84
Enumeration of minimal acyclic automata Parking functions eminaire Lotharingien de Combinatoire ’75 Jean-Baptiste PRIEZ Laboratoire de Recherche en Informatique Facult ´ e des Sciences d’Orsay Universit ´ e Paris-Sud Tuesday, September 8 th 2015 J.-B. PRIEZ (L.R.I.) S.L.C.’75 1 / 31

Enumeration of minimal acyclic automata Parking functions fileEnumeration of minimal acyclic automata Parking functions Seminaire Lotharingien de Combinatoire ’75´ Jean-Baptiste

  • Upload
    others

  • View
    17

  • Download
    0

Embed Size (px)

Citation preview

Enumeration of minimal acyclicautomata

Parking functionsSeminaire Lotharingien de Combinatoire ’75

Jean-Baptiste PRIEZ

Laboratoire de Recherche en InformatiqueFaculte des Sciences d’Orsay

Universite Paris-Sud

Tuesday, September 8th 2015

J.-B. PRIEZ (L.R.I.) S.L.C.’75 1 / 31

Acyclic automata

Generalized parking functions

Bijection: (n-i) ADFA–parking functions

Minimal automata

J.-B. PRIEZ (L.R.I.) Acyclic automata S.L.C.’75 2 / 31

Acyclic deterministic finite automata

Let Σ be an alphabet of k symbols.

An acyclic automaton of n states on Σ: (i,A, δ)

• i ∈ [n] an initial state ,• A ⊂ [n] a set of accepting states,• δ : [n]× Σ→ [n] ∪ {∅} a transition function

such that

∀q ∈ [n] , ∀w ∈ Σ+ , δ∗(q,w) 6= q.

where ∅ is the absorbing state and δ∗ is the transition functionextended to words.

J.-B. PRIEZ (L.R.I.) Acyclic automata S.L.C.’75 3 / 31

Acyclic deterministic finite automata

Let Σ be an alphabet of k symbols.

An acyclic automaton of n states on Σ: (i,A, δ)

• i ∈ [n] an initial state ,• A ⊂ [n] a set of accepting states,• δ : [n]× Σ→ [n] ∪ {∅} a transition function

such that

∀q ∈ [n] , ∀w ∈ Σ+ , δ∗(q,w) 6= q.

where ∅ is the absorbing state and δ∗ is the transition functionextended to words.

J.-B. PRIEZ (L.R.I.) Acyclic automata S.L.C.’75 3 / 31

Acyclic deterministic finite automata (2)

3 6

1 2 5 ∅

4 7

aa

b

b

a,b

a

b

ba

a,b

a,b

J.-B. PRIEZ (L.R.I.) Acyclic automata S.L.C.’75 4 / 31

Acyclic deterministic finite automata (2)

3 6

1 2 5 ∅

4 7

aa

b

b

a,b

a

b

a,ba

b

b

b

J.-B. PRIEZ (L.R.I.) Acyclic automata S.L.C.’75 4 / 31

Acyclic deterministic finite automata (2)

3 6

1 2 5 ∅

4 7

aa

b

b

a,b

a

b

a,ba

b

b

b

J.-B. PRIEZ (L.R.I.) Acyclic automata S.L.C.’75 4 / 31

LISKOVETS, 2003

Theorem :

Tk (n) =n∑

s=1

(−1)s−1(

ns

)(n− s + 1)ks Tk (n− s)

with Tk (0) = 1.

Particular case : J. KUNG & C. YAN, 2003

P(χ; n) =n∑

s=1

(−1)s−1(

ns

)χ(n− s + 1)s P(χ; n− s)

with χ : N→ N a non-decreasing map.

Bijection : Transition fct←→ Generalized parking fctwith χ(m) := mk .

J.-B. PRIEZ (L.R.I.) Acyclic automata S.L.C.’75 5 / 31

LISKOVETS, 2003

Theorem :

Tk (n) =n∑

s=1

(−1)s−1(

ns

)(n− s + 1)ks Tk (n− s)

with Tk (0) = 1.

Particular case : J. KUNG & C. YAN, 2003

P(χ; n) =n∑

s=1

(−1)s−1(

ns

)χ(n− s + 1)s P(χ; n− s)

with χ : N→ N a non-decreasing map.

Bijection : Transition fct←→ Generalized parking fctwith χ(m) := mk .

J.-B. PRIEZ (L.R.I.) Acyclic automata S.L.C.’75 5 / 31

LISKOVETS, 2003

Theorem :

Tk (n) =n∑

s=1

(−1)s−1(

ns

)(n− s + 1)ks Tk (n− s)

with Tk (0) = 1.

Particular case : J. KUNG & C. YAN, 2003

P(χ; n) =n∑

s=1

(−1)s−1(

ns

)χ(n− s + 1)s P(χ; n− s)

with χ : N→ N a non-decreasing map.

Bijection : Transition fct←→ Generalized parking fctwith χ(m) := mk .

J.-B. PRIEZ (L.R.I.) Acyclic automata S.L.C.’75 5 / 31

LISKOVETS, 2003

Theorem :

Tk (n) =n∑

s=1

(−1)s−1(

ns

)2s(n− s + 1)ks Tk (n− s)

with Tk (0) = 1.

Particular case : J. KUNG & C. YAN, 2003

P(χ; n) =n∑

s=1

(−1)s−1(

ns

)χ(n− s + 1)s P(χ; n− s)

with χ : N→ N a non-decreasing map.

Bijection : Transition fct←→ Generalized parking fctwith χ(m) := 2mk .

J.-B. PRIEZ (L.R.I.) Acyclic automata S.L.C.’75 5 / 31

Bijection?

3 4

5 2

1

a,b,c

a,b

ca,c

b

a,c

a,c

b

b

l ?

Generalized parking function

J.-B. PRIEZ (L.R.I.) Acyclic automata S.L.C.’75 6 / 31

Acyclic automata

Generalized parking functionsParking functionGeneralization

Bijection: (n-i) ADFA–parking functions

Minimal automata

J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 7 / 31

Parking functionKONHEIM and WEISS, 1966

Combinatorial object : Modeling hashes

f : [n]→ N+ such that #f−1([k]) > k

for any k ∈ [n].

Interests :• (Labeled) rooted trees,• Prufer sequences,• Hyperplan arrangements• n! conjecture• . . .

Parking functions on {1, 2, 3} : F [3]

111, 112, 121, 211, 122, 212, 221, 113, 131, 311,123, 132, 312, 213, 231, 321

where f denotes f (1)f (2)f (3).

J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 8 / 31

Parking functionKONHEIM and WEISS, 1966

Combinatorial object : Modeling hashes

f : [n]→ N+ such that #f−1([k]) > k

for any k ∈ [n].

Interests :• (Labeled) rooted trees,• Prufer sequences,• Hyperplan arrangements• n! conjecture• . . .

Parking functions on {1, 2, 3} : F [3]

111, 112, 121, 211, 122, 212, 221, 113, 131, 311,123, 132, 312, 213, 231, 321

where f denotes f (1)f (2)f (3).

J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 8 / 31

Parking functionKONHEIM and WEISS, 1966

Combinatorial object : Modeling hashes

f : [n]→ N+ such that #f−1([k]) > k

for any k ∈ [n].

Interests :• (Labeled) rooted trees,• Prufer sequences,• Hyperplan arrangements• n! conjecture• . . .

Parking functions on {1, 2, 3} : F [3]

111, 112, 121, 211, 122, 212, 221, 113, 131, 311,123, 132, 312, 213, 231, 321

where f denotes f (1)f (2)f (3).J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 8 / 31

Generalized parking function

STANLEY and PITMAN, 2002; KUNG and YAN, 2003.

χ-parking function : Let χ : N+ → N be non-decreasing.

f : [n]→ N+ such that #f−1([χ(k)]) > k

for any k ∈ [n].

Example : Fχ[2] with χ : m 7→m2

11, 12, 21, 13, 31, 14, 41

Notation : Fχ ' Fm2

J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 9 / 31

Generalized parking function

STANLEY and PITMAN, 2002; KUNG and YAN, 2003.

χ-parking function : Let χ : N+ → N be non-decreasing.

f : [n]→ N+ such that #f−1([χ(k)]) > k

for any k ∈ [n].

Example : Fχ[2] with χ : m 7→m2

11, 12, 21, 13, 31, 14, 41

Notation : Fχ ' Fm2

J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 9 / 31

Generalized parking function

STANLEY and PITMAN, 2002; KUNG and YAN, 2003.

χ-parking function : Let χ : N+ → N be non-decreasing.

f : [n]→ N+ such that #f−1([χ(k)]) > k

for any k ∈ [n].

Example : Fχ[2] with χ : m 7→m2

11, 12, 21, 13, 31, 14, 41

Notation : Fχ ' Fm2

J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 9 / 31

Intuition

Let χ : N+ → N be non-decreasing.

Let f be a χ-parking function:

χ

J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 10 / 31

Intuition

Let χ : N+ → N be non-decreasing.

Let f be a χ-parking function:

χ

J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 10 / 31

Intuition

Let χ : N+ → N be non-decreasing.

Let f be a χ-parking function:

χ

f−1({1})→{α,β}

J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 10 / 31

Intuition

Let χ : N+ → N be non-decreasing.

Let f be a χ-parking function:

χ

f−1({2})→{α,β}

J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 10 / 31

Intuition

Let χ : N+ → N be non-decreasing.

Let f be a χ-parking function:

χ

f−1({3})→{α,β}

∅{ρ,γ,τ}

J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 10 / 31

Intuition

Let χ : N+ → N be non-decreasing.

Let f be a χ-parking function:

χ

{α,β}∅{ρ,γ,τ}

∅∅∅{ε,ϑ,ι,ω}

∅∅{ ··· }

J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 10 / 31

Generalized parking function (2)

Equivalent definition : P. and VIRMAUX, 2015

(Qi)i∈N+a sequence of disjoint subsets of [n]

such that

χ(k)∑i=1

#Qi > k , for any k ∈ [n] .

Fm2 [2] :

, 12, 21, 13, 31, 14, 41

(1| · |2| · ), (2| · |1| · ), (1| · | · |2), (2| · | · |1)

with Qi := f−1({i})

J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 11 / 31

Generalized parking function (2)

Equivalent definition : P. and VIRMAUX, 2015

(Qi)i∈N+a sequence of disjoint subsets of [n]

such that

χ(k)∑i=1

#Qi > k , for any k ∈ [n] .

Fm2 [2] :

11, 12, 21, 13, 31, 14, 41

(1| · |2| · ), (2| · |1| · ), (1| · | · |2), (2| · | · |1)

with Qi := f−1({i})

J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 11 / 31

Generalized parking function (2)

Equivalent definition : P. and VIRMAUX, 2015

(Qi)i∈N+a sequence of disjoint subsets of [n]

such that

χ(k)∑i=1

#Qi > k , for any k ∈ [n] .

Fm2 [2] :

(12| · | · | · ), 12, 21, 13, 31, 14, 41

(1| · |2| · ), (2| · |1| · ), (1| · | · |2), (2| · | · |1)

with Qi := f−1({i})

J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 11 / 31

Generalized parking function (2)

Equivalent definition : P. and VIRMAUX, 2015

(Qi)i∈N+a sequence of disjoint subsets of [n]

such that

χ(k)∑i=1

#Qi > k , for any k ∈ [n] .

Fm2 [2] :

(12| · | · | · ), (1|2| · | · ), 21, 13, 31, 14, 41

(1| · |2| · ), (2| · |1| · ), (1| · | · |2), (2| · | · |1)

with Qi := f−1({i})

J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 11 / 31

Generalized parking function (2)

Equivalent definition : P. and VIRMAUX, 2015

(Qi)i∈N+a sequence of disjoint subsets of [n]

such that

χ(k)∑i=1

#Qi > k , for any k ∈ [n] .

Fm2 [2] :

(12| · | · | · ), (1|2| · | · ), (2|1| · | · ), 13, 31, 14, 41

(1| · |2| · ), (2| · |1| · ), (1| · | · |2), (2| · | · |1)

with Qi := f−1({i})

J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 11 / 31

Generalized parking function (2)

Equivalent definition : P. and VIRMAUX, 2015

(Qi)i∈N+a sequence of disjoint subsets of [n]

such that

χ(k)∑i=1

#Qi > k , for any k ∈ [n] .

Fm2 [2] :

(12| · | · | · ), (1|2| · | · ), (2|1| · | · ),(1| · |2| · ), (2| · |1| · ), (1| · | · |2), (2| · | · |1)

with Qi := f−1({i})

J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 11 / 31

Graphic representation

Let (Qi) := ( 2| · |13| · | · | · | · | · | · ) be a Fm2 -structure on {1, 2, 3}.

m2

{2}

{1 , 3}∅

∅∅∅∅∅∅

(Qi)

J.-B. PRIEZ (L.R.I.) Generalized parking functions S.L.C.’75 12 / 31

Acyclic automata

Generalized parking functions

Bijection: (n-i) ADFA–parking functions

Minimal automata

J.-B. PRIEZ (L.R.I.) Bijection: (n-i) ADFA–parking functions S.L.C.’75 13 / 31

Goal

Explicit bijection :

2 3 5

1

6 4 ∅

a,b

a

b

b

a

a

b

a,b

b

a

←→

(Qi)

Q2 = {5} , Q24 = {6} ,Q5 = {4} , Q27 = {2} ,Q8 = {3} , Q72 = {1} .

(non-initial) ADFA (A, δ) over an alphabet of k symbols

l

2mk -parking functions

J.-B. PRIEZ (L.R.I.) Bijection: (n-i) ADFA–parking functions S.L.C.’75 14 / 31

Goal

Explicit bijection :

2 3 5

1

6 4 ∅

a,b

a

b

b

a

a

b

a,b

b

a

←→

(Qi)

Q2 = {5} , Q24 = {6} ,Q5 = {4} , Q27 = {2} ,Q8 = {3} , Q72 = {1} .

(non-initial) ADFA (A, δ) over an alphabet of k symbols

l

2mk -parking functions

J.-B. PRIEZ (L.R.I.) Bijection: (n-i) ADFA–parking functions S.L.C.’75 14 / 31

Goal

Explicit bijection Mine the bijection :

2 3 5

1

6 4 ∅

a,b

a

b

b

a

a

b

a,b

b

a

←→

(Qi)

Q2 = {5} , Q24 = {6} ,Q5 = {4} , Q27 = {2} ,Q8 = {3} , Q72 = {1} .

(non-initial) ADFA (A, δ) over an alphabet of k symbols

l

2mk -parking functions

J.-B. PRIEZ (L.R.I.) Bijection: (n-i) ADFA–parking functions S.L.C.’75 14 / 31

Acyclic automata

Generalized parking functions

Bijection: (n-i) ADFA–parking functions

Minimal automataCo-reachabilitySimplicityReachabilityExtended automatonConclusion

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 15 / 31

Co-reachability

Let (A, δ) be a (non-initial) ADFA.

Co-reachable :

∀q ∈ [n] ,∃w ∈ Σ∗ , δ∗(q,w) ∈ A .

3 6

1 2 5 ∅

4 7

a,b

a

b a,ba

b

aa

b

b

a,b

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 16 / 31

Co-reachability

Let (A, δ) be a (non-initial) ADFA.

Co-reachable :

∀q ∈ [n] ,∃w ∈ Σ∗ , δ∗(q,w) ∈ A .

3 6

1 2 5 ∅

4 7

a,b

a

b a,ba

b

aa

b

b

a,b

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 16 / 31

Co-reachability

Let (A, δ) be a (non-initial) ADFA.

Co-reachable :

∀q ∈ [n] ,∃w ∈ Σ∗ , δ∗(q,w) ∈ A .

3 6

1 2 5 ∅

4 7

a,b

a

b a,ba

b

aa

b

b

a,b

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 16 / 31

Yep but. . .

(Qi) :=

(2 · · · · 3 · · ·1 · · · · · · · ·

)/∈ A∈ A

a ∅ ∅ 2 2 ∅ 2 1 1 1b ∅ 2 ∅ 2 1 1 ∅ 2 1

1

3 ∅

2

a,ba

b a,b

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 17 / 31

Yep but. . .

(Qi) :=

(2 · · · · 3 · · ·1 · · · · · · · ·

)/∈ A∈ A

a ∅ ∅ 2 2 ∅ 2 1 1 1b ∅ 2 ∅ 2 1 1 ∅ 2 1

1

3 ∅

2

a,ba

b a,b

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 17 / 31

Co-reachability (2)

Let (Qi) be a 2mk -parking function.

Let Θ be the associated (n-i) ADFA.

Fact : If Q1 = ∅ then Θ is co-reachable.

Theorem :

(n-i) co-reachable ADFA ' (2mk−1)-parking functions

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 18 / 31

Co-reachability (2)

Let (Qi) be a 2mk -parking function.

Let Θ be the associated (n-i) ADFA.

Fact : If Q1 = ∅ then Θ is co-reachable.

Theorem :

(n-i) co-reachable ADFA ' (2mk−1)-parking functions

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 18 / 31

Co-reachability (3)

The 13 (2m2 − 1)-parking functions on {1, 2} andthe associated (n-i) co-reachable ADFA :

(12|| · | · | · | · | · | · )→ ∅ 1 2a,b

a,b

,

(1||2| · | · | · | · | · )→ ∅ 1 2a,b

a

b, ∅ 2 1

a,b

a

b← (2||1| · | · | · | · | · )

(1|| · |2| · | · | · | · )→ ∅ 1 2a,b

a

b, ∅ 2 1

a,b

a

b← (2|| · |1| · | · | · | · )

(1|| · | · |2| · | · | · )→ ∅ 1 2a,b

b

a, ∅ 2 1

a,b

b

a← (2|| · | · |1| · | · | · )

(1|| · | · | · |2| · | · )→ ∅ 1 2a,b

b

a, ∅ 2 1

a,b

b

a← (2|| · | · | · |1| · | · )

(1|| · | · | · | · |2| · )→ ∅ 1 2a,b a,b , ∅ 2 1

a,b a,b ← (2|| · | · | · | · |1| · )

(1|| · | · | · | · | · |2)→ ∅ 1 2a,b a,b , ∅ 2 1

a,b a,b ← (2|| · | · | · | · | · |1)

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 19 / 31

SimplicityLet (A, δ) be a (n-i) ADFA.

Right language :

Lq = { w ∈ Σ∗ | δ∗(q,w) ∈ A }

Simple : (A,Σ) is simple iff Lq 6= Lq′

for each distinct q,q′ ∈ [n] .

3 6

1 2 5 ∅

4 7

a,b

a

b a,ba

b

aa

b

b

a,b

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 20 / 31

SimplicityLet (A, δ) be a (n-i) ADFA.

Right language :

Lq = { w ∈ Σ∗ | δ∗(q,w) ∈ A }

Simple : (A,Σ) is simple iff Lq 6= Lq′

for each distinct q,q′ ∈ [n] .

3 6

1 2 5 ∅

4 7

a,b

a

b a,ba

b

aa

b

b

a,b

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 20 / 31

SimplicityLet (A, δ) be a (n-i) ADFA.

Right language :

Lq = { w ∈ Σ∗ | δ∗(q,w) ∈ A }

Simple : (A,Σ) is simple iff Lq 6= Lq′

for each distinct q,q′ ∈ [n] .

3 6

1 2 5 ∅

4 7

a,b

a

b a,ba

b

aa

b

b

a,b

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 20 / 31

SimplicityLet (A, δ) be a (n-i) ADFA.

Right language :

Lq = { w ∈ Σ∗ | δ∗(q,w) ∈ A }

Simple : (A,Σ) is simple iff Lq 6= Lq′

for each distinct q,q′ ∈ [n] .

3 6

1 2 5 ∅

4 7

a,b

a

b a,ba

b

aa

b

b

a,b

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 20 / 31

And the condition of simplicity?

(Qi) ∈ F2m3−1[5] with Q1 = {2}, Q4 = {1, 3},Q8 = {4} and Q110 = {5}

3 4

5 2

1

a,b,c

a,b

ca,c

b

a,c

a,c

b

b

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 21 / 31

And the condition of simplicity?

(Qi) ∈ F2m3−1[5] with Q1 = {2}, Q4 = {1, 3},Q8 = {4} and Q110 = {5}

3 4

5 2

1

a,b,c

a,b

ca,c

b

a,c

a,c

b

b

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 21 / 31

Simplicity (2)

Let Θ be (n-i) co-reachable ADFA associated to (Qi).

Theorem :

Θ simple iff #Qi 6 1 , for all i ∈ [n].

Proposition : The number of (n-i) co-reachable and simple ADFA

Sk (n) =n∑

i=1

(−1)i−1 Sk (n− i)(

2(n− i + 1)k − 1− (n− i)i

)with Sk (0) = 1.

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 22 / 31

Simplicity (2)

Let Θ be (n-i) co-reachable ADFA associated to (Qi).

Theorem :

Θ simple iff #Qi 6 1 , for all i ∈ [n].

Proposition : The number of (n-i) co-reachable and simple ADFA

Sk (n) =n∑

i=1

(−1)i−1 Sk (n− i)(

2(n− i + 1)k − 1− (n− i)i

)with Sk (0) = 1.

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 22 / 31

Simplicity (2)

Let Θ be (n-i) co-reachable ADFA associated to (Qi).

Theorem :

Θ simple iff #Qi 6 1 , for all i ∈ [n].

Proposition : The number of (n-i) co-reachable and simple ADFA

Sk (n) =n∑

i=1

(−1)i−1 Sk (n− i)(

2(n− i + 1)k − 1− (n− i)i

)with Sk (0) = 1.

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 22 / 31

Reachability

Let (i,A, δ) be an ADFA.

Reachable :

∀q ∈ [n] , ∃w ∈ Σ∗ , δ∗(i,w) = q .

3 6

1 2 5 ∅

4 7

a

b

a,b

a

b

a

b

ba

a,b

a,b

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 23 / 31

Reachability

Let (i,A, δ) be an ADFA.

Reachable :

∀q ∈ [n] , ∃w ∈ Σ∗ , δ∗(i,w) = q .

3 6

1 2 5 ∅

4 7

a

b

a,b

a

b

a

b

ba

a,b

a,b

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 23 / 31

Reachability

Let (i,A, δ) be an ADFA.

Reachable :

∀q ∈ [n] , ∃w ∈ Σ∗ , δ∗(i,w) = q .

3 6

1 2 5 ∅

4 7

a

b

a,b

a

b

a

b

ba

a,b

a,b

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 23 / 31

Minimality

Minimal automaton :

(i,A, δ) minimal iff

reachable,co-reachable,simple.

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 24 / 31

Reachability (2)

Let Θ := (A, δ) (co-reachable and simple).

7

1 3 6 9

2 4 5 10 ∅

8

a

b

a

ba

b a,b

a

b

a

b a,b

ab

a,ba

b

Reachable part : Θ(4)

Proposition : If Θ co-reachable and simple then Θ(q) minimal.

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 25 / 31

Reachability (2)

Let Θ := (A, δ) (co-reachable and simple).

7

1 3 6 9

2 4 5 10 ∅

8

a

b

a

ba

b a,b

a

b

a

b a,b

ab

a,ba

b

Reachable part : Θ(4)

Proposition : If Θ co-reachable and simple then Θ(q) minimal.

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 25 / 31

Reachability (2)

Let Θ := (A, δ) (co-reachable and simple).

7

1 3 6 9

2 4 5 10 ∅

8

a

b

a

ba

b a,b

a

b

a

b a,b

ab

a,ba

b

Reachable part : Θ(4)

Proposition : If Θ co-reachable and simple then Θ(q) minimal.

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 25 / 31

Extended automaton

Complement of Θ(4) : Θ(4)

7

1 3 6 9

2 4 5 10 ∅

8

a

b

a

ba

b a,b

a

b

a

b a,b

ab

a,ba

b

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 26 / 31

Extended automaton

Complement of Θ(4) : Θ(4)

7

1 3 6 9

2 4 5 10 ∅

8

a

b

a

ba

b a,b

a

b

a

b a,b

ab

a,ba

b

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 26 / 31

Extended automaton

Complement of Θ(4) : Θ(4)

7

1 3 6 9 9

2 4 5 10

4 5 10 ∅

8 8

b

b

b

b

a

a

a

a,b

a

a

b a,b

ab

a,ba

b

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 26 / 31

Extended automaton

Complement of Θ(4) : Θ(4)

7

1 3 6 9 9

2 4 5 10

4 5 10 ∅

8 8

b

b

b

b

a

a

a

a,b

a

a

a

a

a,b

a

a

b a,b

ab

a,ba

b

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 26 / 31

Extended automaton (2)

An extended automaton of n states on Σ: (A, T , δ)

• A ⊂ [n] a set of accepting states,• T a set of (extra-)absorbing states,• δ : [n]× Σ→ [n] ∪ {∅} ∪ T an extended transition fct◦

such that δ acyclic.

LISKOVET (2003) :

Tk (n

, t

) =n∑

s=1

(−1)s−1(

ns

) (2(n− s + 1

+ t

)k)

s Tk (n− s

, t

)

= P(χ,n)

with χ : m 7→ 2(m + t)k .

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 27 / 31

Extended automaton (2)

An extended automaton of n states on Σ: (A, T , δ)

• A ⊂ [n] a set of accepting states,• T a set of (extra-)absorbing states,• δ : [n]× Σ→ [n] ∪ {∅} ∪ T an extended transition fct◦

such that δ acyclic.

LISKOVET (2003) :

Tk (n

, t

) =n∑

s=1

(−1)s−1(

ns

) (2(n− s + 1

+ t

)k)

s Tk (n− s

, t

)

= P(χ,n)

with χ : m 7→ 2(m + t)k .

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 27 / 31

Extended automaton (2)

An extended automaton of n states on Σ: (A, T , δ)

• A ⊂ [n] a set of accepting states,• T a set of (extra-)absorbing states,• δ : [n]× Σ→ [n] ∪ {∅} ∪ T an extended transition fct◦

such that δ acyclic.

LISKOVET (2003) :

Tk (n, t) =n∑

s=1

(−1)s−1(

ns

) (2(n− s + 1 + t)k

)s Tk (n− s, t)

= P(χ,n)

with χ : m 7→ 2(m + t)k .

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 27 / 31

Extended automaton (2)

An extended automaton of n states on Σ: (A, T , δ)

• A ⊂ [n] a set of accepting states,• T a set of (extra-)absorbing states,• δ : [n]× Σ→ [n] ∪ {∅} ∪ T an extended transition fct◦

such that δ acyclic.

LISKOVET (2003) :

Tk (n, t) =n∑

s=1

(−1)s−1(

ns

) (2(n− s + 1 + t)k

)s Tk (n− s, t)

= P(χ,n)

with χ : m 7→ 2(m + t)k .

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 27 / 31

Extended automaton (3)

Let Λ := (A, T , δ).• co-reachable iff ∃Θ co-reachable and ∃q st Λ = Θ(q)

Lemma :

Co-reachable extended automata'

(2(m + t)k−1)-parking functions

• simple iff ∃Θ simple and ∃q st Λ = Θ(q)

Lemma :

Simple

(co-reachable)

extended automata'

(2(m + t)k

(− 1)

)-parking functions (Qi) with #Qi 6 1

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 28 / 31

Extended automaton (3)

Let Λ := (A, T , δ).• co-reachable iff ∃Θ co-reachable and ∃q st Λ = Θ(q)

Lemma :

Co-reachable extended automata'

(2(m + t)k−1)-parking functions

• simple iff ∃Θ simple and ∃q st Λ = Θ(q)

Lemma :

Simple

(co-reachable)

extended automata'

(2(m + t)k

(− 1)

)-parking functions (Qi) with #Qi 6 1

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 28 / 31

Extended automaton (3)

Let Λ := (A, T , δ).• co-reachable iff ∃Θ co-reachable and ∃q st Λ = Θ(q)

Lemma :

Co-reachable extended automata'

(2(m + t)k−1)-parking functions

• simple iff ∃Θ simple and ∃q st Λ = Θ(q)

Lemma :

Simple (co-reachable) extended automata'

(2(m + t)k (− 1))-parking functions (Qi) with #Qi 6 1

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 28 / 31

Theorem S-1

Let Θ = (i,A, ζ) be a minimal ADFA.

Extended automata with constraint Θ :

S(Θ) = { Λ co-reachable and simple | Λ ·Θ co-reachable and simple }

Enumeration formula :

Sk (n

, t

) =n∑

i=1

(−1)i−1 Sk (n− i

, t

)

(2(n− i + 1

+ t

)k − 1

− t

− (n− i)i

)

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 29 / 31

Theorem S-1

Let Θ = (i,A, ζ) be a minimal ADFA.

Extended automata with constraint Θ :

S(Θ) = { Λ co-reachable and simple | Λ ·Θ co-reachable and simple }

Enumeration formula :

Sk (n

, t

) =n∑

i=1

(−1)i−1 Sk (n− i

, t

)

(2(n− i + 1

+ t

)k − 1

− t

− (n− i)i

)

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 29 / 31

Theorem S-1

Let Θ = (i,A, ζ) be a minimal ADFA.

Extended automata with constraint Θ :

S(Θ) = { Λ co-reachable and simple | Λ ·Θ co-reachable and simple }

Enumeration formula :

Sk (n, t) =n∑

i=1

(−1)i−1 Sk (n− i, t)

(2(n− i + 1 + t)k − 1− t − (n− i)

i

)

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 29 / 31

Theorem: double counting

7

1 3 6 9

2 4 5 10 ∅

8

a

b

a

ba

b a,b

a

b

a

b a,b

ab

a,ba

b

'

7

1 3 6 9

2 4 5 10

8 ∅

a

b

a

ba

b a,b

a

b

,

9

4 5 10 ∅

8

a

b a,b

ab

a,ba

b

n Sk (n, 0) =

n∑t=1

Sk (n− t , t) Mk (t)

where

• Sk (n, t) is the number extended ADFA of n states,t extra-absorbing states and t + 1 constraints,

• Mk (t) is the number of minimal ADFA of t states

and k is the number of symbols of Σ.

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 30 / 31

Theorem: double counting

7

1 3 6 9

2 4 5 10 ∅

8

a

b

a

ba

b a,b

a

b

a

b a,b

ab

a,ba

b

'

7

1 3 6 9

2 4 5 10

8 ∅

a

b

a

ba

b a,b

a

b

,

9

4 5 10 ∅

8

a

b a,b

ab

a,ba

b

n Sk (n, 0) =

n∑t=1

Sk (n− t , t)

Mk (t)

where• Sk (n, t) is the number extended ADFA of n states,

t extra-absorbing states and t + 1 constraints,

• Mk (t) is the number of minimal ADFA of t states

and k is the number of symbols of Σ.

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 30 / 31

Theorem: double counting

7

1 3 6 9

2 4 5 10 ∅

8

a

b

a

ba

b a,b

a

b

a

b a,b

ab

a,ba

b

'

7

1 3 6 9

2 4 5 10

8 ∅

a

b

a

ba

b a,b

a

b

,

9

4 5 10 ∅

8

a

b a,b

ab

a,ba

b

n Sk (n, 0) =

n∑t=1

Sk (n− t , t) Mk (t)

where• Sk (n, t) is the number extended ADFA of n states,

t extra-absorbing states and t + 1 constraints,• Mk (t) is the number of minimal ADFA of t states

and k is the number of symbols of Σ.

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 30 / 31

Theorem: double counting

7

1 3 6 9

2 4 5 10 ∅

8

a

b

a

ba

b a,b

a

b

a

b a,b

ab

a,ba

b

'

7

1 3 6 9

2 4 5 10

8 ∅

a

b

a

ba

b a,b

a

b

,

9

4 5 10 ∅

8

a

b a,b

ab

a,ba

b

n Sk (n, 0) =

n∑t=1

Sk (n− t , t) Mk (t)

where• Sk (n, t) is the number extended ADFA of n states,

t extra-absorbing states and t + 1 constraints,• Mk (t) is the number of minimal ADFA of t states

and k is the number of symbols of Σ.

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 30 / 31

Conclusion

Explicit bijection :• F2mk ←→ (n-i) ADFA

• F2mk -1 ←→ (n-i) co-reachable ADFA• F2mk -1 simple ←→ (n-i) co-reachable and simple ADFA

Update :

F2(m+t)k -1-t simple↔ extended co-reachable and simple ADFAwith constraints

Enumeration : minimal ADFA

n Sk (n, 0) =n∑

t=1

Sk (n− t , t)Mk (t)

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 31 / 31

Conclusion

Explicit bijection :• F2mk ←→ (n-i) ADFA• F2mk -1 ←→ (n-i) co-reachable ADFA

• F2mk -1 simple ←→ (n-i) co-reachable and simple ADFAUpdate :

F2(m+t)k -1-t simple↔ extended co-reachable and simple ADFAwith constraints

Enumeration : minimal ADFA

n Sk (n, 0) =n∑

t=1

Sk (n− t , t)Mk (t)

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 31 / 31

Conclusion

Explicit bijection :• F2mk ←→ (n-i) ADFA• F2mk -1 ←→ (n-i) co-reachable ADFA• F2mk -1 simple ←→ (n-i) co-reachable and simple ADFA

Update :

F2(m+t)k -1-t simple↔ extended co-reachable and simple ADFAwith constraints

Enumeration : minimal ADFA

n Sk (n, 0) =n∑

t=1

Sk (n− t , t)Mk (t)

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 31 / 31

Conclusion

Explicit bijection :• F2mk ←→ (n-i) ADFA• F2mk -1 ←→ (n-i) co-reachable ADFA• F2mk -1 simple ←→ (n-i) co-reachable and simple ADFA

Update :

F2(m+t)k -1-t simple↔ extended co-reachable and simple ADFAwith constraints

Enumeration : minimal ADFA

n Sk (n, 0) =n∑

t=1

Sk (n− t , t)Mk (t)

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 31 / 31

Conclusion

Explicit bijection :• F2mk ←→ (n-i) ADFA• F2mk -1 ←→ (n-i) co-reachable ADFA• F2mk -1 simple ←→ (n-i) co-reachable and simple ADFA

Update :

F2(m+t)k -1-t simple↔ extended co-reachable and simple ADFAwith constraints

Enumeration : minimal ADFA

n Sk (n, 0) =n∑

t=1

Sk (n− t , t)Mk (t)

J.-B. PRIEZ (L.R.I.) Minimal automata S.L.C.’75 31 / 31