32
Emergence d’Aspergillus fumigatus résistants aux Azolés en pathologie humaine Karine RISSO, Pneumoinfec4ologue PhC en Unité protégée d’Hématologie CHU Nice

Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

Embed Size (px)

Citation preview

Page 1: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

Emergence    d’Aspergillus  fumigatus    résistants  aux  Azolés    en  pathologie  humaine  

Karine  RISSO,  Pneumo-­‐infec4ologue  PhC  en  Unité  protégée  d’Hématologie  

CHU  Nice    

Page 2: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

•  Pas  de  conflit  d’intérêt  en  rapport  avec  le  sujet  

2  

Page 3: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

Aspergillus  sp.  

•  Champignon  filamenteux  de  l’environnement    •  Responsable  en  pathologie  humaine  :  

     Chez  l’immunodéprimés  §  formes  invasives        

     Chez  l’immunocompétent    §  formes  «semi-­‐invasives  »:  aspergillome,  aspergillose  

 chronique  nécrosante,  bronchite  aspergillaire  §  formes  immuno-­‐allergiques  :  ABPA  (muco+++),  granulome  bronchocentrique,  asthme  à  aspergillus  

3  

Page 4: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

En  Europe  

4  

•  Sur  les  733  millions  personnes  vivant  sur  le  con4nent  Européen  

§  2  100  000  souffrent  d’aspergillose  allergique    §  240  000  d’aspergillose  chronique  §  63  250  cas  d’aspergilloses  invasives  par  an  

Rapport  2013  ECDC  

Page 5: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

Traitement  

•  Les  Azolés  (itraconazole,  voriconazole  et  posaconazole)    §  Pierre  angulaire    

-­‐  préven4on    -­‐  traitement  de  première  inten4on    

§  U4lisa4on  PO  à  seul  traitement  envisageable  dans  les  formes  chroniques  

§  Seul  traitement  efficace  dans  les  aaeinte  SNC      

•  Amphotéricine  B  et  Echinocandines    

§   IV    §  place  limitée  dans  les  formes  chroniques…  

5  

ECIL  2013  CID  2008  

Page 6: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

Objec8fs  de  l’exposé                

ü  Etat  des  lieux  en  2014    -­‐  dans  le  monde      -­‐  en  France  

 

ü  Prévision:  et  demain  ?    

ü  Les  moyens  à  développer  pour  luAer  contre  ceAe  fatalité    –  contre  l’émergence  et  propaga4on  des  résistances  ?  –  comment  adapter  notre  prise  en  charge:  améliorer  le  rendement/rapidité  d’iden4fica4on  des  résistances  

6  

ü Percevoir:  -­‐  les  origines  -­‐  les  mécanismes  

de  la  résistance  d’Aspergillus  aux  Azolés  

Page 7: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

Pas  de  cas  clinique  niçois……..  

7  

Page 8: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

Mécanismes  de  résistances    

8   Verweij, PE., et al. Lancet  Infect  Dis  2009;  9:  789–95

•  Cible  des  azolés  §  Enzyme  =  lanostérol  14  alpha  déméthylase    §  Catalyse  une  étape  de  la  synthèse  de  l’ergosterol      

•  Codée  par  gène  CYP51A    

•  Résistance  =  muta4on  empêchant  la  fixa4on  des  azolés  

Page 9: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

Modalités    d’acquisi8on  de  résistance  en  clinique  

9  

Pression  de  sélec;on  

Pression  de  sélec;on  

Environementale  =  acquisi4on  depuis  l’environnement  

Emergence  de  mutants  R  in  situ  =  prise  prolongée  d’azolés  

Page 10: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

Sélec4on            depuis  l’environnement    

Modalités    d’acquisiFon  de  résistance  en  clinique  

10  

Pression  de  sélec;on  

Pression  de  sélec;on  

Environementale  =  acquisi4on  depuis  l’environnement  

Emergence  de  mutants  R  in  situ  =  prise  prolongée  d’azolés  

Page 11: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

I  -­‐  Résistance  secondaire  à  l’  exposi8on  prolongée  aux  azolés  

•  Les  1  ères  descrip4ons  d’aspergillus  résistants  aux  Azolés    –  3  isolats  cliniques  datant  de  la  fin  des  années  1980    –  1997  en  Suède  chez  un  pa4ent  exposé  au  posaconazole  suggérant  un  mécanisme  de  sélec4on  

–  puis  en  1999  à  Manchester    

•  Dite  «  Peu  fréquente  »  Pfaller  M.  J  Clin  Microbiol.  févr  2011;49(2):586‑90  

Guinea  J,  An4microb  Agents  Chemother.  9  janv  2008  

 •  S’accélère  ces  dernières  années  •  Pas  de  documenta4on  claire  des  facteurs  prédisposant    •  De  très  nombreuses  muta4ons,  principalement  de  CYP51A    

11  ECDC  2013  

Howard  SJ  Emerging  Inf  Dis  2009      

Page 12: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

12  

§  Manchester    §  400  isolats  d’Af  (1997  à  2007)  §  5%  R  Itraconazole  §  Augmenta4on  significa4ve  

fréquence  de  la  résistance  à  l’itraconazole  depuis  2004    

                                     8%  vs  1%  §  Af  R:  14  pt  analysables    

§  13  formes  chroniques  §  13  exposés  aux  Azolés  §  Tous  en  échec  sous  Az  

�F;81?� ->1� @41�9-5:?@-E� ;2� ;>-8� @41>-<E� 2;>� -?<1>358-8;?5?���F;81�>1?5?@-:/1�5:�Aspergillus has been reported in-2>1=A1:@8E��)41�L>?@�>1?5?@-:@�5?;8-@1�5:�"-:/41?@1>��* ��C-?�01@1/@10�5:�������:�-�/85:5/-8�/;881/@5;:�;2����A. fumiga-tus� 5?;8-@1?�� @41� 2>1=A1:/E�;2� 5@>-/;:-F;81� >1?5?@-:/1�C-?�����-�?53:5L/-:@�5:/>1-?1�?5:/1�� ��<�����$2�@41�� �5@>-/;:-F;81�>1?5?@-:@� 5?;8-@1?�C1� ?@A0510�� ���� �����C1>1�/>;??�>1?5?@-:@� @;�B;>5/;:-F;81�-:0�� �� �����C1>1�/>;??�resistant to posaconazole. Thirteen of 14 evaluable patients 5:� ;A>� ?@A0E� 4-0� <>5;>� -F;81� 1D<;?A>1�� �� 5:21/@5;:?� 2-5810�@41>-<E� �<>;3>1??10��� -:0� �� 2-5810� @;� 59<>;B1� �>19-5:10�[email protected]����534@11:�-95:;�-/50�-8@1>-@5;:?�C1>1�2;A:0�5:�@41�@->31@�1:FE91���E<���� �;2�C45/4�C1>1�:;B18����<;<A8-@5;:�genetic analysis of microsatellites showed the existence of resistant mutants that evolved from originally susceptible strains, different cyp51A mutations in the same strain, and 95/>;-8@1>-@5;:?� 5:�95/>;?-@1885@1� >1<1-@�:A9.1>���F;81� >1-sistance in A. fumigatus is an emerging problem and may develop during azole therapy.

Invasive aspergillosis in immunosuppressed patients is ������������������ ��������� ���������� ������� ������

in a high mortality rate (1). Chronic and allergic pulmo-nary and sinus aspergillosis are increasingly recognized in

numerous clinical settings. Treatment with itraconazole, voriconazole, and, recently, posaconazole is the backbone of therapy for these conditions because azoles are the only licensed class of oral drugs for treatment of aspergillosis (2,3). Amphotericin B and caspofungin are licensed intra-venous agents for invasive aspergillosis but have limited utility for chronic and allergic aspergillosis.

Itraconazole resistance in Aspergillus� ����� ��� �����reported in 1997 in 3 clinical isolates obtained from Cali-fornia in the late 1980s (4); since then, only a few clinical cases have been published (5–9). The emergence of itra-conazole resistance alone is of concern, but widespread azole cross-resistance would be devastating.

The primary mechanism of resistance described for A. fumigatus clinical isolates is mutation in the target protein. The cyp51A gene encodes the target of azoles, lanosterol ����� � ����� ���������� ���� ������ ����� ������� �biosynthetic pathway of ergosterol (an essential cell mem-�� � ������ ��������� ������ ����������������� ��� �� �open reading frame of the cyp51A gene can result in struc-tural alterations to the enzyme, which in turn may inhibit ����������������������������������������� �������� �resistance have been characterized in the gene at codons 54 (6,10–13), 220 (6,14,15), and 98 (16–18). Other mutations in the cyp51A gene have been reported, and additional re-sistance mechanisms have been postulated (11,19,20). The environmental or antifungal pressures driving azole resis-tance are unclear because few clinical azole-resistant Asper-gillus strains have been studied in any detail; many reports simply describe individual patient cases. In this study, we

���������������� ��� �� ��� ���Resistance in Aspergillus fumigatus Associated with Treatment Failure1

Susan J. Howard, Dasa Cerar, Michael J. Anderson, Ahmed Albarrag, Matthew C. Fisher, Alessandro C. Pasqualotto, Michel Laverdiere, Maiken C. Arendrup, David S. Perlin,

and David W. Denning

'�(��'��

��� �91>35:3��:21/@5;A?��5?1-?1?�I�CCC�/0/�3;B�150�I�+;8�����#;������A8E���

�A@4;>�-2L85-@5;:?��'135;:-8�"E/;8;3E�!-.;>-@;>E��"-:/41?@1>��* ��(�����;C->0����,���1::5:3���*:5B1>?5@E�;2�"-:/41?@1>��"-:/41?@1>��/-0195/��1-8@4�(/51:/1��1:@>1��"-:/41?@1>��(�����;C->0��"�����:01>?;:������8.->>-3����,���1::5:3���*:5B1>?5@E�"105/-8��1:@>1��!6A.86-:-��(8;B1:5-������1>->����9<1>5-8��;88131��!;:0;:��* ��"�����5?41>���*:5B1>?50-01��101>-8�0;�'5;��>-:01�0;�(A8��%;>@;��813>1���>-F58� ������ %-?=A-8;@@;��� �H<5@-8�"-5?;::1AB1�';?19;:@��";:-@>1-8�� &AG.1/�� �-:-0-� �"�� !-B1>051>1��� (@-@1:?� (1>A9� �:?@5@A@���;<1:4-31:���1:9->7� �"�����>01:0>A<���-:0�%A.85/��1-8@4�'1-?1->/4��:?@5@A@1��#1C->7��#���*(�����(��%1>85:�

�$�������150���� �

1)41?1�0-@-�C1>1�<>1?1:@10� 5:�<->@�-@� @41��:0��0B-:/1?��3-5:?@��?<1>3588;?5?� 911@5:3�� �1.>A->E� ��K���� ���� �@41:?�� �>11/1��-:0� �@4� �:@1>?/51:/1� �;:21>1:/1� ;:� �:@595/>;.5-8� �31:@?� -:0��419;@41>-<E�� (1<@19.1>� ��K��� ���� (-:� �>-:/5?/;�� ����*(��

�F;81?� ->1� @41�9-5:?@-E� ;2� ;>-8� @41>-<E� 2;>� -?<1>358-8;?5?���F;81�>1?5?@-:/1�5:�Aspergillus has been reported in-2>1=A1:@8E��)41�L>?@�>1?5?@-:@�5?;8-@1�5:�"-:/41?@1>��* ��C-?�01@1/@10�5:�������:�-�/85:5/-8�/;881/@5;:�;2����A. fumiga-tus� 5?;8-@1?�� @41� 2>1=A1:/E�;2� 5@>-/;:-F;81� >1?5?@-:/1�C-?�����-�?53:5L/-:@�5:/>1-?1�?5:/1�� ��<�����$2�@41�� �5@>-/;:-F;81�>1?5?@-:@� 5?;8-@1?�C1� ?@A0510�� ���� �����C1>1�/>;??�>1?5?@-:@� @;�B;>5/;:-F;81�-:0�� �� �����C1>1�/>;??�resistant to posaconazole. Thirteen of 14 evaluable patients 5:� ;A>� ?@A0E� 4-0� <>5;>� -F;81� 1D<;?A>1�� �� 5:21/@5;:?� 2-5810�@41>-<E� �<>;3>1??10��� -:0� �� 2-5810� @;� 59<>;B1� �>19-5:10�[email protected]����534@11:�-95:;�-/50�-8@1>-@5;:?�C1>1�2;A:0�5:�@41�@->31@�1:FE91���E<���� �;2�C45/4�C1>1�:;B18����<;<A8-@5;:�genetic analysis of microsatellites showed the existence of resistant mutants that evolved from originally susceptible strains, different cyp51A mutations in the same strain, and 95/>;-8@1>-@5;:?� 5:�95/>;?-@1885@1� >1<1-@�:A9.1>���F;81� >1-sistance in A. fumigatus is an emerging problem and may develop during azole therapy.

Invasive aspergillosis in immunosuppressed patients is ������������������ ��������� ���������� ������� ������

in a high mortality rate (1). Chronic and allergic pulmo-nary and sinus aspergillosis are increasingly recognized in

numerous clinical settings. Treatment with itraconazole, voriconazole, and, recently, posaconazole is the backbone of therapy for these conditions because azoles are the only licensed class of oral drugs for treatment of aspergillosis (2,3). Amphotericin B and caspofungin are licensed intra-venous agents for invasive aspergillosis but have limited utility for chronic and allergic aspergillosis.

Itraconazole resistance in Aspergillus� ����� ��� �����reported in 1997 in 3 clinical isolates obtained from Cali-fornia in the late 1980s (4); since then, only a few clinical cases have been published (5–9). The emergence of itra-conazole resistance alone is of concern, but widespread azole cross-resistance would be devastating.

The primary mechanism of resistance described for A. fumigatus clinical isolates is mutation in the target protein. The cyp51A gene encodes the target of azoles, lanosterol ����� � ����� ���������� ���� ������ ����� ������� �biosynthetic pathway of ergosterol (an essential cell mem-�� � ������ ��������� ������ ����������������� ��� �� �open reading frame of the cyp51A gene can result in struc-tural alterations to the enzyme, which in turn may inhibit ����������������������������������������� �������� �resistance have been characterized in the gene at codons 54 (6,10–13), 220 (6,14,15), and 98 (16–18). Other mutations in the cyp51A gene have been reported, and additional re-sistance mechanisms have been postulated (11,19,20). The environmental or antifungal pressures driving azole resis-tance are unclear because few clinical azole-resistant Asper-gillus strains have been studied in any detail; many reports simply describe individual patient cases. In this study, we

���������������� ��� �� ��� ���Resistance in Aspergillus fumigatus Associated with Treatment Failure1

Susan J. Howard, Dasa Cerar, Michael J. Anderson, Ahmed Albarrag, Matthew C. Fisher, Alessandro C. Pasqualotto, Michel Laverdiere, Maiken C. Arendrup, David S. Perlin,

and David W. Denning

'�(��'��

��� �91>35:3��:21/@5;A?��5?1-?1?�I�CCC�/0/�3;B�150�I�+;8�����#;������A8E���

�A@4;>�-2L85-@5;:?��'135;:-8�"E/;8;3E�!-.;>-@;>E��"-:/41?@1>��* ��(�����;C->0����,���1::5:3���*:5B1>?5@E�;2�"-:/41?@1>��"-:/41?@1>��/-0195/��1-8@4�(/51:/1��1:@>1��"-:/41?@1>��(�����;C->0��"�����:01>?;:������8.->>-3����,���1::5:3���*:5B1>?5@E�"105/-8��1:@>1��!6A.86-:-��(8;B1:5-������1>->����9<1>5-8��;88131��!;:0;:��* ��"�����5?41>���*:5B1>?50-01��101>-8�0;�'5;��>-:01�0;�(A8��%;>@;��813>1���>-F58� ������ %-?=A-8;@@;��� �H<5@-8�"-5?;::1AB1�';?19;:@��";:-@>1-8�� &AG.1/�� �-:-0-� �"�� !-B1>051>1��� (@-@1:?� (1>A9� �:?@5@A@���;<1:4-31:���1:9->7� �"�����>01:0>A<���-:0�%A.85/��1-8@4�'1-?1->/4��:?@5@A@1��#1C->7��#���*(�����(��%1>85:�

�$�������150���� �

1)41?1�0-@-�C1>1�<>1?1:@10� 5:�<->@�-@� @41��:0��0B-:/1?��3-5:?@��?<1>3588;?5?� 911@5:3�� �1.>A->E� ��K���� ���� �@41:?�� �>11/1��-:0� �@4� �:@1>?/51:/1� �;:21>1:/1� ;:� �:@595/>;.5-8� �31:@?� -:0��419;@41>-<E�� (1<@19.1>� ��K��� ���� (-:� �>-:/5?/;�� ����*(��

�F;81?� ->1� @41�9-5:?@-E� ;2� ;>-8� @41>-<E� 2;>� -?<1>358-8;?5?���F;81�>1?5?@-:/1�5:�Aspergillus has been reported in-2>1=A1:@8E��)41�L>?@�>1?5?@-:@�5?;8-@1�5:�"-:/41?@1>��* ��C-?�01@1/@10�5:�������:�-�/85:5/-8�/;881/@5;:�;2����A. fumiga-tus� 5?;8-@1?�� @41� 2>1=A1:/E�;2� 5@>-/;:-F;81� >1?5?@-:/1�C-?�����-�?53:5L/-:@�5:/>1-?1�?5:/1�� ��<�����$2�@41�� �5@>-/;:-F;81�>1?5?@-:@� 5?;8-@1?�C1� ?@A0510�� ���� �����C1>1�/>;??�>1?5?@-:@� @;�B;>5/;:-F;81�-:0�� �� �����C1>1�/>;??�resistant to posaconazole. Thirteen of 14 evaluable patients 5:� ;A>� ?@A0E� 4-0� <>5;>� -F;81� 1D<;?A>1�� �� 5:21/@5;:?� 2-5810�@41>-<E� �<>;3>1??10��� -:0� �� 2-5810� @;� 59<>;B1� �>19-5:10�[email protected]����534@11:�-95:;�-/50�-8@1>-@5;:?�C1>1�2;A:0�5:�@41�@->31@�1:FE91���E<���� �;2�C45/4�C1>1�:;B18����<;<A8-@5;:�genetic analysis of microsatellites showed the existence of resistant mutants that evolved from originally susceptible strains, different cyp51A mutations in the same strain, and 95/>;-8@1>-@5;:?� 5:�95/>;?-@1885@1� >1<1-@�:A9.1>���F;81� >1-sistance in A. fumigatus is an emerging problem and may develop during azole therapy.

Invasive aspergillosis in immunosuppressed patients is ������������������ ��������� ���������� ������� ������

in a high mortality rate (1). Chronic and allergic pulmo-nary and sinus aspergillosis are increasingly recognized in

numerous clinical settings. Treatment with itraconazole, voriconazole, and, recently, posaconazole is the backbone of therapy for these conditions because azoles are the only licensed class of oral drugs for treatment of aspergillosis (2,3). Amphotericin B and caspofungin are licensed intra-venous agents for invasive aspergillosis but have limited utility for chronic and allergic aspergillosis.

Itraconazole resistance in Aspergillus� ����� ��� �����reported in 1997 in 3 clinical isolates obtained from Cali-fornia in the late 1980s (4); since then, only a few clinical cases have been published (5–9). The emergence of itra-conazole resistance alone is of concern, but widespread azole cross-resistance would be devastating.

The primary mechanism of resistance described for A. fumigatus clinical isolates is mutation in the target protein. The cyp51A gene encodes the target of azoles, lanosterol ����� � ����� ���������� ���� ������ ����� ������� �biosynthetic pathway of ergosterol (an essential cell mem-�� � ������ ��������� ������ ����������������� ��� �� �open reading frame of the cyp51A gene can result in struc-tural alterations to the enzyme, which in turn may inhibit ����������������������������������������� �������� �resistance have been characterized in the gene at codons 54 (6,10–13), 220 (6,14,15), and 98 (16–18). Other mutations in the cyp51A gene have been reported, and additional re-sistance mechanisms have been postulated (11,19,20). The environmental or antifungal pressures driving azole resis-tance are unclear because few clinical azole-resistant Asper-gillus strains have been studied in any detail; many reports simply describe individual patient cases. In this study, we

���������������� ��� �� ��� ���Resistance in Aspergillus fumigatus Associated with Treatment Failure1

Susan J. Howard, Dasa Cerar, Michael J. Anderson, Ahmed Albarrag, Matthew C. Fisher, Alessandro C. Pasqualotto, Michel Laverdiere, Maiken C. Arendrup, David S. Perlin,

and David W. Denning

'�(��'��

��� �91>35:3��:21/@5;A?��5?1-?1?�I�CCC�/0/�3;B�150�I�+;8�����#;������A8E���

�A@4;>�-2L85-@5;:?��'135;:-8�"E/;8;3E�!-.;>-@;>E��"-:/41?@1>��* ��(�����;C->0����,���1::5:3���*:5B1>?5@E�;2�"-:/41?@1>��"-:/41?@1>��/-0195/��1-8@4�(/51:/1��1:@>1��"-:/41?@1>��(�����;C->0��"�����:01>?;:������8.->>-3����,���1::5:3���*:5B1>?5@E�"105/-8��1:@>1��!6A.86-:-��(8;B1:5-������1>->����9<1>5-8��;88131��!;:0;:��* ��"�����5?41>���*:5B1>?50-01��101>-8�0;�'5;��>-:01�0;�(A8��%;>@;��813>1���>-F58� ������ %-?=A-8;@@;��� �H<5@-8�"-5?;::1AB1�';?19;:@��";:-@>1-8�� &AG.1/�� �-:-0-� �"�� !-B1>051>1��� (@-@1:?� (1>A9� �:?@5@A@���;<1:4-31:���1:9->7� �"�����>01:0>A<���-:0�%A.85/��1-8@4�'1-?1->/4��:?@5@A@1��#1C->7��#���*(�����(��%1>85:�

�$�������150���� �

1)41?1�0-@-�C1>1�<>1?1:@10� 5:�<->@�-@� @41��:0��0B-:/1?��3-5:?@��?<1>3588;?5?� 911@5:3�� �1.>A->E� ��K���� ���� �@41:?�� �>11/1��-:0� �@4� �:@1>?/51:/1� �;:21>1:/1� ;:� �:@595/>;.5-8� �31:@?� -:0��419;@41>-<E�� (1<@19.1>� ��K��� ���� (-:� �>-:/5?/;�� ����*(��

Page 13: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

§  Aucun  Af  R.  au  Vorico  ou  Posaco  n’était  S  Itraco  §   65%  R  voriconazole  §  74%  R  posaconazole  

….  une  grande  diversité  de  muta8ons  et  de  profils  de  résistance      

Page 14: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

Pression  de  sélec8on:  exposi8on  prolongée  aux  azolés  

14  

§  Comment  déterminer  l’origine  de  la  résistance  ?      -­‐  acquisi4on  depuis  l’environnement?      -­‐  de  novo  sous  l’effet  de  l’exposi4on  prolongée  aux  Azolés  ?    

§  Arbre  phylogénéFque:  

L’existence  chez  un  même  pa4ent  de  souches  

géné4quement  proches  résistante  et  sensibles  

suggère  une  évolu4on  in  situ  à  par4r  d’un  même  clone  S  

Page 15: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

 Verweij  PE  et  al.  NEJM  2007  Mellado  E  etal.  AAC  2007  

II  -­‐  Emergence  d’Af  résistants  dans  l’environnement  

15  

Aspergillus    14  α  demethylase  (gène  CYP51A)  

DIMs  ATF  agricoles  Azolés  

Muta4on  TR34/L98H  

Pan  Résistance  Azolés  100%  R  Itraco  

90%  R  ou  I  Voriconazole  80%  R  ou  I  Posaconazole  

Pays-­‐bas  2002  

Page 16: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

16  

Emergence of Azole Resistance in Aspergillusfumigatus and Spread of a Single ResistanceMechanismEveline Snelders1,2, Henrich A. L. van der Lee1,2, Judith Kuijpers1,2, Anthonius J. M. M. Rijs1,2, Janos Varga3,4,

Robert A. Samson3, Emilia Mellado5, A. Rogier T. Donders6, Willem J. G. Melchers1,2, Paul E. Verweij1,2*

1 Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands, 2 Nijmegen Institute for Infectious Diseases, Inflammation

and Immunity, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands, 3 Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre,

Utrecht, The Netherlands, 4 Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Hungary, 5 Servicio de Micologia, Centro Nacional de

Microbiologia, Instituto de Salud Carlos III, Madrid, Spain, 6 Department of Epidemiology and Biostatistics, Radboud University Nijmegen Medical Centre, Nijmegen, The

Netherlands

Funding: This work was funded inpart by The NetherlandsOrganisation for Health Researchand Development (ZonMw; grant:50-50800-98–030). The funders hadno role in study design, datacollection and analysis, decision topublish, or preparation of themanuscript.

Competing Interests: PV:Consultant, Merck, Pfizer; researchgrant, Cephalon, Schering-Plough,Pfizer, Merck, Basilea; speaker’sbureau: Gilead, Merck, Schering-Plough. Other authors: nocompeting interests declared.

Academic Editor: Chris Kibbler,Royal Free Hospital London, UnitedKingdom

Citation: Snelders E, van der LeeHAL, Kuijpers J, Rijs AJMM, Varga J,et al. (2008) Emergence of azoleresistance in Aspergillus fumigatusand spread of a single resistancemechanism. PLoS Med 5(11): e219.doi:10.1371/journal.pmed.0050219

Received: November 29, 2007Accepted: September 25, 2008Published: November 11, 2008

Copyright: ! 2008 Snelders et al.This is an open-access articledistributed under the terms of theCreative Commons AttributionLicense, which permits unrestricteduse, distribution, and reproductionin any medium, provided theoriginal author and source arecredited.

Abbreviations: ITZ, itraconazole;MIC, minimum inhibitoryconcentration; MTR, multiple-triazole-resistance

* To whom correspondence shouldbe addressed. E-mail: [email protected]

A B S T R A C T

Background

Resistance to triazoles was recently reported in Aspergillus fumigatus isolates cultured frompatients with invasive aspergillosis. The prevalence of azole resistance in A. fumigatus isunknown. We investigated the prevalence and spread of azole resistance using our culturecollection that contained A. fumigatus isolates collected between 1994 and 2007.

Methods and Findings

We investigated the prevalence of itraconazole (ITZ) resistance in 1,912 clinical A. fumigatusisolates collected from 1,219 patients in our University Medical Centre over a 14-y period. Thespread of resistance was investigated by analyzing 147 A. fumigatus isolates from 101 patients,from 28 other medical centres in The Netherlands and 317 isolates from six other countries. Theisolates were characterized using phenotypic and molecular methods. The electronic patientfiles were used to determine the underlying conditions of the patients and the presence ofinvasive aspergillosis. ITZ-resistant isolates were found in 32 of 1,219 patients. All cases wereobserved after 1999 with an annual prevalence of 1.7% to 6%. The ITZ-resistant isolates alsoshowed elevated minimum inhibitory concentrations of voriconazole, ravuconazole, andposaconazole. A substitution of leucine 98 for histidine in the cyp51A gene, together with twocopies of a 34-bp sequence in tandem in the gene promoter (TR/L98H), was found to be thedominant resistance mechanism. Microsatellite analysis indicated that the ITZ-resistant isolateswere genetically distinct but clustered. The ITZ-sensitive isolates were not more likely to beresponsible for invasive aspergillosis than the ITZ-resistant isolates. ITZ resistance was found inisolates from 13 patients (12.8%) from nine other medical centres in The Netherlands, of which69% harboured the TR/L98H substitution, and in six isolates originating from four othercountries.

Conclusions

Azole resistance has emerged in A. fumigatus and might be more prevalent than currentlyacknowledged. The presence of a dominant resistance mechanism in clinical isolates suggeststhat isolates with this mechanism are spreading in our environment.

The Editors’ Summary of this article follows the references.

PLoS Medicine | www.plosmedicine.org November 2008 | Volume 5 | Issue 11 | e2191629

PLoSMEDICINE

Emergence of Azole Resistance in Aspergillusfumigatus and Spread of a Single ResistanceMechanismEveline Snelders1,2, Henrich A. L. van der Lee1,2, Judith Kuijpers1,2, Anthonius J. M. M. Rijs1,2, Janos Varga3,4,

Robert A. Samson3, Emilia Mellado5, A. Rogier T. Donders6, Willem J. G. Melchers1,2, Paul E. Verweij1,2*

1 Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands, 2 Nijmegen Institute for Infectious Diseases, Inflammation

and Immunity, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands, 3 Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre,

Utrecht, The Netherlands, 4 Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Hungary, 5 Servicio de Micologia, Centro Nacional de

Microbiologia, Instituto de Salud Carlos III, Madrid, Spain, 6 Department of Epidemiology and Biostatistics, Radboud University Nijmegen Medical Centre, Nijmegen, The

Netherlands

Funding: This work was funded inpart by The NetherlandsOrganisation for Health Researchand Development (ZonMw; grant:50-50800-98–030). The funders hadno role in study design, datacollection and analysis, decision topublish, or preparation of themanuscript.

Competing Interests: PV:Consultant, Merck, Pfizer; researchgrant, Cephalon, Schering-Plough,Pfizer, Merck, Basilea; speaker’sbureau: Gilead, Merck, Schering-Plough. Other authors: nocompeting interests declared.

Academic Editor: Chris Kibbler,Royal Free Hospital London, UnitedKingdom

Citation: Snelders E, van der LeeHAL, Kuijpers J, Rijs AJMM, Varga J,et al. (2008) Emergence of azoleresistance in Aspergillus fumigatusand spread of a single resistancemechanism. PLoS Med 5(11): e219.doi:10.1371/journal.pmed.0050219

Received: November 29, 2007Accepted: September 25, 2008Published: November 11, 2008

Copyright: ! 2008 Snelders et al.This is an open-access articledistributed under the terms of theCreative Commons AttributionLicense, which permits unrestricteduse, distribution, and reproductionin any medium, provided theoriginal author and source arecredited.

Abbreviations: ITZ, itraconazole;MIC, minimum inhibitoryconcentration; MTR, multiple-triazole-resistance

* To whom correspondence shouldbe addressed. E-mail: [email protected]

A B S T R A C T

Background

Resistance to triazoles was recently reported in Aspergillus fumigatus isolates cultured frompatients with invasive aspergillosis. The prevalence of azole resistance in A. fumigatus isunknown. We investigated the prevalence and spread of azole resistance using our culturecollection that contained A. fumigatus isolates collected between 1994 and 2007.

Methods and Findings

We investigated the prevalence of itraconazole (ITZ) resistance in 1,912 clinical A. fumigatusisolates collected from 1,219 patients in our University Medical Centre over a 14-y period. Thespread of resistance was investigated by analyzing 147 A. fumigatus isolates from 101 patients,from 28 other medical centres in The Netherlands and 317 isolates from six other countries. Theisolates were characterized using phenotypic and molecular methods. The electronic patientfiles were used to determine the underlying conditions of the patients and the presence ofinvasive aspergillosis. ITZ-resistant isolates were found in 32 of 1,219 patients. All cases wereobserved after 1999 with an annual prevalence of 1.7% to 6%. The ITZ-resistant isolates alsoshowed elevated minimum inhibitory concentrations of voriconazole, ravuconazole, andposaconazole. A substitution of leucine 98 for histidine in the cyp51A gene, together with twocopies of a 34-bp sequence in tandem in the gene promoter (TR/L98H), was found to be thedominant resistance mechanism. Microsatellite analysis indicated that the ITZ-resistant isolateswere genetically distinct but clustered. The ITZ-sensitive isolates were not more likely to beresponsible for invasive aspergillosis than the ITZ-resistant isolates. ITZ resistance was found inisolates from 13 patients (12.8%) from nine other medical centres in The Netherlands, of which69% harboured the TR/L98H substitution, and in six isolates originating from four othercountries.

Conclusions

Azole resistance has emerged in A. fumigatus and might be more prevalent than currentlyacknowledged. The presence of a dominant resistance mechanism in clinical isolates suggeststhat isolates with this mechanism are spreading in our environment.

The Editors’ Summary of this article follows the references.

PLoS Medicine | www.plosmedicine.org November 2008 | Volume 5 | Issue 11 | e2191629

PLoSMEDICINE

1912  Isolats  cliniques  d’Af  1219  pa4ents    Période  de  14  ans  1  CHU  Pays-­‐Bas    ì Prévalence  Résistance  

 -­‐  0.6%  en  1999      -­‐  6%  en  2007  

-­‐-­‐>    94%  TR34/L98H  

Page 17: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

17  

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

CURRENTOPINION Azole resistance in Aspergillus fumigatus:a growing public health concern

Edith Vermeulena, Katrien Lagroua,b, and Paul E. Verweijc

Purpose of reviewReports from the end of the 2000s forced the medical community to take azole resistance in Aspergillusfumigatus into account. Not only patients with chronic aspergillus disease, who develop resistance duringlong-term azole treatment, but also azole-naive patients are at risk, owing to the presence of resistantstrains in the environment. The purpose of this review is to overview the latest findings concerning theorigin, evolution, and implications of azole resistance in A. fumigatus.

Recent findingsTR34/L98H is the predominant resistance mechanism of environmental origin in A. fumigatus. Recentepidemiological data show that this mechanism is an expanding problem, with reports from China, Iran,and India. However, the TR34/L98H strains from the Middle East are genotypically different from theEuropean isolates; their emergence is, therefore, not due to simple geographical spread of the ‘European’isolates. A new environmental resistance mechanism, TR46/Y121F/T289A, was detected in theNetherlands, conferring voriconazole resistance. In patients chronically treated with triazoles, the spectrumof resistance has become more diverse, with the emergence of non-CYP51A-mediated mechanisms. Centralregistration of treatment and outcome data of patients with resistant aspergillus disease are needed.

SummaryAzole resistance in A. fumigatus is evolving to a global health problem.

Keywordsaspergillosis, Aspergillus fumigatus, CYP51A, drug resistance, fungal

INTRODUCTIONTriazoles are the mainstay of therapy in infectionswith the opportunistic fungus Aspergillus fumigatus.The emergence of resistance is, therefore, of clinicalconcern. The first reports of patients with azole-resistant A. fumigatus isolates date from 1997, frompatients receiving itraconazole therapy fromSweden [1] and California (isolates obtained in1989) [2]. The characterization of two genes(CYP51A and CYP51B) encoding the azole targetenzyme in A. fumigatus, sterol 14-a-demethylase,greatly contributed to the understanding of azoleresistance mechanisms [3]. In the first decade afterthe discovery of azole resistance inA. fumigatus, onlysporadic cases of resistance were published andresistance was considered an infrequent event.Two reports since the late 2000s changed this per-ception. First, in 2007, a series of Dutch patients –including azole-naive patients – were describedwithinvasive aspergillosis due to pan-azole-resistantstrains and resistance was attributable to one pre-dominant resistance mechanism, TR34/L98H [4].

This mechanism consists of a tandem repeat of 34bases (TR34) in the promotor of the CYP51A gene,leading to enhanced expression, combined with aleucine to histidine amino acid substitution (L98H)[4,5]. In 2009 a second report, from a specializedreferral center for patients with chronic and allergicaspergillosis in Manchester, described resistance tohave increased dramatically [6]. This situation dif-fered from the TR34/L98H-resistance problem in theNetherlands, as a variety of differentCYP51A-related

aDepartment of Microbiology and Immunology, Catholic University ofLeuven, bDepartment of Laboratory Medicine, University HospitalsLeuven, Leuven, Belgium and cDepartment of Medical Microbiology,Radboud University Nijmegen Medical Centre, Nijmegen, the Nether-lands

Correspondence to Paul E. Verweij, MD, PhD, UMC St RadboudMedicalMicrobiology, PO Box 9101, 6500 HB Nijmegen, the Netherlands.Tel: +31 24 361 43 56; fax: +31 24 354 02 16; e-mail: [email protected]

Curr Opin Infect Dis 2013, 26:493–500

DOI:10.1097/QCO.0000000000000005

0951-7375 ! 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins www.co-infectiousdiseases.com

REVIEW

MutaFon  TR34/L98H  chez  Aspergillus  fumigatus  dans  le  monde  

Page 18: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

Dans  3  villes  des  Pays-­‐Bas      -­‐  dec  2009  

   -­‐  janv  2010        -­‐  février  2010          3  isolats  Af  poussant  en  présence  de  voriconazole  (CMI>  16          

 mg/ml)  diminu;on  de  l’ac;vité  de  l’itraconazole  et    posaconazole    

   TR46/Y121F/T289A    

 van  der  Linden  JW  et  al.  CID  2013  

Page 19: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

Décembre  2009  à  janvier  2011      

à1315  isolats  (921  pt)  à 21  isolats/  15  pt  Haut  niv  de  R  Vorico  à TR46/Y121F/T289A  à 8  pt:  essai  Vorico  =    échec  clinique  à   Tous  les  pt  sauf  1  étaient  naifs  d’Azolé    à 6/10  prélèvements  domiciles  =  +  

Au  total:  6.8%  de  résistance  aux  Azolés  -­‐  47/63  (74.6%)  TR34/L98H    -­‐  13/63  (20.6%)  TR46/Y121F/T289A    -­‐  4.7%  sans  muta4on  de  Cyp51A    

Page 20: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

20  

Tous  les  pa4ents  avec  des  formes  invasives    traités  par  voriconazole  sont  décédés  

 

Ceae  muta4on  a  depuis  été  iden4fiée  en  Belgique,  Allemagne,  Danemark,  Inde,  Tanzanie  et  en  2014  un  cas  CHU  Rouen  !  

 

Page 21: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

21  

Pearls

Emergence of Azole-Resistant Aspergillus fumigatusStrains due to Agricultural Azole Use Creates anIncreasing Threat to Human HealthAnuradha Chowdhary1*, Shallu Kathuria1, Jianping Xu2, Jacques F. Meis3,4

1Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India, 2Department of Biology, McMaster University, Hamilton, Ontario,

Canada, 3Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands, 4Department of Medical Microbiology,

Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Aspergillus fumigatus, a ubiquitously distributed opportunisticpathogen, is the global leading cause of aspergillosis and causesone of the highest numbers of deaths among patients with fungalinfections [1]. Invasive aspergillosis is the most severe manifesta-tion with an overall annual incidence up to 10% in immunosup-pressed patients, whereas chronic pulmonary aspergillosis affectsabout 3 million, primarily immunocompetent, individuals eachyear [2]. Three triazole antifungals, namely itraconazole, vor-iconazole, and posaconazole, are recommended first-line drugs inthe treatment and prophylaxis of aspergillosis [3]. However, azoleresistance in A. fumigatus isolates is increasingly reported withvariable prevalence in Europe, the United States, South America,China, Japan, Iran, and India [4–9]. For example, about 10% ofstrains of A. fumigatus from the Netherlands are itraconazoleresistant, and in the United Kingdom, the frequency increasedfrom 0%–5% during 2002–2004 to 17%–20% in 2007–2009 [10–13]. In the ARTEMIS global surveillance program involving 62medical centers, 5.8% of A. fumigatus strains showed elevated MICsto one or more triazoles [5]. Similarly, the prospective SCARE(Surveillance Collaboration on Aspergillus Resistance in Europe)study involving 22 medical centers in 19 countries identified anoverall prevalence of 3.4% azole resistance. Azole-resistant A.fumigatus (ARAF) ranged from 0% to 26% among the 22 centresand was detected in 11 (57.9%) of the 19 participating Europeancountries [4 and P.E. Verweij, personal communication]. Inter-estingly, almost half (48.9%) of the ARAF isolates from theSCARE network in European countries were resistant to multipleazoles and harbored the TR34/L98H mutation in the cyp51A gene[4 and P.E. Verweij, personal communication]. Indeed, multi-azole resistance in A. fumigatus due to the TR34/L98H mutationshas become an emerging problem in both Europe and Asia andhas been associated with high rates of treatment failures [12–14].Azole antifungal drugs inhibit the ergosterol biosynthesis

pathway, specifically the cytochrome p450 sterol 14-a-demethy-lase encoded by the cyp51A gene, which leads to depletion ofergosterol and accumulation of toxic sterols. The majority ofARAF isolates contain alterations in the target enzyme and themutated target showed reduced or no binding to the drugs [15].While most mutations in ARAF isolates were single nucleotidesubstitutions in the target gene (cyp51A), mutations at other genessuch as the cdr1B have also been reported. For example, in theUnited Kingdom the frequency of ARAF isolates without cyp51Amutations has been reported to be more than 50% [16].

Routes of Azole Resistance Development

The epidemiologic data on azole resistance is mainly from twoclinical entities. One group comprises noninvasive diseasesincluding patients with allergic bronchopulmonary aspergillosis(ABPA), aspergilloma, and chronic pulmonary aspergillosis (CPA)

who were treated with long-term azole therapy (mainly itracon-azole) and developed acquired resistance after 1–30 months oftreatment [13]. In these patients, the ARAF isolates may beresistant to only itraconazole or exhibit a multi-azole-resistantphenotype. The underlying resistance mechanism commonlyinvolves point mutations in the cyp51A gene, indicating that inpatients exposed to long-term azole therapy, the fungus is capableof rapidly adapting to azole drug(s) [11–14]. The genotypicanalysis of serial isolates of A. fumigatus from patients with chronicaspergillosis revealed that the initial susceptible and later resistantisolates had the same genotype. The only changes were the specificmutations conferring azole resistance, consistent with the devel-opment of resistance arising from azole therapy [13].The second group of patients with ARAF are those with acute

aspergillosis but with no known prior exposure to azole drugs [12].In contrast to the first group in which de novo mutation of thefungus in cavitary lesions is the primary mechanism for thedevelopment of azole resistance, those of the second group likelyacquired ARAF strains from external environments. In fact 50%of the patients with invasive aspergillosis due to ARAF are knownto be azole naıve and the outcome of patients with azole-resistantinvasive aspergillosis has been dismal, with a mortality rate of 88%[12]. Eighty percent of the ARAF strains from patients withinvasive aspergillosis described in the SCARE network had theTR34/L98H mutations, which consist of a substitution of leucineto histidine at codon 98 of the cyp51A gene in combination with a34-bp tandem repeat in the promoter region. These mutationsenabled resistance to itraconazole and intermediate susceptibilityor resistance to voriconazole, posaconazole, or both [4,17,18]. Asdescribed above, although the environmentally derived azole-resistant strains are predominately associated with acute invasiveinfections [12,19], the same mechanism has also been reported in

Citation: Chowdhary A, Kathuria S, Xu J, Meis JF (2013) Emergence of Azole-Resistant Aspergillus fumigatus Strains due to Agricultural Azole Use Creates anIncreasing Threat to Human Health. PLoS Pathog 9(10): e1003633. doi:10.1371/journal.ppat.1003633

Editor: Joseph Heitman, Duke University Medical Center, United States ofAmerica

Published October 24, 2013

Copyright: ! 2013 Chowdhary et al. This is an open-access article distributedunder the terms of the Creative Commons Attribution License, which permitsunrestricted use, distribution, and reproduction in any medium, provided theoriginal author and source are credited.

Funding: The authors received no specific funding for this study.

Competing Interests: JFM received grants from Astellas, Basilea, and Merck. Hehas been a consultant to Astellas, Basilea, and Merck and received speaker’s feesfrom Merck and Gilead. All other authors have declared that no competinginterests exist. This does not alter our adherence to all PLOS Pathogens policieson sharing data and materials.

* E-mail: [email protected]

PLOS Pathogens | www.plospathogens.org 1 October 2013 | Volume 9 | Issue 10 | e1003633

Tanzanie  

Page 22: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

Avant  d’aborder  l’épidémiologie  de  la  Résistance  d’Af  aux  Azolés  dans  le  monde  et  en  France……………  

22  

Page 23: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

23  

M A J O R A R T I C L E

High-frequency Triazole Resistance Found InNonculturable Aspergillus fumigatus from Lungsof Patients with Chronic Fungal Disease

David W. Denning,1,2,3 Steven Park,4 Cornelia Lass-Florl,5 Marcin G. Fraczek,2,3 Marie Kirwan,1,2 Robin Gore,2Jaclyn Smith,2 Ahmed Bueid,2 Caroline B. Moore,3 Paul Bowyer,2 and David S. Perlin2,4

1National Aspergillosis Centre, 2School of Translational Medicine, University of Manchester, Manchester, UK, 3Mycology Reference Centre,Manchester Academic Health Science Centre, University Hospital of South Manchester, Manchester, UK, 4Public Health Research Institute, New JerseyMedical School-UMDNJ, Newark, New Jersey, and 5Department fur Hygiene, Mikrobiologie und Sozalmedizin, Medizinische Universitat Innsbruck,Innsbruck, Austria

Background. Oral triazole therapy is well established for the treatment of invasive (IPA), allergic (ABPA), andchronic pulmonary (CPA) aspergillosis, and is often long-term. Triazole resistance rates are rising internationally.Microbiological diagnosis of aspergillosis is limited by poor culture yield, leading to uncertainty about the frequencyof triazole resistance.

Methods. Using an ultrasensitive real-time polymerase chain reaction (PCR) assay for Aspergillus spp., weassessed respiratory fungal load in bronchoalveolar lavage (BAL) and sputum specimens. In a subset of PCR-positive, culture negative samples, we further amplified the CYP51A gene to detect key single-nucleotidepolymorphisms (SNPs) associated with triazole resistance.

Results. Aspergillus DNA was detected in BAL from normal volunteers (4/11, 36.4%) and patients with cultureor microscopy confirmed IPA (21/22, 95%). Aspergillus DNA was detected in sputum in 15 of 19 (78.9%) and 30 of42 (71.4%) patients with ABPA and CPA, compared with 0% and 16.7% by culture, respectively. In culture-negative, PCR-positive samples, we detected triazole-resistance mutations (L98H with tandem repeat [TR] andM220) within the drug target CYP51A in 55.1% of samples. Six of 8 (75%) of those with ABPA and 12 of 24 (50%)with CPA had resistance markers present, some without prior triazole treatment, and in most despite adequateplasma drug concentrations around the time of sampling.

Conclusions. The very low organism burdens of fungi causing infection have previously prevented directculture and detection of antifungal resistance in clinical samples. These findings have major implications for thesustainability of triazoles for human antifungal therapy.

Aspergillus spp. cause diseases ranging from invasive

pulmonary aspergillosis (IPA) in immunocompromised

patients to chronic pulmonary aspergillosis (CPA) and

fungal allergic diseases, including allergic broncho-

pulmonary aspergillosis (ABPA) and increased severity

of asthma (severe asthma with fungal sensitization

[SAFS]) [1, 2]. Millions of individuals worldwide are

affected or at risk; recent estimates indicate approxi-

mately 3 million patients with CPA, 3 million with

ABPA and over 10 million with SAFS [3]. Exposure to

hundreds of Aspergillus fumigatus conidia is a universal,

daily occurrence. Conidia shift from being anergic to the

human immune system [4] to producing the largest

number of documented allergens of any other living

organism on germination [5].

Antifungal therapy with triazoles is recommended

for patients with ABPA, CPA, and IPA [6]. There are

three licensed triazole compounds highly active against

Aspergillus spp.—itraconazole, voriconazole, and pos-

aconazole [7]. However, triazole resistance has emerged

Received 9 September 2010; accepted 22 February 2011.Correspondence: David W. Denning, MD, FRCP, 2nd Floor Education and

Research Centre, Wythenshawe Hospital, Southmoor Road, Manchester M23 9LT,UK ([email protected]).

Clinical Infectious Diseases 2011;52(9):1123–1129! The Author 2011. Published by Oxford University Press on behalf of the InfectiousDiseases Society of America. All rights reserved. For Permissions, please e-mail:[email protected]/2011/529-0001$37.00DOI: 10.1093/cid/cir179

Triazole Resistance in Human Samples d CID 2011:52 (1 May) d 1123

M A J O R A R T I C L E

High-frequency Triazole Resistance Found InNonculturable Aspergillus fumigatus from Lungsof Patients with Chronic Fungal Disease

David W. Denning,1,2,3 Steven Park,4 Cornelia Lass-Florl,5 Marcin G. Fraczek,2,3 Marie Kirwan,1,2 Robin Gore,2Jaclyn Smith,2 Ahmed Bueid,2 Caroline B. Moore,3 Paul Bowyer,2 and David S. Perlin2,4

1National Aspergillosis Centre, 2School of Translational Medicine, University of Manchester, Manchester, UK, 3Mycology Reference Centre,Manchester Academic Health Science Centre, University Hospital of South Manchester, Manchester, UK, 4Public Health Research Institute, New JerseyMedical School-UMDNJ, Newark, New Jersey, and 5Department fur Hygiene, Mikrobiologie und Sozalmedizin, Medizinische Universitat Innsbruck,Innsbruck, Austria

Background. Oral triazole therapy is well established for the treatment of invasive (IPA), allergic (ABPA), andchronic pulmonary (CPA) aspergillosis, and is often long-term. Triazole resistance rates are rising internationally.Microbiological diagnosis of aspergillosis is limited by poor culture yield, leading to uncertainty about the frequencyof triazole resistance.

Methods. Using an ultrasensitive real-time polymerase chain reaction (PCR) assay for Aspergillus spp., weassessed respiratory fungal load in bronchoalveolar lavage (BAL) and sputum specimens. In a subset of PCR-positive, culture negative samples, we further amplified the CYP51A gene to detect key single-nucleotidepolymorphisms (SNPs) associated with triazole resistance.

Results. Aspergillus DNA was detected in BAL from normal volunteers (4/11, 36.4%) and patients with cultureor microscopy confirmed IPA (21/22, 95%). Aspergillus DNA was detected in sputum in 15 of 19 (78.9%) and 30 of42 (71.4%) patients with ABPA and CPA, compared with 0% and 16.7% by culture, respectively. In culture-negative, PCR-positive samples, we detected triazole-resistance mutations (L98H with tandem repeat [TR] andM220) within the drug target CYP51A in 55.1% of samples. Six of 8 (75%) of those with ABPA and 12 of 24 (50%)with CPA had resistance markers present, some without prior triazole treatment, and in most despite adequateplasma drug concentrations around the time of sampling.

Conclusions. The very low organism burdens of fungi causing infection have previously prevented directculture and detection of antifungal resistance in clinical samples. These findings have major implications for thesustainability of triazoles for human antifungal therapy.

Aspergillus spp. cause diseases ranging from invasive

pulmonary aspergillosis (IPA) in immunocompromised

patients to chronic pulmonary aspergillosis (CPA) and

fungal allergic diseases, including allergic broncho-

pulmonary aspergillosis (ABPA) and increased severity

of asthma (severe asthma with fungal sensitization

[SAFS]) [1, 2]. Millions of individuals worldwide are

affected or at risk; recent estimates indicate approxi-

mately 3 million patients with CPA, 3 million with

ABPA and over 10 million with SAFS [3]. Exposure to

hundreds of Aspergillus fumigatus conidia is a universal,

daily occurrence. Conidia shift from being anergic to the

human immune system [4] to producing the largest

number of documented allergens of any other living

organism on germination [5].

Antifungal therapy with triazoles is recommended

for patients with ABPA, CPA, and IPA [6]. There are

three licensed triazole compounds highly active against

Aspergillus spp.—itraconazole, voriconazole, and pos-

aconazole [7]. However, triazole resistance has emerged

Received 9 September 2010; accepted 22 February 2011.Correspondence: David W. Denning, MD, FRCP, 2nd Floor Education and

Research Centre, Wythenshawe Hospital, Southmoor Road, Manchester M23 9LT,UK ([email protected]).

Clinical Infectious Diseases 2011;52(9):1123–1129! The Author 2011. Published by Oxford University Press on behalf of the InfectiousDiseases Society of America. All rights reserved. For Permissions, please e-mail:[email protected]/2011/529-0001$37.00DOI: 10.1093/cid/cir179

Triazole Resistance in Human Samples d CID 2011:52 (1 May) d 1123

§  Cultures  et  RT-­‐PCR  pour  Aspergillus  sp.  sur  LBA  et  ECBC    §  Si  PCR+  et  culture  néga4ve  à  séquençage  du  gène  CYP51A  

à  la  recherche  de  SNPs  associés  à  des  résistances  connues      

CYP51A gene in two !900 bp fragments. Fragment 1 (876 bp)

covered the promoter tandem repeat region to codon 98. The

second amplicon (748 bp) covered codons 54 to 266. The

amplified products were evaluated in a real-time assay with

allele-specific molecular beacon directed at key single-nucleotide

polymorphisms (SNPs) linked with azole resistance (G54, L981

promoter tandem repeat [TR], G138, and M220). All results

were confirmed by DNA sequencing. Patients’ notes were re-

viewed for their antifungal treatment. Resistance data were not

used for clinical decision making.

RESULTS

Extraction of Aspergillus DNA from Respiratory SamplesExtraction of sufficient fungal DNA for molecular detection

is the most challenging technical aspect of PCR for fungi.

The combination of very few fungal cells in a clinical sample

and a sturdy cell wall requiring fracture for DNA release is

problematic. We utilized an optimized bead-beating approach

to break open cells, preceded by a digestion step. Overall,

10% efficiency from unswollen conidia was demonstrated

(Supplementary Figure S1).

Detection of Aspergillus DNA in Volunteers with PCRTo better understand Aspergillus burdens in the lungs of healthy

individuals, we tested BAL from 11 normal adults who un-

derwent bronchoscopy. Of these, 4 culture-negative samples

(36.4%) had detectable signals in the PCR assay (Table 1). No

signal was detected in 7 samples (63.6%), of which one grew

Penicillium spp. (3 morphologies) and 1 Paecilomyces spp. The

positive Ct values ranged from 36.2 to 34.3 (Figure 1), consistent

with Aspergillus spp. being present in normal lungs.

PCR in Invasive Pulmonary AspergillosisWe analyzed 22 samples from patients with IPA with myco-

logical confirmation. Of the 22 samples, 20 (90.9%) had hyphae

consistent with Aspergillus spp. visible on microscopy. All

22 (100%) were culture-positive for a filamentous fungus, 10

for A fumigatus, 9 for A terreus, and 2 for Penicillium spp., and 1

grew A niger, Rhizopus oryzae, and Lichtheimia corymbifera

(PCR-negative). Five of the patients had proven and 17 probable

IPA in the context of typical immunocompromising conditions,

including organ transplant (n 5 10) and acute leukemia. Using

the normal volunteer data as negative controls and a Ct cut-off

of 36, the sensitivity was 94%, specificity 91%, positive pre-

dictive value 97%, and negative predictive value 83%. Seventeen

patients (77.3%) had received some antifungal prophylaxis

or therapy. Aspergillus DNA was detected by PCR in 21

(95.5%) samples (Table 1) with Ct values ranging from 20.5 to

33.7 (Figure 1). Both samples that grew Penicillium were PCR-

positive. Furthermore, in these 22 samples, the signal strength

was generally much stronger than that in the normal volunteers,

indicative of a greater load of Aspergillus in IPA than in normal

people.

PCR in Chronic and Allergic AspergillosisIn spontaneously produced sputum from patients with ABPA,

SAFS, and CPA, we detected Aspergillus DNA much more fre-

quently than cultures were positive. In the ABPA patients, all

cultures were negative despite strongly positive immunoglobin

E (IgE) serology for A fumigatus. AspergillusDNA was detectable

by PCR in 15 of 19 (78.9%) ABPA patients (Table 1), 11 of these

samples having strong PCR signals (Figure 1). Among the 42

patients with CPA, all of whom had detectable Aspergillus IgG

antibodies and grossly abnormal chest radiographs, 7 (16.7%)

had a positive culture for A fumigatus and 30 (71.4%) had

Aspergillus DNA detectable by PCR (Table 1). In patients with

CPA, stronger PCR signals were generally seen in those with

positive cultures.

Direct Detection of Azole ResistanceWe selected DNA from the first 25 sputum samples obtained from

ABPA and CPA patients that were PCR-positive, culture-negative,

as well as 4 culture-positive, PCR-positive samples patients with

CPA (Supplementary Table S1). No G54 or M138 mutations were

found. Four samples had M220 mutations: 2 were M220K and 2

M220R cyp51A substitutions on sequencing. Twenty-seven of 29

(93.1%) had an L98H mutation, and 16 (55.2%) also had an

upstream 34 bp TR, the combination conferring itraconazole and

voriconazole resistance [10]. The TR was found without the L98H

mutation in 2 samples. Two samples had an M220R mutation

with both the TR and L98H mutation. Of the 4 culture-positive

Table 1. Aspergillus Culture, qPCR, and A fumigatus Resistance Mutation Detection in 4 Study Populations

Laboratory result ABPA CPA IPA Normals

Culture positive for Aspergillus spp. 0/19 7/42 (16.7%) 20/22 (90.9%) 0/11

Culture positive for A fumigatus 0/19 7/42 (16.7%) 10/22 (45.5%) 0/11

qPCR positive for Aspergillus spp 15/19 (78.9%) 30/42 (71.4%) 21/22 (95.5%) 4/11 (36.4%)

A. fumigatus CYP51A mutation detecteddirectly from qPCR-positive sample

6/8 (75%) 12/24 (50%) NTa NTa

NOTE. qPCR indicates quantitative polymerase chain reaction; ABPA, allergic bronchopulmonary aspergillosis; CPA, chronic pulmonary aspergillosis; IPA,invasive pulmonary aspergillosis.

a NT indicates not tested (insufficient sample remaining).

Triazole Resistance in Human Samples d CID 2011:52 (1 May) d 1125

Page 24: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

•  Des  échecs  cliniques  :          -­‐  14  pt  TR34/L98H    

§   3  perdus  de  vue  §  6  en  échec  sous  voriconazole  ou  itraconazole    

   -­‐    3  des  4  pt  M220:  échec  thérapeu4que  (1  itraco,3  posaconale)    

24                        

 

La  présence  de  résistances  pourrait  expliquer  le  faible  taux  de  réponse  au  traitement  dans  les  ABPA  et  CPA  

 

Page 25: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

Le  point  épidémiologique  

Aspergillus  Résistant  aux  Azolés      

Où  en  somme-­‐nous  dans  le  monde  et  en  France  ?  

25  

Page 26: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

Une  franche  hétérogénéité  du  problème  

•  Au  Etats-­‐Unis      

-­‐  les  CMI  à  l’itraconazole  sont  généralement  basses      à  5%  des  Af  avec  des  CMI  augmentées:  parfois  aucune  muta4on  de  CYP51A  mécanismes  ?  non  clairement  élucidés,  sembleraient  faire  intervenir  des  changement  au  niveau  des  pompes  de  transport  transmembranaires      

-­‐  la  muta4on  TR34/L98H  n’a  jamais  été  iden4fiée    à  les  agriculteurs  américains  u4lise  une  quan4té  moindre  de  DMI  dans  leurs  cultures  que  leurs  homologues  européens      

Pham  CD.  Emerg  Infect  Dis.  sept  2014;20(9):1498‑503.    

 26  

Page 27: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

Une  franche  hétérogénéité  du  problème  

•  En  Espagne  données  rassurantes  en  2008  –  CMI  au  voriconazole  de  400  souches  cliniques  d’Aspergillus  sp.  avant  et  après  (2002)  l’introduc4on  de  ce  traitement.    

–  281  pt  dont  51  (18.1%)  ont  une  AI  probable  ou  prouvée.  

 

27  

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Sept. 2008, p. 3444–3446 Vol. 52, No. 90066-4804/08/$08.00!0 doi:10.1128/AAC.00629-08Copyright © 2008, American Society for Microbiology. All Rights Reserved.

Clinical Isolates of Aspergillus Species Remain Fully Susceptible toVoriconazole in the Post-Voriconazole Era!

Jesus Guinea,1,2* Sandra Recio,1 Teresa Pelaez,1,2 Marta Torres-Narbona,1 and Emilio Bouza1,2

Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Maranon, Universidad Complutense deMadrid, Madrid, Spain,1 and CIBER de Enfermedades Respiratorias (CIBER RES CD06/06/0058), Palma de Mallorca, Spain2

Received 14 May 2008/Returned for modification 3 June 2008/Accepted 28 June 2008

We studied the activity of voriconazole against 400 clinical strains of Aspergillus from the pre-voriconazole(1999 to 2002) and post-voriconazole (2003 to 2007) periods. Although the mean MICs of strains from thepost-voriconazole period were slightly higher (0.39 versus 0.57 !g/ml; P < 0.001), all strains were susceptibleto voriconazole and presented an MIC of <2 !g/ml.

Based on both in vitro and clinical data, voriconazole hasbecome the drug of choice for the treatment of invasive as-pergillosis (1, 8, 10, 12).

The results of different in vitro studies showed that the vastmajority of Aspergillus clinical strains are fully susceptible tothe new triazoles, including voriconazole (1, 2, 8, 9, 11–13).However, the antifungal activity of voriconazole may havechanged since it began to be used in the clinical setting.

We analyzed the in vitro antifungal activity of voricon-azole against 400 clinical Aspergillus strains collected beforeand after its introduction in our institution (November2002). We also examined the role of previous treatment withitraconazole and/or voriconazole in the appearance ofstrains of Aspergillus with diminished antifungal susceptibil-ity to voriconazole.

Part of this work was presented at the 18th ECCMID (Eu-ropean Congress on Clinical Microbiology and Infectious Dis-eases), Barcelona, Spain, 2008 (poster P 1360).

Organisms, source of samples, and period of study. Thestrains were from 281 patients, of whom 51 (18.1%) hadproven or probable invasive aspergillosis according to the Eu-ropean Organization for Research and Treatment of Cancer

(EORTC) criteria. The species distribution of the strains an-alyzed was as follows: Aspergillus fumigatus (n " 374), Aspergil-lus terreus (n " 20), Aspergillus niger (n " 3), and Aspergillusflavus (n " 3). As for the source of the strains, 308 were fromrespiratory samples and 98 were from patients with invasiveaspergillosis.

The isolates were grouped by period: those isolated duringthe period before the introduction of voriconazole (pre-vori-conazole, 1999 to 2002) and those isolated after its introduc-tion (post-voriconazole, 2003 to 2007). Both periods were com-parable in terms of number of patients (143 versus 138),number of cases of proven/probable invasive aspergillosis (27versus 24), and number of isolates (197 versus 203). Somepatients had never received voriconazole or itraconazole, somehad received it recently, and some were even taking it when thestrains were isolated.

Analysis of the antifungal susceptibility of the strains. Theantifungal activity of voriconazole (Pfizer PharmaceuticalGroup, New York, NY) was determined by using the CLSI(formerly NCCLS) M38-A standard (4). All trays used in theassay were prepared at the same time, and all strains from bothperiods were tested using the same batch of trays.

* Corresponding author. Mailing address: Servicio de MicrobiologıaClınica y Enfermedades Infecciosas, Hospital General UniversitarioGregorio Maranon, C/Dr. Esquerdo 46, 28007 Madrid (Spain). Phone:34915867163. Fax: 34915044906. E-mail: [email protected].

! Published ahead of print on 7 July 2008.

TABLE 1. In vitro activity of voriconazole against clinical isolates of Aspergillus speciesa

Period

Activity of voriconazoleb (#g/ml) against:

All strains per period Strains per patient groupc

No. ofstrains MIC90 MIC50

GM ofMIC Range No. of

patients MIC90 MIC50GM ofMIC Range

Pre-voriconazole 197 0.5 0.25 0.39 0.125–1 143 0.5 0.25 0.40 0.125–1Post-voriconazole 203 1 0.5 0.57 0.125–2 138 1 0.5 0.61 0.125–2

Overall 400 1 0.5 0.48 0.125–2 281 1 0.5 0.51 0.125–2a Four hundred isolates were tested overall and for each study period using the CLSI M-38A procedure.b MIC endpoint for voriconazole and Aspergillus spp. was defined as the lowest concentration that produced complete inhibition of growth after 48 h of incubation.

GM, geometric mean.c In patients with multiple isolates, only the highest MIC was chosen for analysis.

3444

on Novem

ber 8, 2014 by guesthttp://aac.asm

.org/D

ownloaded from

Ø  Pas  de  souche  résistante  au  vorico    Ø  Augmenta4on  des  CMI  depuis  vorico  Ø  Pas  de  corréla4on  entre  échec  et  CMI  >  1  

 Guinea  j.  Agents  Chemother  2008,52(9):3444  

Page 28: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

•  Dans  les  pays  du  nord  de  l’Europe  

 Pays-­‐Bas    Allemagne    Danemark  

 4  –  5  –  10%  selon  les  séries  !    avec  une  large  prédominance  de  TR34/L98H    et  une  mortalité  rapportée  dans  les  formes  invasives  >  90%      !  

28  

Une  franche  hétérogénicité  du  problème  

Vermeulen  E.  Cur  op  in  infect  dis  2013  Van  der  Linden  JW  et  al.  CID  2013  

ECDC  2013  

Page 29: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

En  France  6  études  (dont  2  pas  encore  publiées)    

29  

Prospectif,,12,centres,

1,an,Sept,2013,E.Dannaoui)et)al.)ICAAC)2014)

En,février:,1029,isolats,,847,exploitables,!,,9,Résistants,(7pt*),(1%):,8x,

TR34/L98H,,1x,7121F,

Et.,prospective,1,an,

2012,Mondor/Créteil,Choukri)F.)et)al.)J)of)Mycol,)Mars)2014)

165,isolats,d’A.fumigatus,(130,pt),

3,pt,avec,A.fumigatus,panTR,(aspergillome,,colonization,BPCO,et,ABPA),

dont,2,TR34/L98H,et,1,sans,mutation,identifiée,sur,cyp51A.,,Prévalence,1.9%,

Patients,d’Hématologie,Paris,Alanio a. et al. JAC 2011)

118,pt,!117,S,azolés,,1,R,chez,un,patient,jamais,exposé,aux,azolés,,Pas,de,différence,de,S,aux,azolés,en,fonction,de,l’exposition,antérieure,aux,

Azolés,,

Prévalence0.85%,

Mucoviscidose,F.)Morio)et)al.)JAC 2012,

8%,(4/50,pts,),Af.,R.,Azolés,!,Toujours,mutation,CYP51A,,,

¾,soit,6%,pop,de,muco,TR34/L98H,

Mucoviscidose,

Juin,2010,à,avril,2011,Burgel)et)al.)AAC)2012)

ECBC,de,patients,muco:,249,patients,!,285/570,(50%),ECBC,+,à,A.f.)soit,131pt/249,(52.6%),,

!,6/131,pt,avaient,un,isolat,R,itraco,et,R,Posaco(4.6%),,vorico,3x,touché,!,2,étaient,TR34/L98H,

T,20%,Af,R,chez,patients,récemment,exposés,aux,azolés,!!!,

Transpl.,pulmonaires,

APHP,T,12,ans,,,,F.Choukri)et)al.))

Résultats,préliminaires:,3,pt,Af,R,azolés,dt,2,TR34/L98H,

Case,report,Hématologie,Rocchi)S)et)al.)JCM.)Besançon,

1,fermier,Français,Allogreffé,CSH,,a,développé,une,AI,TR34/L98H,,,

,

Page 30: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

CONCLUSION  

•  2  phénomènes  responsables  de  l’émergence  de  résistances  aux  Azolés  –  Exposi4on  au  long  court  à  aspergilloses  chroniques  –  Contamina4on  depuis  l’environnement  à  AI/aspergilloses  chroniques            TR34/L98H  ,  TR46/Y121F/T289A  

•  Epidémiologie  –  Un  phénomène  sous-­‐esFmé  –  Des  inégalités  de  réparFFon  avec  une  menace  en  provenance  de  

l’environnement  •   qui  nous  vient  du  nord…forte  prévalence  dans  les  pays  du  nord  (Pays  bas,  Danemark,  Allemagne)  avec  extension  à  tous  les  pays  d’europe,  Inde  et  Afrique  

•  Liée  à  l’uFlisaFon  des  DMI  agriculture:  cross  résistance  prouvée  •  Résistance  par  muta4on  TR34/L98H,  TR46/Y121F/T289A  •  Menace  galopante  

–  Echec  cliniques  !    –  Rapport  ECDC  2013  ALARMANT  

30  

Page 31: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

Perspec8ves  

•  Veille  sanitaire  recommandée  par  ECDC    

•  Améliora4on  de  nos  méthodes  de  détec4on  des  Af  Résistants  –  PCR  –  Séquençage  

•  Vers  une  évolu4on  de  nos  stratégies  thérapeu4ques  ?  

•  Pression  sur  la  poli4que  d’u4lisa4on  des  ATF  en  agriculture….  

31  

Page 32: Emergence(( d’Aspergillus fumigatus*splf.fr/wp-content/uploads/2015/01/VM-At3-RissoK.pdf · Aspergillus sp. • Champignon’filamenteux’de’l’environnement ’ • Responsable’en’pathologie’humaine’:’

32  

Merci de votre attention