19
2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics How fast an enzyme catalyzed reaction goes Why study enzyme kinetics? Helps us understand mechanism of enzyme (how it works) Investigation of mutations in metabolic pathways Understanding of regulation of biochemical reactions (up or down regulation of catalyst)

Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

Embed Size (px)

Citation preview

Page 1: Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

2/9/2017

1

Enzyme Kinetics and Inhibition

Pratt & Cornely Ch 7

Enzyme Kinetics

• How fast an enzyme catalyzed reaction goes

• Why study enzyme kinetics?

– Helps us understand mechanism of enzyme (how it works)

– Investigation of mutations in metabolic pathways

– Understanding of regulation of biochemical reactions (up or down regulation of catalyst)

Page 2: Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

2/9/2017

2

Simple Mechanisms

• Chemical mechanism

• Enzyme Catalyzed

• How do we measure kinetics experimentally?

Chemical Kinetics

• Rate:  measure product formed per second

• Rate slows as reactant disappears

• Measure initial rate

• Do a second experiment with more starting material, and the initial rate is faster

Page 3: Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

2/9/2017

3

Chemical Kinetics

• Secondary plot: change in rate as a function of how much substrate you started with

• Linear plot—does that make sense?

Enzyme Kinetics

• Complicated—two components, treated separately

• First, how does [enzyme] affect rate (given large [S]?)

Page 4: Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

2/9/2017

4

Enzyme Kinetics• Next, keep the [E] constant and low, and test how changing the [S] affects initial rates

• Michaelis‐Menton Treatment[Product]

Time

Michaelis‐Menton Kinetics 

• Rectangular hyperbola

• Parameters

Vmax [S]vo =  ‐‐‐‐‐‐‐‐‐‐‐‐‐

Km + [S]

Page 5: Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

2/9/2017

5

Graphical Determination of Kinetic Parameters

• Analyze hyperbola

• Construct linear plot

• Double reciprical

Page 6: Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

2/9/2017

6

Lineweaver‐Burk Analysis

• How can you determine kinetic parameters Vmax and Km?

[S] mM[P] at 1 min (nM)

1 0.113 0.255 0.3410 0.4530 0.5850 0.61

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60

M‐M Plot

y = 7.6225x + 1.4602R² = 0.9999

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1 1.2

Linewaver‐Burke Plot

Mechanism and Assumptions

• E + S  ES E + P

– Low [E] relative to [S]

• Steady state

– Initial rates

• No back rxn

• No pdt inhibition

– Derive a rate equation

Page 7: Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

2/9/2017

7

Interpretation of Shape

• Low [S]– Rate very dependent on [S]

– Binding is rate limiting

• High [S]– Rate independent

– Saturation of E

– Chemistry is rate limiting

Maximum Velocity and the Catalytic Constant

• What two things contribute to the maximum velocity limit?– Amount of enzyme– Chemical ability of enzyme 

(catalytic constant)

• Vmax = [E] kcat• Only kcat tells us about the 

enzyme– Maximum # of substrate 

molecules per active site per second

– Turnover number

Page 8: Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

2/9/2017

8

Michaelis Constant• Km is the [S] at which the 

reaction reaches half its maximum velocity

• Physical meaning (assuming equilibrium binding):  Km is the dissociation constant for ES

• Km is [S] at which enzyme is half‐bound

• Km is measure of affinity of enzyme for S

• Low Km is tight binding 

Enzyme Efficiency

• At low [S], the second order rate constant is kcat/Km

• Efficient enzymes have large kcat/Km – Large kcat and/or– Small Km

• Catalytic perfection at 108 or 109 M‐1 S‐1

• Diffusion control

Assume large [S] and small [S]

Page 9: Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

2/9/2017

9

Case Study: Diffusion Controlled Enzymes

Superoxide Dismutase:  Better than Diffusion!

Page 10: Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

2/9/2017

10

Catalytic Proficiency

Non‐MM Kinetics

• Multi‐substrate

– Each substrate has its own Km

– Random, ordered, ping‐pong

• Multistep reactions

– kcat not simplified to k2

• Allosteric enzymes

– cooperativity

Page 11: Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

2/9/2017

11

Irreversible Enzyme Inhibition

• Affinity labels

– Test enzyme mechanisms

– Serine protease

• Mechanism‐based Inhibitors

• Transition State Analogs

Mechanism Based Inhibitors

• Suicide inhibitors

• Selectivity

• Targeting fast‐growing cells

Page 12: Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

2/9/2017

12

Drug Byproducts

• Oxidation of xenobiotics by P450 enzymes

• Pharmacology

• Liver damage—covalent binding to cysteine

Transition State Analog

• Your book presents high energy intermediate analog

Page 13: Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

2/9/2017

13

Case Study: Orotidine Decarboxylase

Mechanism of Catalysis

Page 14: Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

2/9/2017

14

Reversible Inhibition Kinetics

• Know types of Reversible Inhibition

• Know effect on kinetic parameters

• Understand why

• Interpret MM plots

Competitive Inhibition

• Added substrate can outcompete inhibitor

• Draw mechanism with equilibrium arrows– Kmapp: How does added I affect ES dissociation?

– Vmax: How does adding infinite S affect ES formation? 

• Draw altered MM and LB plots

Page 15: Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

2/9/2017

15

Uncompetitive Inhibition

• S and I help each other bind

• Draw mechanism with equilibrium arrows– Kmapp: How does added I affect ES dissociation?

– Vmax: How does adding infinite S affect ES formation? 

• Draw altered MM and LB plots

Page 16: Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

2/9/2017

16

Mixed Inhibition

• The continuum between competitive and uncompetitive– Inhibitor may bind either E or ES

– Either more competitive or more uncompetitive

• Noncompetitive is middle of continuum

Mixed inhibition

Noncompetitive Inhibition

• Assumes simple case of mixed inhibition in which  inhibitor binding equally to E and ES

• Physical explanation: inhibitor binding causes change that affects reaction, but not S binding

• Very rare (nonexistent)• Draw mechanism with 

equilibrium arrows– Kmapp: How does added I affect 

ES dissociation?– Vmax: How does adding infinite 

S affect ES formation? 

• Draw altered MM and LB plots

Page 17: Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

2/9/2017

17

Fill in the Chart

Inhibition Effect on KM Effect on Vmax Effect on Vmax/KM

Competitive Down 

Uncompetitive Down

Noncompetitive Down

Mixed Down

Problem 56

[S] M V ( no I) V (with I)

10 4.63 nmol/min

2.70

15 5.88 3.46

20 6.94 4.74

25 9.26 6.06

30 10.78 6.49

40 12.14 8.06

50 14.93 9.71 • Use LB plot to determine parameters

• What type of inhibition?

• Calculate Ki.

Page 18: Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

2/9/2017

18

Allosteric Regulation

• Can be inhibition

– Negative effector

– Feedback inhibition

– PFK regulation

Mechanism

• PEP binding in allosteric site causes conformational shift in neighbor

• An Arg essential for F6P binding is replaced with Glu

• T vs. R state• Cooperative, no effect on Vmax, but only apparent KM

Page 19: Enzyme Kinetics and Inhibitioncourses.chem.indiana.edu/c483/documents/Lecturech7_001.pdf · 2/9/2017 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics •How fast

2/9/2017

19

Positive Effector

• ADP acts with positive cooperativity

• Favors R state by binding in the same allosteric site, but holding it open to lock Arg into place

• Does ADP effector make sense physiologically?

Other Modes of Regulation

• Transcriptional level

• Compartmentalization

• Intracellular signal

• Covalent modification