

1473.2

1"  ACCESS  PORT

ON  REAR  W

ALL

4  SHELV

ES

1.31

GLA

SS  DOOR

THICKNESS

33.3

1.875

DOOR  HANDLE

47.63

34.00

863.6

.75

GASKET  

THICKNESS

19.1

30.50

774.7

36.44

925.4

34.56

877.8

2.00

50.8

36.40

924.6

47.28

1200.9

CONDENSATE

 SUMP

BREAKER  STR

IP

CASTE

RS  (4)

ELE

CTR

ICAL  

PLU

G  CONNECTION

BOTT

LES  W

/BRACKETS

FOR  TEMPERATU

RE

PROBE

23.44

CLE

AR  DOOR

OPENNING

595.4

2.313

58.75

.281

7.14

24.00

I.D.  O

F  INTE

RIOR

609.6

29.00

736.6

TOP  VIEW  SHOWN  LESS

DOOR  FOR  CLA

RIFICATIONTO

ILLU

STR

ATE

 INTE

RIOR  DIMENSIONS

27.15

689.6

90°

NOTE

S: I.D.  =  IN

NER  DIMENSION

1.O.D.  =  OUTE

R  DIMENSION

2.DUAL  DIMENSION  IN

CH  OVER  MM

3.

-­60816

10-­18-­2011

INITIAL  R

ELEA

SERE

VEC

N#DA

TEDE

SCRIPT

ION

REVISION

S

AB

THE  INFO

RMAT

ION  CO

NTAINE

D  HE

REIN    IS

 TH

E  PR

OPRIET

ARY  DA

TA  OF  TH

ERMO

 FISH

ER  SCIEN

TIFIC.  IT  IS

 NOT

 TO  BE

 RE

PROD

UCED

 OR  DISC

LOSE

D  IN  W

HOLE

 OR

 IN  PAR

T  WITHO

UT  PRIOR

   WRITT

EN  

CONS

ENT  OF

 THE

RMO  FISH

ER  SCIEN

TIFIC.

DO  NOT

 SCA

LE  THIS  DR

AWING.

275  AIKEN  ROAD

ASHEVILLE

,  NC  28804

TITLE

SIZE

SHEET    2    O

F    2      

DWG.  N

O.

3rd  ANGLE

PROJECTION

B1

2So

lidWo

rks  20

07-­10

-­25CDE

F E D C B A

F

34

56

78

998

76

54

32

1

322351

AB

THE  INFO

RMAT

ION  CO

NTAINE

D  HE

REIN    IS

 TH

E  PR

OPRIET

ARY  DA

TA  OF  TH

ERMO

 FISH

ER  SCIEN

TIFIC.  IT  IS

 NOT

 TO  BE

 RE

PROD

UCED

 OR  DISC

LOSE

D  IN  W

HOLE

 OR

 IN  PAR

T  WITHO

UT  PRIOR

   WRITT

EN  

CONS

ENT  OF

 THE

RMO  FISH

ER  SCIEN

TIFIC.

DO  NOT

 SCA

LE  THIS  DR

AWING.

275  AIKEN  ROAD

ASHEVILLE

,  NC  28804

TITLE   2304  +4C  

LABORATORY  REFRIGERATOR

GLASS  DOOR

SIZE

SHEET    2    O

F    2      

DWG.  N

O.

B1

2So

lidWo

rks  20

07-­10

-­25CDE

F E D C B A

F

34

56

78

998

76

54

32

1

Paga A2

Page 90: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

79.23

O.D.  O

F  SHELL  

HOUSING,  A

ND  

CASTE

RS

2012.4

62.00

O.D.  O

FEXTE

RIOR  SHELL

1574.8

2.63

 CASTE

RS

66.8

34.00

O.D.  O

F  EXTE

RIOR  SHELL

863.6

14.60

370.9

5.00

127.0

20.00

508.0

58.00

I.D.  O

F  INTE

RIOR

1473.2

57.44

CLE

AR  DOOR  

OPENING

1459.0

2.00

 WALL

THICKNESS  (T

YP.)

50.8

1"  ACCESS  PORT

ON  REAR  W

ALL

4  SHE

LVES

1.31

GLA

SS  DOOR

THICKNESS

33.3

1.875

DOOR  HANDLE

47.63

34.00

863.6

.75

GASKET  

THICKNESS

19.1

30.50

774.7

34.56

877.8

36.44

925.6

2.00

50.8

36.00

914.4

47.28

1200.9

BREAKER  STR

IP

CASTE

RS  (4)

ELE

CTR

ICAL

PLU

G  CONNECTION

CONDENSATE

 SUMP

BOTT

LES  W

/BRACKETS

FOR  TEMPERATU

RE

PROBE

29.438

CLE

AR  DOOR

OPENING

747.73

29.00

736.6

2.313

58.75

.281

7.14

30.00

I.D.  O

F  INTE

RIOR

762.0

33.21

843.590

°

TOP  VIEW  SHOWN  LESS  DOOR  FOR  

CLA

RIFICATION  TO  ILLU

STR

ATE

 INTE

RIOR  

DIMENSIONS

NOTE

S: I.D.  =  IN

NER  DIMENSION

1.O.D.  =  OUTE

R  DIMENSION

2.DUAL  DIMENSION  IN

CH  OVER  MM

3.

-­60816

10-­18-­2011

INITIAL  R

ELEA

SERE

VEC

N#DA

TEDE

SCRIPT

ION

REVISION

S

AB

THE  INFO

RMAT

ION  CO

NTAINE

D  HE

REIN    IS

 TH

E  PR

OPRIET

ARY  DA

TA  OF  TH

ERMO

 FISH

ER  SCIEN

TIFIC.  IT  IS

 NOT

 TO  BE

 RE

PROD

UCED

 OR  DISC

LOSE

D  IN  W

HOLE

 OR

 IN  PAR

T  WITHO

UT  PRIOR

   WRITT

EN  

CONS

ENT  OF

 THE

RMO  FISH

ER  SCIEN

TIFIC.

DO  NOT

 SCA

LE  THIS  DR

AWING.

275  AIKEN  ROAD

ASHEVILLE

,  NC  28804

TITLE

SIZE

SHEET    2    O

F    2      

DWG.  N

O.

3rd  ANGLE

PROJECTION

B1

2So

lidWo

rks  20

07-­10

-­25CDE

F E D C B A

F

34

56

78

998

76

54

32

1

322352

AB

THE  INFO

RMAT

ION  CO

NTAINE

D  HE

REIN    IS

 TH

E  PR

OPRIET

ARY  DA

TA  OF  TH

ERMO

 FISH

ER  SCIEN

TIFIC.  IT  IS

 NOT

 TO  BE

 RE

PROD

UCED

 OR  DISC

LOSE

D  IN  W

HOLE

 OR

 IN  PAR

T  WITHO

UT  PRIOR

   WRITT

EN  

CONS

ENT  OF

 THE

RMO  FISH

ER  SCIEN

TIFIC.

DO  NOT

 SCA

LE  THIS  DR

AWING.

275  AIKEN  ROAD

ASHEVILLE

,  NC  28804

TITLE

SIZE

SHEET    2    O

F    2      

DWG.  N

O.

B1

2So

lidWo

rks  20

07-­10

-­25CDE

F E D C B A

F

34

56

78

998

76

54

32

1

3004  +4C  

LABORATORY  REFRIGERATOR  

GLASS  DOOR

Paga A3

Page 91: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

56.50

O.D.  O

F  EXTE

RIOR  SHELL

14.50

HOUSING

52.50

I.D.  O

F  INTE

RIOR

58.00

I.D.  

OF

INTE

RIOR

62.00

O.D.

OF

EXTE

RIOR  SHELL 79

.13

2.00    W

ALL

THICKNESS

(TYP)

2.63  CASTE

RS

20.00

5.00

GLA

SS

SLIDING

DOOR

DOOR  LOCK  

LOCATION

OPTIONAL

RECORDER

1"  ACCESS  PORT

ON  REAR  W

ALL

30.50

.187

DOOR  FRAME

THICKNESS

34.50

33.50

CONDENSATE

 SUMP,  

HOT  GAS  SYSTE

MLO

CATE

D  W

ITHIN  UNIT

COMPARTM

ENT

CASTE

RS  (4)

D57233

2009-­11-­10

REDR

AWN  FR

OM  CUR

RENT

 SPE

CS.

REV

ECN#

DATE

DESC

RIPT

ION

REVISION

S

AB

THE  INFO

RMAT

ION  CO

NTAINE

D  HE

REIN    IS

 TH

E  PR

OPRIET

ARY  DA

TA  OF  TH

ERMO

 FISH

ER  SCIEN

TIFIC.  IT  IS

 NOT

 TO  BE

 RE

PROD

UCED

 OR  DISC

LOSE

D  IN  W

HOLE

 OR

 IN  PAR

T  WITHO

UT  PRIOR

   WRITT

EN  

CONS

ENT  OF

 THE

RMO  FISH

ER  SCIEN

TIFIC.

DO  NOT

 SCA

LE  THIS  DR

AWING.

275  AIKEN  ROAD

ASHEVILLE

,  NC  28804

TITLE

SIZE

SHEET    1    O

F    1      

DWG.  N

O.

3rd  ANGLE

PROJECTION

B1

2So

lidWo

rks  20

07-­10

-­25CDE

F E D C B A

F

34

56

78

998

76

54

32

1

34603I0

1

AB

THE  INFO

RMAT

ION  CO

NTAINE

D  HE

REIN    IS

 TH

E  PR

OPRIET

ARY  DA

TA  OF  TH

ERMO

 FISH

ER  SCIEN

TIFIC.  IT  IS

 NOT

 TO  BE

 RE

PROD

UCED

 OR  DISC

LOSE

D  IN  W

HOLE

 OR

 IN  PAR

T  WITHO

UT  PRIOR

   WRITT

EN  

CONS

ENT  OF

 THE

RMO  FISH

ER  SCIEN

TIFIC.

DO  NOT

 SCA

LE  THIS  DR

AWING.

275  AIKEN  ROAD

ASHEVILLE

,  NC  28804

TITLE

45'  SLIDING  DOOR  GENERAL

SIZE

SHEET    1    O

F    1      

DWG.  N

O.

B1

2So

lidWo

rks  20

07-­10

-­25CDE

F E D C B A

F

34

56

78

998

76

54

32

1

PURPOSE  REFRIGERATOR,  +04C

Paga A4

Page 92: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

14.60

HOUSING

370.9

58.00

I.D.  O

F  INTE

RIOR

1473.2

62.00

O.D.  O

FEXTE

RIOR  SHELL

1574.8

79.23

O.D.  O

F  SHELL  

HOUSING,  A

ND  

CASTE

RS

2012.4

56.50

O.D.  O

F  EXTE

RIOR  SHELL

1435.1

2.63

66.82.00

   WALL

THICKNESS  (T

YP)

50.8

57.44

 

CLE

AR  DOOR

OPENING

1459.0

5.00

127.0

20.00

508.0

1"  ACCESS  PORT

ON  REAR  W

ALL

8  SHELV

ES

52.50

I.D.  O

F  INTE

RIOR

1333.5

29.00

736.6

23.69

CLE

AR  DOOR

OPENING

601.7

24.25

616.0

.281

7.14

2.313

58.75

26.00

660.4

2.673

67.89

34.00

863.6

.75

GASKET  

THICKNESS

19.11.31

GLA

SS  DOOR

THICKNESS

33.3

1.875

DOOR  HANDLE

47.63

30.50

774.7

36.44

925.6

36.00

914.4

47.28

1200.9

BREAKER  STR

IPS

CASTE

RS  (4)

BOTT

LES  W

/BRACKETS

FOR  TEMPERATU

RE

PROBE

ELE

CTR

ICAL

PLU

G  CONNECTION

2X27.73

704.2

90°

90°

TOP  VIEW  SHOWN  LESS  DOOR  FOR  

CLA

RIFICATION  TO  ILLU

STR

ATE

 INTE

RIOR  DIMENSIONS

CONDENSATE

 SUMP

NOTE

S: I.D.  =  IN

NEER  DIMENSION

1.O.D.  =  OUTE

R  DIMENSION

2.DUAL  DIMENSION  IS

 INCH  OVER  MM

3.

-­60816

10-­18-­2011

INITIAL  R

ELEA

SERE

VEC

N#DA

TEDE

SCRIPT

ION

REVISION

S

AB

THE  INFO

RMAT

ION  CO

NTAINE

D  HE

REIN    IS

 TH

E  PR

OPRIET

ARY  DA

TA  OF  TH

ERMO

 FISH

ER  SCIEN

TIFIC.  IT  IS

 NOT

 TO  BE

 RE

PROD

UCED

 OR  DISC

LOSE

D  IN  W

HOLE

 OR

 IN  PAR

T  WITHO

UT  PRIOR

   WRITT

EN  

CONS

ENT  OF

 THE

RMO  FISH

ER  SCIEN

TIFIC.

DO  NOT

 SCA

LE  THIS  DR

AWING.

275  AIKEN  ROAD

ASHEVILLE

,  NC  28804

TITLE

SIZE

SHEET    2    O

F    2      

DWG.  N

O.

B1

2So

lidWo

rks  20

07-­10

-­25CDE

F E D C B A

F

34

56

78

998

76

54

32

1

3rd  ANGLE

PROJECTION

322353

5004  +4C  

LABORATORY  REFRIGERATOR

GLASS  DOOR

Paga A5

Page 93: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

29.00

I.D.

736.6

2.313

58.75

24.33

TYP.

618.0

4.00

TYP.

101.6

23.771

CLE

AR  DOOR

OPENING  TYP.

603.78

2.50

63.5

24.33

618.0

.281

TYP.

7.14

26.00

660.4

90°

90°

90°

85.00

O.D.  O

F  EXTE

RIOR

2159.0

20.00

508.0

5.00

127.0

57.44

CLE

AR  DOOR  

OPENING

1459.0

58.00

I.D.  O

F  INTE

RIOR

1473.2

62.00

O.D  OF  

EXTR

IOR  SHELL

1574.8

2.00

 WALL

THICKNESS

TYP.

50.8

2.63

 CASTE

RS

66.8

79.23

O.D.  O

F  SHELL

HOUSING,  A

ND

CASTE

RS

2012.4

3X  27.44

697.0

34.50

876.3

30.50

774.7

.75

GASKET  

THICKNESS

19.1

1.31

GLA

SS  DOOR

THICKNESS

33.3

47.28

1200.9

2.00

50.8

36.40

924.6

34.00

863.6

14.60

HOUSING

370.8

1.88

DOOR  HANDLE

47.6

81.00

I.D.  O

F  INTE

RIOR

2057.4

BREAKER  STR

IP

TOP  VIEW  SHOWN  LESS  DOOR

 FOR  CLA

RIFICATION  TO

ILLU

STR

ATE

 INTE

RIOR  DIMENSIONS

CONDENSATE

 SUMP

CASTE

RS(4)

1"ACCESS  PORT

ON  REAR  W

ALL

12  SHELV

ES

ELE

CTR

ICAL  

PLU

G  CONNECTION

BOTT

LES  W

/BRACKETS

FOR  TEMPERATU

RE

PROBE

BREAKER  STR

IP2.313

W/CORNER

TRIM-­2.45

NOTE

S: I.D.  =  IN

NER  DIMENSION

1.O.D.  =  OUTE

R  DIMENSION

2.DUAL  DIMENSION  IS

 INCH  OVER  MM

3.

-­60816

10-­18-­2011

INITIAL  R

ELEA

SERE

VEC

N  #

 DAT

E  DES

CRIPTION

REVISION

S

AB

THE  INFO

RMAT

ION  CO

NTAINE

D  HE

REIN    IS

 TH

E  PR

OPRIET

ARY  DA

TA  OF  TH

ERMO

 FISH

ER  SCIEN

TIFIC.  IT  IS

 NOT

 TO  BE

 RE

PROD

UCED

 OR  DISC

LOSE

D  IN  W

HOLE

 OR

 IN  PAR

T  WITHO

UT  PRIOR

   WRITT

EN  

CONS

ENT  OF

 THE

RMO  FISH

ER  SCIEN

TIFIC.

DO  NOT

 SCA

LE  THIS  DR

AWING.

275  AIKEN  ROAD

ASHEVILLE

,  NC  28804

TITLE

SIZE

SHEET    3    O

F    3      

DWG.  N

O.

3rd  ANGLE

PROJECTION

B1

2So

lidWo

rks  20

07-­10

-­25CDE

F E D C B A

F

34

56

78

998

76

54

32

1

322354

AB

THE  INFO

RMAT

ION  CO

NTAINE

D  HE

REIN    IS

 TH

E  PR

OPRIET

ARY  DA

TA  OF  TH

ERMO

 FISH

ER  SCIEN

TIFIC.  IT  IS

 NOT

 TO  BE

 RE

PROD

UCED

 OR  DISC

LOSE

D  IN  W

HOLE

 OR

 IN  PAR

T  WITHO

UT  PRIOR

   WRITT

EN  

CONS

ENT  OF

 THE

RMO  FISH

ER  SCIEN

TIFIC.

DO  NOT

 SCA

LE  THIS  DR

AWING.

275  AIKEN  ROAD

ASHEVILLE

,  NC  28804

TITLE

SIZE

SHEET    3    O

F    3      

DWG.  N

O.

B1

2So

lidWo

rks  20

07-­10

-­25CDE

F E D C B A

F

34

56

78

998

76

54

32

1

7504  +4C  

LABORATORY  REFRIGERATOR

GLASS  DOOR

Paga A6

Page 94: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

----

----

----

----

DRAW

ING

NUMB

ER:

DESC

RIPT

ION

OF R

EVISI

ONCA

DBY

REV

ECNN

O.

DATE

69.98

0 [1

777.4

9]

RELE

ASED

FOR

PRO

DUCT

ION

DOOR

OPE

N @

180 0

TFI

TFI

o FR

-2202

06

/1111

5.086

23

.078

I--

5.086

[1

29.18

] [58

6.18]

[129.1

8]-.

--c--

•,--

------

------

--11

1

1 1

1

1

1 1

1

1

1 I

1 I

1 1

I

I 1.8

30I

I I

I [46

.47]

64.58

5 [1

640.4

6] ,, I ,

tDO

OR O

PEN

90"

I \

32.85

0I I

\ {

\ [83

4.39]

I \

I I \ \ ,

I ,

/ 31

.020

, /

\ , ,

/

/ [78

7.91]

I'

, /

//

" 19

.375

" .....

..........

///

......

.. _--

[492

.13]

9.750

[24

7.65]

10.46

0 [26

5.68]

10.46

0 [26

5.68]

10.46

0 [26

5.68]

(/) 1.0

0 ACC

ESS

PORT

[25

.40]

OPTIO

NAL

BACK

-UP

SYST

EM C

ONNE

CTIO

N 10

.200

[259.0

8](A

LL U

NITS

) 4x

ADJ

USTA

BLE

SH

ELVE

S

2.880

POW

ER IN

LET

&SW

ITCH

RE:FE

RENC

E FR

ONT

[685.0

6]

[73.

15]

• .0

o

• .0

.0

.0 o.

o 0 t"

"I'i=

==!.-

......

..AL

ARM

CONT

ACTS

23

.326

• [59

2.48]

• 26

.971

21.34

0 [54

2.04]

L

33.25

0 [84

4.55]

3.050

[7

7.47

]

LOCA

TION

OF

CON

OPTIO

NAL

CHAR

T RE

CORD

ER

I 1 I I--

----

--1 1 1 I I I

--_.

-1-1

----

----

----

-i I I I I I I I I

----

----

----

----

-l I I

I I

1

51.50

0 60

.000

[130

8.1 0]

[15

24]

L _

__

__

__

__

__

__

__

__

15.00

0 [3

81]

77.88

0 [1

978.1

5]

THIS

DO

CU

MEN

T C

ON

TAIN

S PR

OPR

IETA

RY

MODE

UPAR

TNAM

E: 13

CU

FT,-8

Soe

UPRI

GHT

FREE

ZERS

BACK

IN

FORM

ATIO

N AN

D SU

CH IN

FORM

ATIO

N IS

NOT

BE

DIS

CLOS

ED T

O OT

HERS

FOR

ANY

PUR

POSE

NOR

OWG

TITLE:

Gt

:NER

AL D

IMEN

SION

DRAW

ING

ULT

USED

FOR

MAN

UFAC

TURI

NG P

URPO

SES

WIT

HOUT

SC

ALE:

N/A

WRl

nEN

PERM

ISSIO

N FR

OM TH

ERMO

FISH

ER S

CIEN

TIFIC

OW

N: TF

I

MATE

RIAl:

N/A

PAINT

COlOR

: N/

ATh

enno

Fish

er

NOTE

: DUA

L DI

MENS

ION

IS IN

CH O

VER

METR

IC.

DRAW

ING

NUMB

ERS

CIE

NT

IFIC

OL

ERAN

CE U

NLES

S OT

HERW

ISE SP

ECIFI

ED

SIZE

ANGL

ES:

DECI

MAL:

.XX=±

.06

8920

-00-1

BBO

X 64

9. M

ARIE

nA, O

HIO

4575

0 .

XXX=

±.030

Paga A7

Page 95: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

57.6

1463.2

18.2

463.4

23.0

584.1

19.9

504.5

3.1

77.5

1.0

24.5

2.1

52.6

78.0

1981.3

17.2

SHELF  W

IDTH

436.3

51.2

1301.1

FRONT

USER  IN

TERFA

CE

35.9

911.2

36.2

919.2

1.4

36.1

10.3

262.1

10.3

262.1

9.9

251.2

10.3

262.1

2.9

74.8

27.0

SHELF  DEPTH

686.6

10.4

263.8

2.6

66.3

4X  ADJU

STA

BLE

SHELV

ES

(3X  SHELV

ES  OPTIONAL)

49.2

1248.8

11.5

292.1

25.1

638.0

FLOOR  REFE

RENCE

SERIAL

COMMUNICATION

POWER  PLU

G

BACK

REMOTE

 ALA

RM

CONTA

CT

POWER  SWITCH

 1.0[25.4]

ACCESS  PORTS

.3 8.0

27.0

686.1

37.6

955.4

31.7

806.3

51.1

DOOR  OPEN  @

 180

1299.0

2.6

66.3

2.6

66.3

58.6

DOOR  OPEN  @

901489.2

17.8

TANK  W

IDTH

451.4

28.3

718.8

SYMBOLS

,  DESIGNATIONS  AND

1.GENERAL  DRAWING  METH

ODS

ENGWI002

ALL  COMPONENTS

 SHOULD

 BE

2.RoH

S  COMPLIANT

BASIC  DIMENSION  TOLE

RANCE

3.UNLE

SS  OTH

ERWISE  SPECIFIED:

.X  =  0.100"

DUAL  DIMENSION  IS

 INCH  OVER

4.METR

IC.

-­60347

2011-­06-­30

NEW  REL

EASE

REV.

ECN  #

DATE

DESC

RIPT

ION

REVISION

S

1211

10

J I H G AB

300

THE  INFO

RMAT

ION  CO

NTAINE

D  HE

REIN    IS

 TH

E  PR

OPRIET

ARY  DA

TA  OF  TH

ERMO

 FISH

ER  SCIEN

TIFIC.  IT  IS

 NOT

 TO  BE

 RE

PROD

UCED

 OR  DISC

LOSE

D  IN  W

HOLE

 OR

 IN  PAR

T  WITHO

UT  PRIOR

   WRITT

EN  

CONS

ENT  OF

 THE

RMO  FISH

ER  SCIEN

TIFIC.

DO  NOT

 SCA

LE  THIS  DR

AWING.

275  AIKEN  ROAD

ASHEVILLE

,  NC  28804

TITLE

 FREEZER  UNIT

SIZE

SHEET    1    O

F    1      

DWG.  N

O.

3rd  ANGLE

PROJECTION

D1

2So

lidWo

rks  20

07-­10

-­25CDEF

34

56

78

9

KLM

1314

1516

1718

19

M L K F E D C B AGHIJ

1918

1716

1514

139

87

65

43

21

1011

12

ULT

315100G01

Paga A8

Page 96: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

19.9

504.8

18.2

463.4

57.6

1463.2

3.0

77.2

28.3

720.0

1.0

24.5

78.0

1981.3

2.1

52.6

22.5

SHELF  W

IDTH

572.1

51.2

1301.1

FRONT

FOR  GRILLE

 SEE

DETA

IL  VIEW

USER  IN

TERFA

CE

WHITE  BOARD

1.4

36.1

35.9

911.0

36.2

919.3

10.3

262.1

10.3

262.1

9.9

251.2

10.3

262.1

2.9

74.8

27.0

SHELF  DEPTH

686.6

2.6

66.3

10.4

263.8

4X  ADJU

STA

BLE

SHELV

ES

(3X  SHELV

ES  OPTIONAL)

49.2

1250.8

11.5

292.1

25.0

636.0

FLOOR  REFE

RENCE

SERIAL

COMMUNICATION

POWER  PLU

GBACK

REMOTE

 ALA

RM

 CONTA

CT  

POWER  SWITCH

1.0

[25

.4]

AC

CE

SS

PO

RT

S

.3 8.2

37.6

955.4

32.4

821.9

31.7

806.3 61.8

DOOR  OPEN  @

180

1570.6

2.6

66.3

64.0

DOOR  OPEN  @

901626.2

28.3

718.8

2.6

66.3

23.1

TANK  W

IDTH

587.4

OPTIONAL  CHART  RECORDER

SYMBOLS

,  DESIGNATIONS  AND

1.GENERAL  DRAWING  METH

ODS

ENGWI002

ALL  COMPONENTS

 SHOULD

 BE

2.RoH

S  COMPLIANT

BASIC  DIMENSION  TOLE

RANCE

3.UNLE

SS  OTH

ERWISE  SPECIFIED:

.X  =  0.100"

DUAL  DIMENSION  IS

 INCH  OVER

4.METR

IC.

DETAIL  VIEW  OF  GRILLE

-­60347

2011-­06-­30

NEW  REL

EASE

REV.

ECN  #

DATE

DESC

RIPT

ION

REVISION

S

1211

10

J I H G AB

400

THE  INFO

RMAT

ION  CO

NTAINE

D  HE

REIN    IS

 TH

E  PR

OPRIET

ARY  DA

TA  OF  TH

ERMO

 FISH

ER  SCIEN

TIFIC.  IT  IS

 NOT

 TO  BE

 RE

PROD

UCED

 OR  DISC

LOSE

D  IN  W

HOLE

 OR

 IN  PAR

T  WITHO

UT  PRIOR

   WRITT

EN  

CONS

ENT  OF

 THE

RMO  FISH

ER  SCIEN

TIFIC.

DO  NOT

 SCA

LE  THIS  DR

AWING.

275  AIKEN  ROAD

ASHEVILLE

,  NC  28804

TITLE

 FREEZER  UNIT

SIZE

SHEET    1    O

F    1      

DWG.  N

O.

3rd  ANGLE

PROJECTION

D1

2So

lidWo

rks  20

07-­10

-­25CDEF

34

56

78

9

KLM

1314

1516

1718

19

M L K F E D C B AGHIJ

1918

1716

1514

139

87

65

43

21

1011

12

ULT

315100G02

Paga A9

Page 97: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

1.4

36.1

35.9

911.2

36.2

919.3

2.6

66.3

2.9

74.8

27.0

SHELF  DEPTH

686.6

9.9

251.2

10.3

262.1

10.3

262.1

10.3

262.1

10.4

263.8

4X  ADJU

STA

BLE

SHELV

ES

(3X  SHELV

ES

 OPTIONAL)

49.2

1250.8

25.0

636.0

11.5

292.1

1.0[25.4]

ACCESS  PORTS

REMOTE

 ALA

RM

CONTA

CTS

SERIAL

COMMUNICATION

POWER  SWITCH

POWER  PLU

G

2.1

52.6

18.2

463.4

57.6

1463.0

34.0

862.8

3.0

77.2

19.9

504.6

1.0

24.5

28.2

SHELF  W

IDTH

715.0

51.2

1301.2

78.0

1981.3

FRONT

USER  IN

TERFA

CE

WHITE  BOARD

FOR  GRILLE

SEE  DETA

IL  VIEW

.3 8.1

38.0

964.8

37.6

955.4

31.8

808.1

73.1

DOOR  OPEN  @

180

1856.4

2.6

66.3

2.6

66.3

28.8

TANK  W

IDTH

730.9

69.6

DOOR  OPEN  @

901769.1

28.3

718.8

OPTIONAL  CHART

 RECORDER

BACK

FLOOR  REFE

RENCE

 GRILLE

 DETA

IL  VIEW

1.SYMBOLS

,  DESIGNATIONS  AND

     GENERAL  DRAWING  METH

ODS

     ENGWI002

2.  ALL  COMPONENTS

 SHOULD

 BE

     RoH

S  COMPLIANT

3.  BASIC  DIMENSION  TOLE

RANCE

       UNLE

SS  OTH

ERWISE  SPECIFIED:

       .X

 =  0.100"        

4.  DUAL  DIMENSION  IS

 INCH  OVER

       METR

IC.

-­60347

2011-­06-­30

NEW  REL

EASE

REV.

ECN  #

DATE

DESC

RIPT

ION

REVISION

S

1211

10

J I H G AB

500

THE  INFO

RMAT

ION  CO

NTAINE

D  HE

REIN    IS

 TH

E  PR

OPRIET

ARY  DA

TA  OF  TH

ERMO

 FISH

ER  SCIEN

TIFIC.  IT  IS

 NOT

 TO  BE

 RE

PROD

UCED

 OR  DISC

LOSE

D  IN  W

HOLE

 OR

 IN  PAR

T  WITHO

UT  PRIOR

   WRITT

EN  

CONS

ENT  OF

 THE

RMO  FISH

ER  SCIEN

TIFIC.

DO  NOT

 SCA

LE  THIS  DR

AWING.

275  AIKEN  ROAD

ASHEVILLE

,  NC  28804

TITLE

FREEZER  UNIT  

SIZE

SHEET    1    O

F    1      

DWG.  N

O.

3rd  ANGLE

PROJECTION

D1

2So

lidWo

rks  20

07-­10

-­25CDEF

34

56

78

9

KLM

1314

1516

1718

19

M L K F E D C B AGHIJ

1918

1716

1514

139

87

65

43

21

1011

12

ULT

315100G0

3

Paga A10

Page 98: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

DRAW

ING

NUMB

ER:

8924

wOO

w1

APPD

DE

SCRI

PTIO

N OF

REV

ISIO

NBY

CA

DRE

V EC

N NO

. DA

TE69

.980

[177

7.49]

TF

I RE

LEAS

ED F

OR P

RODU

CTIO

N DO

OR O

PEN

@18

0 0 o

FR-22

02

06/1/

11

TFI

5.086

23

.078

I--5.0

86

[129.1

8] [58

6.18J

I

[129.1

8J

I,-----

------

-----,

I ,I

,I I

, f

I I

r I

f 1.8

30

I I

I ,

I I

[46.4

7] I

I

I70

.585

I 1[1

792.8

6] I ,

DOOR

OPE

N90 0

\ \ \ ,

38.85

0 \ \

[986.7

9]\ \ \

\ \ 37

.020

\ .... ....

[940.3

1 ].... .... ....

.... 25

.375

" "

" '--

-9.7

50

[247.6

5]

10.46

0 [26

5.68]

10.46

0 [26

5.68]

. I I

10.46

0 I

[265.6

8J

-+--

L__

--+- r I I I I

1J 1.0

0 ACC

ESS

PORT

1-

----

----

---

-I I

[25.40

J I l.._

___

_ ___

____

_10

.200

OPTIO

NAL

BACK

-UP

SY

STEM

CON

NECT

ION

[259.0

8]

4x A

DJUS

TABL

ERE

MOTE

ALA

RM C

ONTA

CTS

SHEL

VES

(ALL

UNI

TS)

-

POW

ER IN

LET

&SW

ITCH

RE:F

EREN

CE

FRON

T

• 0

o

23.32

6 . •

[592.4

8] •

• 0

0

0 Q.

Q 0

26.97

1 [68

5.06]

[644.5

3]

-+--

+-r

----

----

----

--I I I

-\--

......

.1.-

--1-

1---

----

----

----

, I I I I --

+--

---'

----

!-:-

----

----

----

--I

33.25

0 [84

4.55]

3.050

[77

.47]

LOCA

TION

OF

OPTIO

NAL

CHAR

T RE

CORD

ER

21.34

0 [54

2.04]

I I I--

----

---1

I I I I I L

----

----

--1

I I I I I

I I

Ir--

------

------

---I

I I

I I

I I

I I

I I

I I

I I

51.50

0 60

.000

[130

8.1 0]

[152

4]

I I

L--

---_

____

---

____

_ ,-

J-I-

_-L

-

77.88

0 [1

978.1

5]

THIS

DO

CU

MEN

T C

ON

TAIN

S PR

OPR

IETA

RY

MOOE

LIPAR

T NAM

E: 17

CU

FT, -

86·C

UPR

IGHT

FRE

EZER

SBA

CK

INFO

RMAT

ION

AND

SUCH

INFO

RMAT

ION

IS N

OT T

Oj--,.----------------------1

BE

DIS

CLOS

ED T

O OT

HERS

FOR

ANY

PUR

POSE

NOR

DWG

nILE

: GE

NERA

L DIM

ENSI

ON D

RAW

ING

ULT

USED

FOR

MAN

UFAC

TURI

NG P

URPO

SES

WIT

HOUT

SC

ALE:

NIA

WRITT

EN P

ERMI

SSIO

N FR

OM TH

ERMO

FISH

ER S

CIENT

IFIC

DWN:

TFI

06/1/

2011

MA

TERIA

L: Nf

A

PAINT

COlOR

: NI

ATh

enno

Fish

arNO

TE: D

UAL

DIME

NSIO

N IS

INCH

OVE

R ME

TRIC

. SIZ

ES

CIE

NT

IFIC

TO

LERA

NCE

UNLE

SS O

THER

WISE

SPE

CIFIE

D DR

AWIN

G NU

MBER

AN

GLES

: DE

CIMAL

: .XX

=±,06

89

24.00

.1 B

BOX

649,

MAR

IETT

A, O

HIO

4575

0 .XX

X=:I:.0

30

Paga A11

Page 99: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

18.2

463.4

57.6

1463.2

19.9

504.6

3.0

77.2

39.6

1005.7

1.0

24.5

2.1

52.678

.01981.3

33.8

SHELF  W

IDTH

857.9

51.2

1301.2

FLOOR  REFE

RENCE

USER  IN

TERFA

CE

WHITE  BOARD

FRONT

FOR  GRILL  SEE

DETA

IL  VIEW

.3 8.0

43.6

1107.7

37.6

955.4

1.4

36.1

36.2

919.3

35.9

911.2

2.9

74.8

27.0

SHELF  DEPTH

686.6

2.9

73.9

9.9

251.2

10.3

262.1

10.3

262.1

10.3

262.1

10.4

263.8

4X  ADJU

STA

BLE

SHELV

ES

(3X  SHELV

ES

OPTIONAL)

25.0

636.0

49.2

1250.8

2X11.5

292.9

ACCESS  PORTS

1.0[25.4]

POWER  PLU

G

POWER  SWITCH

SERIAL

COMMUNICATION

REMOTE

 ALA

RM

CONTA

CTS

BACK

31.8

808.1

84.3

DOOR  OPEN  @

180

2142.1

75.2

DOOR  OPEN  @

901910.8

2.6

66.3

2.6

66.3

34.4

TANK  W

IDTH

874.5

28.3

718.8

OPTIONAL  CHART  RECORDER

GRILLE

 DETA

IL  VIEW

SYMBOLS

,  DESIGNATIONS  

1.AND  GENERAL  DRAWING  

METH

ODS  ENGWI002

ALL  COMPONENTS

 SHOULD

 2.BE  RoH

S  COMPLIANT

DUAL  DIMENSION  IS

 INCH  

3.OVER  METR

ICBASIC  DIMENSION  

4.TO

LERANCE  UNLE

SS  

OTH

ERWISE  SPECIFIED:

.X  =  .100"

-­60347

2011-­06-­30

NEW  REL

EASE

REV

ECN#

DATE

DESC

RIPT

ION

REVISION

S

1211

10

J I H G AB

600

THE  INFO

RMAT

ION  CO

NTAINE

D  HE

REIN    IS

 TH

E  PR

OPRIET

ARY  DA

TA  OF  TH

ERMO

 FISH

ER  SCIEN

TIFIC.  IT  IS

 NOT

 TO  BE

 RE

PROD

UCED

 OR  DISC

LOSE

D  IN  W

HOLE

 OR

 IN  PAR

T  WITHO

UT  PRIOR

   WRITT

EN  

CONS

ENT  OF

 THE

RMO  FISH

ER  SCIEN

TIFIC.

DO  NOT

 SCA

LE  THIS  DR

AWING.

275  AIKEN  ROAD

ASHEVILLE

,  NC  28804

TITLE

FREEZER  UNIT

SIZE

SHEET    1    O

F    1      

DWG.  N

O.

3rd  ANGLE

PROJECTION

D1

2So

lidWo

rks  20

07-­10

-­25CDEF

34

56

78

9

KLM

1314

1516

1718

19

M L K F E D C B AGHIJ

1918

1716

1514

139

87

65

43

21

1011

12

ULT

315100G0

4

Paga A12

Page 100: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

DRAW

ING N

UMBE

R:

8926

..00..

1

84.98

4 [21

58.59

] DO

OR O

PEN

@18

0 0

5.086

30

.578

I--5.0

86

[129

.18]

[776.6

8] I

[129.1

8]

I I

r I

I I

I I

I I

I I

I I

I I

I I

I I

I 1----

------

------

-1I

----

--......

--...

.. -.

.... _-

--75

.954

I I \[1

929.2

3] t I

DOOR

OPE

N90 0

\ \ \ \ \ \ \ \ \

\ \ , , ,

" ""

,. ...

;r

...

..........

... ----

".-

• 0 o •

• 0

0

0 o.

o 0

(/) 1.0

0 ACC

ESS

PORT

[25

.40]

OPTIO

NAL B

ACK"

UP

SYST

EM C

ONNE

CTIO

N

23.32

6 [59

2.48]

(ALL

UNI

TS)

-

34.47

1 PO

WER

INLE

T &

SWITC

H [87

5.56]

BACK

NOTE

: DUA

L DI

MENS

ION

IS IN

CH O

VER

METR

IC.

/ " " "

/

I I I

I

I I

I

I I I I I I I I

REMO

TE A

LARM

CON

TACT

S

9.750

[24

7.65]

38.85

0 [98

6.79]

37.02

0 [94

0.31 ]

23

.375

[593.7

3]

-,r-

----

r-r-

----

----

----

-10

.460

[265.6

8] 10

.460

[265.6

8] 10

.460

I I I --

;---

'---

r-I I I I I

-t--

-L--

--f-

-r-

----

----

----

-I I I I

[265.6

8]

10.20

0 [25

9.08]

I I I I I r---

----

-----

I I I L___

__

____

___

4x A

DJUS

TABL

E SH

ELVE

S

1.830

[4

6.47]

REV

ECN

NO.

DATE

BY

o FR

-2202

06

/1/11

TF

I

40.75

0 [1

035.0

5] 3.0

50

[77.47

]

,+.::

::.::.

=.::.

:;----

------

-, 4

1--

---,

,--

I

LOCA

TION

OF

CONT

ROLS

OPTIO

NAL

CHAR

T RE

CORD

ER

CAD

APPD

DE

SCRI

PTIO

N OF

REV

ISION

TF!

RELE

ASED

FOR

PRO

DUCT

ION

21.34

0 [54

2.04]

I

------

---{ I I I I I

__

__

__

__

__

J I L

,+=

_L

..,.

.I

I I J I

----

----

----

----

-i I I I I

FRON

T

I I I

51.50

0 60

.000

[1308

.10] [

1524

] 77

[19

78.15

]

THIS

DO

CU

MEN

T C

ON

TAIN

S PR

OPR

IETA

RY

MODE

UPAR

TNAU

E: 23

CU

FT. -a

G'e

UPRI

GHT

FREE

ZERS

IN

FORM

ATIO

N AN

D SU

CH IN

FORM

ATIO

N IS

NOT

TO1

----------------------1

BE

DIS

CLOS

ED T

O OT

HERS

FOR

ANY

PUR

POSE

NOR

DWG

TITLE

: GE

NERA

L DIM

ENSIO

N DR

AWIN

G UL

T US

ED F

OR M

ANUF

ACTU

RING

PUR

POSE

S W

ITHO

UT

WRITT

EN P

ERMI

SSIO

N FR

OM TH

ERMO

FISH

ER SC

IENTIF

IC

DWN:

TFI

Then

noFi

sher

S

CIE

NT

IFIC

BO

X 64

9, MA

RIET

TA, O

HIO

4575

0

MATE

RIAl:

NIA

PAINT

COLO

R: NI

A TO

LERA

NCE U

NLES

S OTH

ERWI

SE SP

ECIFI

ED

.xx=±

.06

ANGlE

S: DE

CIMA

L: JO

O<=:I

:.030

DRAW

ING

NUMB

ER

8926

·00·1

SCAL

E: NI

A SIZE B

SoIid

'MlJ!

<s2ll1

ll-tj·2

:j

Paga A13

Page 101: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

1.4

36.1

35.9

911.2

36.2

919.2

2.9

74.8

27.0

SHELF  DEPTH

686.6

2.6

66.3

9.9

251.2

10.3

262.1

10.3

262.1

10.3

262.1

10.4

263.8

4X  ADJU

STA

BLE

SHELV

ES

(3  SHELV

ES  

OPTIONAL)

25.0

636.0

49.2

1250.8

11.5

292.9

SERIAL  

COMMUNICATION

REMOTE

 ALA

RM

CONTA

CTS

POWER  PLU

G

1.0[25.4]

ACCESS  PORTS

POWER

SWITCH

45.2

1148.6

1.0

24.5

3.0

77.2

19.9

505.0

18.2

463.4

2.1

52.6

57.6

1463.2

2.6

66.3

51.2

1301.1

39.4

SHELF  W

IDTH

1000.8

78.0

1981.3

FOR  GRILLE

 SEE  DETA

IL  VIEW

USER  IN

TERFA

CE

WHITE  BOARD

31.8

808.1

95.6

 

DOOR  OPEN  @

 180

2427.9

2.6

65.6

2.6

65.6

40.0

TANK  W

IDTH

1016.0

80.9

DOOR  OPEN  @

 90

2054.8

28.3

718.8

.3 8.0

49.2

1250.6

37.6

955.4

OPTIONAL  CHART

RECORDER

BACK

1.SYMBOLS

,  DESIGNATIONS  AND

     GENERAL  DRAWING  METH

ODS

     ENGWI002

2.  ALL  COMPONENTS

 SHOULD

 BE

     RoH

S  COMPLIANT

3.  BASIC  DIMENSION  TOLE

RANCE

     UNLE

SS  OTH

ERWISE  SPECIFIED:

     .X=  

0.100"

   4.  D

UAL  DIMENSION  IS

 INCH  OVER

     METR

IC.

GRILLE

 DETA

IL  VIEW

FLOOR  REFE

RENCE

-­60347

2011-­06-­30

NEW  REL

EASE

REV.

ECN  #

DATE

DESC

RIPT

ION

REVISION

S

1211

10

J I H G AB

700

THE  INFO

RMAT

ION  CO

NTAINE

D  HE

REIN    IS

 TH

E  PR

OPRIET

ARY  DA

TA  OF  TH

ERMO

 FISH

ER  SCIEN

TIFIC.  IT  IS

 NOT

 TO  BE

 RE

PROD

UCED

 OR  DISC

LOSE

D  IN  W

HOLE

 OR

 IN  PAR

T  WITHO

UT  PRIOR

   WRITT

EN  

CONS

ENT  OF

 THE

RMO  FISH

ER  SCIEN

TIFIC.

DO  NOT

 SCA

LE  THIS  DR

AWING.

275  AIKEN  ROAD

ASHEVILLE

,  NC  28804

TITLE

FREEZER  UNIT

SIZE

SHEET    1    O

F    1      

DWG.  N

O.

3rd  ANGLE

PROJECTION

D1

2So

lidWo

rks  20

07-­10

-­25CDEF

34

56

78

9

KLM

1314

1516

1718

19

M L K F E D C B AGHIJ

1918

1716

1514

139

87

65

43

21

1011

12

ULT

315100G0

5

Paga A14

Page 102: Equipment Seismic Anchorage – ThermoFisher Scientific Freezers · Equipment Seismic Anchorage ... Equipment Seismic Anchorage – ThermoFisher Scientific Freezers ... • Design

DRAW

lNG N

UMBE

R: 89

30.00

-1

5.086

[1

29.18

]

84.08

5

96,98

0 [2

463.

29]

DOOR

OPE

N @

180"

36

.578

f--5.0

86

[929.0

8] I

[129

.18]

1---

----

----

----

-, I

I I

I I

I I

I 1

I 1

I I

I I

1 r

I I

I I

I

[213

5.76

] \

! DO

OR O

PEN9

0 "\

J \

I \

I \

I \

I \

J \

I \

I \

I \

/,

/,

,,

/,

,-"..

.. -...,......

.. ..,."

'

.... ,

--'-

----

----

.-:;

-:..

::-=

-

o Q

0

• 0

o (/J

1.00

ACC

ESS

PORT

[25

.40]

OPTI

ONAL

BAC

K-UP

0

SYST

EM C

ONNE

CTIO

N 23

.326

-[5

92.4

8]

REMO

TE A

LARM

CON

TACT

S-

(ALL

UNI

TS)

40.47

1 [1

027.

96]

POW

ER IN

LET

& SW

ITCH

BACK

NOTE

: DUA

L DI

MENS

ION

IS IN

CH O

VER

METR

IC.

REV

ECN

NO.

DATE

BY

CA

D AP

PD

DESC

RIPT

ION

OF R

EVIS

ION

o FR

-2202

06

/1/11

TF

I TF

I RE

LEAS

ED F

OR P

RODU

CTIO

N

1.830

[4

6.47]

JJJ

38.85

0 [9

86.7

9]

37.02

0 -j

[940.3

1 ]

27.00

0

9.750

[2

47.6

5]

10.46

0 [2

65.6

8]

[685

.80]

-+--

+-r-

----

----

----

-I I I

--+

--'-

--t-

I I I I r 10

.460

[265

.68]

-+

-...

.1--

--1

1-

10.46

0 [2

65.6

8]

I r r I

-+--

--'-

--+

-

10.20

0

I r I I I 1"---

------

---

r I r L___

__

____

___

[259

.08]

4x

ADJ

USTA

BLE

SHEL

VES

RE:FE

RENC

E

I

t

21.34

0 [5

42.0

4]L

46.75

0 [1

187.4

5] LO

CATIO

N OF

CO

NTRO

LS

3.050

[7

7.47

] OP

TIONA

L CH

ART

RECO

RDER

----

----

----

----

-1--

+11-

--.--

I , , 1-

+11=

=-+-

----

----

--1 I I I I 1

----

----

---1

L

-t--

'--'

1 1 I

1 I

1 I

r-----

------

------

l I

I I

I I

1 ,

1

I 1

I 1

1 1

I I

51.50

0 60

.000

(130

8.10]

[152

4]

L.. _

__

__

__

__

__

__

__

__'-

-+II

-_-'

-

FRON

T

77

(197

8.15]

THIS

DO

CUM

ENT

CO

NTA

INS

PRO

PRIE

TAR

Y MO

OEUP

ART N

AME:

28 C

U FT

, -8S

·C U

PRIG

HT FR

EEZE

RS

INFO

RMAT

ION

AND

SUCH

INFO

RMAT

ION

IS N

OT

BE D

ISCL

OSED

TO

OTHE

RS F

OR A

NY P

URPO

SE N

OR D

WGTIT

LE:

USED

FOR

MAN

UFAC

TURI

NG P

URPO

SES

WIT

HOUT

W

RITIE

N PE

RMISS

ION F

ROM

THER

MO FI

SHER

SCIE

NTIFI

C OW

N: TF

! SC

ALE:

NIA

MATE

RIAL:

NIA

TheI

,noF

ishe

r PA

INT CO

lOR:

NIA

SC

IEN

TIF

IC

OlER

ANCE

UNL

ESS

OTHE

RWise

SPE

CIFIE

D DR

AWIN

G NU

MBER

SIZ

E

BOX

649,

MARI

ETIA

, OHI

O 45

750

ANGlE

S: DE

CIMA

L: .XX

=±.06

89

30-00

-1.xX

X=±.0

30

B

...---

Paga A15