55
Disclosure to Promote the Right To Information Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public. इंटरनेट मानक !ान $ एक न’ भारत का +नम-णSatyanarayan Gangaram Pitroda “Invent a New India Using Knowledge” प0रा1 को छोड न’ 5 तरफJawaharlal Nehru “Step Out From the Old to the New” जान1 का अ+धकार, जी1 का अ+धकारMazdoor Kisan Shakti Sangathan “The Right to Information, The Right to Live” !ान एक ऐसा खजाना > जो कभी च0राया नहB जा सकता ह Bharthari—Nītiśatakam “Knowledge is such a treasure which cannot be stolen” IS 1885-14 (1967): Electrotechnical vocabulary, Part 14: Nuclear power plants (Bi-Lingual Edition) [ETD 1: Basic Electrotechnical Standards]

Electrotechnical Vocabulary Nuclear Power Plants

Embed Size (px)

Citation preview

Page 1: Electrotechnical Vocabulary Nuclear Power Plants

Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

इटरनट मानक

“!ान $ एक न' भारत का +नम-ण”Satyanarayan Gangaram Pitroda

“Invent a New India Using Knowledge”

“प0रा1 को छोड न' 5 तरफ”Jawaharlal Nehru

“Step Out From the Old to the New”

“जान1 का अ+धकार, जी1 का अ+धकार”Mazdoor Kisan Shakti Sangathan

“The Right to Information, The Right to Live”

“!ान एक ऐसा खजाना > जो कभी च0राया नहB जा सकता ह”Bhartṛhari—Nītiśatakam

“Knowledge is such a treasure which cannot be stolen”

“Invent a New India Using Knowledge”

ह”ह”ह

IS 1885-14 (1967): Electrotechnical vocabulary, Part 14:Nuclear power plants (Bi-Lingual Edition) [ETD 1: BasicElectrotechnical Standards]

Page 2: Electrotechnical Vocabulary Nuclear Power Plants
Page 3: Electrotechnical Vocabulary Nuclear Power Plants
Page 4: Electrotechnical Vocabulary Nuclear Power Plants

© BIS 2011

B U R E A U O F I N D I A N S T A N D A R D SMANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG

NEW DELHI 110002

fnlEcj@December 2011 ewY; oxZ@Price Group 8

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967¼iquiqZ"V 2002½

(Reaffirmed 2002)¼f}Hkk"kh@Bilingual½

Hkkjrh; ekud

fo|qr rduhdh ikfjHkkf"kd 'kCnkoyhHkkx 14 ukfHkdh; ÅtkZ la;U=k

(igyk iqueqZnz.k vDVwcj 1983)

Indian StandardELECTROTECHNICAL VOCABULARY

PART 14 NUCLEAR POWER PLANTS

(First Reprint October 1983)

;wMhlh@UDC 001.4 : 621.311.2 : 621.039

© Hkk ek C;wjks 2011

Hkkjrh; ekud C;wjksekud Hkou] 9 cgknqj 'kkg t+Qj ekxZ

ubZ fnYyh 110002

Page 5: Electrotechnical Vocabulary Nuclear Power Plants

fo|qr rduhdh ekud fo"k; lfefr] bZVhMhlh 1

izkDdFku

bl Hkkjrh; ekud (Hkkx 14) osQ elkSns dks fo|qr rduhdh ekud fo"k; lfefr }kjk vfUre :i fn, tkus vkSj fo|qr rduhdhfoHkkx ifj"kn osQ vuqeksnu osQ ckn Hkkjrh; ekud laLFkk }kjk 15 ekpZ 1967 dks xzg.k fd;k x;kA

bl ekud (Hkkx 14) esa vf/drj mu ifjHkk"kkvksa dk vuqlj.k fd;k x;k gS tks vUrjkZ"Vªh; fo|qr rduhdh vk;ksx }kjkvuq'kaflr elkSns esa lfEefyr gSa vkSj MkWD;weSaV% 1 (26) (dsUnzh; dk;kZy;) 238 esa nh xbZ gSa] tks bl fo"k; ij loZlEervUrjkZ"Vªh; jk; dks O;Dr djrk gSA

fo|qr rduhdh ikfjHkkf"kd 'kCnkoyh dks lEiw.kZ ,d gh Hkkx esa rS;kj djuk laHko ugha ik;k x;k gS] vr% bls vusd Hkkxksa esafudkyk tk jgk gS] izR;sd Hkkx esa ,d ;k vf/d [k.M gSaA vU; Hkkxksa dh lwph vuqcaèk d esa nh xbZ gSA

bl ekud osQ fuèkkZj.k osQ fy, mÙkjnk;h lfefr dk xBu vuqcaèk [k esa fn;k x;k gSA

Electrotechnical Standards Sectional Committee, ETDC 1

FOREWORD

This Indian Standard (Part 14) was adopted by the Indian Standards Institution on 15 March 1967, after the draftfinalized by the Electrotechnical Standards Sectional Committee had been approved by the Electrotechnical DivisionCouncil.

This Standard (Part 14) follows, to a large extent, the definitions included in the draft recommendation by theInternational Electrotechnical Commission as contained in Doc : 1 (26) (Central Office) 238 which represents theconsensus of international opinion on the subject.

It has not been found possible to prepare the electrotechnical vocabulary as a complete volume which is, therefore,being issued in several parts each having one or more sections. Other parts are given in Appendix A.

The composition of the committee responsible for the formulation of this standard is given at Appendix B.

Page 6: Electrotechnical Vocabulary Nuclear Power Plants

1

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

Hkkjrh; ekud

fo|qr rduhdh ikfjHkkf"kd 'kCnkoyhHkkx 14 ukfHkdh; ÅtkZ la;U=k

Indian StandardELECTROTECHNICAL VOCABULARY

PART 14 NUCLEAR POWER PLANTS

1 SCOPE

This standard (Part 14) covers definitions of termsapplicable to nuclear power plants for generation ofelectric energy.

2 NUCLEAR PHYSICS

2.1 General

2.1.1 Atom — The smallest part of an element, with nonet electric charge, which can participate in chemicalcombinations.

2.1.2 Ion — An atom, molecule or group of moleculeshaving a net electric charge.

2.1.3 Nucleus — The central part of an atom, possessinga positive charge and containing nearly all the mass ofthe atom.

2.1.4 Compound Nucleus — The expression used inBohr theory to define the excited nucleus formed whena particle is absorbed by a nucleus during a nuclearreaction.

2.1.5 Mass Number — Total number of protons andneutrons in a nuclide.

2.1.6 Atomic Number — Number of protons containedin the nucleus.

2.1.7 Nuclide — A species of atom characterized byits mass number, atomic number, and nuclear energystate, provided that the mean life in that state is longenough to be observable.

2.1.8 Isotopes — Nuclides having the same atomicnumber but different mass numbers.

2.1.9 Isotopic — Ratio of the number of atoms of aspecified isotope of an element to the total number ofatoms of this element in a sample. Expressed in percent.

1 fo"k; {k s = k1 fo"k; {k s = k1 fo"k; {k s = k1 fo"k; {k s = k1 fo"k; {k s = k

bl ekud (Hkkx 14) esa fo|qr mQtkZ ds mRiknu gsrq ukfHkdh;mQtkZ la;U=k ls lEcfUèkr inksa dh ifjHkk"kk,a nh xbZ gSaA

2 ukfHkdh; HkkSfrdh2 ukfHkdh; HkkSfrdh2 ukfHkdh; HkkSfrdh2 ukfHkdh; HkkSfrdh2 ukfHkdh; HkkSfrdh

2-1 lkekU;2-1 lkekU;2-1 lkekU;2-1 lkekU;2-1 lkekU;

2-1-1 2-1-1 2-1-1 2-1-1 2-1-1 ijek.kq μ fdlh rÙo dk lw{ere Hkkx] ftl ij dksbZusV fo|qr vkos'k u gks] vkSj tks jklk;fud la;ksx fØ;kvksa esaHkkx ys ldsA

2-1-2 2-1-2 2-1-2 2-1-2 2-1-2 vk;u μ ,d ijek.kq] v.kq vFkok v.kqvksa dk lewgftl ij dqN usV fo|qr vkos'k gksA

2-1-3 2-1-3 2-1-3 2-1-3 2-1-3 U;wfDy;l (ukfHkd) μ ijek.kq dk dsUnzh; Hkkx tksèku&vkosf'kr gksrk gS rFkk blesa ijek.kq dk yxHkx leLrnzO;eku fLFkr gksrk gSA

2-1-4 2-1-4 2-1-4 2-1-4 2-1-4 la;qDr U;wfDy;l μ fdlh ukfHkdh; vfHkfØ;k esa,d ukfHkd }kjk fdlh d.k dk vo'kks"k.k djus ls cuus okysmÙksftr ukfHkd dks ifjHkkf"kr djus ds fy, cksj ds fl¼kUresa iz;qDr ,d inA

2-1-5 2-1-5 2-1-5 2-1-5 2-1-5 nzO;eku la[;k μ fdlh U;wDykbM esa mifLFkr izksVksuksao U;wVªkWuksa dh dqy la[;kA

2-1-6 2-1-6 2-1-6 2-1-6 2-1-6 ijek.kq la[;k μ U;wfDy;l (ukfHkd) esa mifLFkrizksVksuksa dh la[;kA

2-1-7 2-1-7 2-1-7 2-1-7 2-1-7 U;wDykbM μ fdlh ijek.kq dh fof'k"V nzO;eku la[;k]ijek.kq la[;k vkSj ukfHkdh; mQtkZ voLFkk ;qDr tkfr fo'ks"k;fn bl voLFkk esa mldh ekè; vk;q bruh i;kZIr gks fdmldk izs{k.k fd;k tk ldsA

2-1-8 2-1-8 2-1-8 2-1-8 2-1-8 leLFkkfud μ ,sls U;wDykbM ftudh ijek.kq la[;k,dleku gks] ij nzO;eku la[;k,¡ fHkUu&fHkUu gksaA

2-1-9 2-1-9 2-1-9 2-1-9 2-1-9 leLFkkfudh; ckgqY; μ fdlh rÙo ds uewus esamifLFkr ml rÙo ds ,d fof'k"V leLFkkfud ds ijek.kqvksadh la[;k rFkk mlds dqy ijek.kqvksa dh la[;k dk vuqikrAbls izfr'kr esa O;Dr fd;k tkrk gSA

Page 7: Electrotechnical Vocabulary Nuclear Power Plants

2

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

2.1.10 Abundance Ratio — Quotient of two isotopicabundance in a given element.

2.1.11 Radionuclide — A radioactive nuclide.

2.1.12 Radioisotope — Radioactive isotope.

2.1.13 Parent; Radioactive Precursor (of aRadionuclide) — Radioactive nuclide which producesthe radionuclide by one or several successivedisintegrations.

2.1.14 Decay Product — Nuclide originating fromthe disintegration of a radioactive nuclide.

2.1.15 Fission Fragments — The nuclei resulting fromfission before they have undergone radioactivetransformations.

2.1.16 Fission Products — The nuclides producedeither by fission or by the subsequent radioactivedisintegration of the nuclides thus formed.

2.1.17 Radio Element — Radioactive chemicalelement.

2.1.18 Alpha, Beta and/or Gamma Emitter —Radionuclide disintegrating with emission of alpha,beta and/or gamma radiation.

2.1.19 Active Deposit — Radioactive productsdeposited on a surface following radioactive decay ofgas.

2.1.20 Radiation — The emotion of energy in the formof particles of matter or in the form of anelectromagnetic wave.

2.1.21 Alpha Particle — A helium-4 nucleus emittedduring a nuclear transformation; by extension, anyhelium-4 nucleus.

2.1.22 Alpha-Radiation — Alpha particles emergingfrom radioactive atoms.

2.1.23 Electron — An elementary particle having thesmallest known charge of negative electricity. Its massis 9.108 × 10–28 gram. The charge of electron e = 1.6× 10–20 emu.

2.1.24 Beta Particle — An electron of either positivecharge (β +), or negative charge (β –), which has beenemitted by an atomic nucleus or neutron in the processof a radioactive transformation.

2.1.25 Positron — It is identical to electron but haspositive charge.

2.1.26 Beta Disintegration — Radioactivetransformation of a nuclide or neutron in which theatomic number changes by ±1, and the mass numberremains constant. Increase of atomic number occurswith negative beta particle emission, decrease withpositive beta particle (positron) emission or uponelectron capture.

2-1-10 2-1-10 2-1-10 2-1-10 2-1-10 ckgqY; vuqikr μ fdlh rÙo esa mlds nks leLFkkfudh;ckgqY;rkvksa dk vuqikrA

2-1-11 2-1-11 2-1-11 2-1-11 2-1-11 jsfM;ks U;wDykbM μ ,d jsfM;ks,sfDVo U;wDykbMA

2-1-12 2-1-12 2-1-12 2-1-12 2-1-12 jsfM;ks leLFkkfud μ jsfM;ks,sfDVo leLFkkfudA

2-1-13 2-1-13 2-1-13 2-1-13 2-1-13 tud_ jsfM;ks ,sfDVo iwoZxkeh (jsfM;ks U;wDykbM dk)μ og jsfM;ks,sfDVo U;wDykbM tks ,d vFkok vfèkd Øfedfo?kVuksa }kjk jsfM;ksU;wDykbM mRiUu djrk gSA

2-1-14 2-1-14 2-1-14 2-1-14 2-1-14 {k;t inkFkZ@mRikn μ fdlh jsfM;ks,sfDVo U;wDykbMds fo?kVu ls mRiUu gqvk U;wDykbMA

2-1-15 2-1-15 2-1-15 2-1-15 2-1-15 fo[k.Mfud [k.M μ fo[k.Mu ds iQyLo:i izkIrgksus okys U;wfDy;l] muesa dksbZ jsfM;ks,sfDVo :ikUrj.k gksusls igysA

2-1-16 2-1-16 2-1-16 2-1-16 2-1-16 fo[k.Mfud mRikn μ fo[k.Mu }kjk izkIr U;wDykbMvFkok blls izkIr U;wDykbMksa ds lrr~ jsfM;ks,sfDVo fo?kVu lsizkIr U;wDykbMA

2-1-17 2-1-17 2-1-17 2-1-17 2-1-17 jsfM;ks rÙo μ jsfM;ks,sfDVo jklk;fud rÙoA

2-1-18 2-1-18 2-1-18 2-1-18 2-1-18 ,sYiQk] chVk vkSj@vFkok xkek mRltZd μ ,slsjsfM;ks,sfDVo U;wDykbM ftudk fo?kVu ,sYiQk] chVk vkSj@vFkokxkek fofdj.kksa ds mRltZu ds lkFk gksrk gSA

2-1-19 2-1-19 2-1-19 2-1-19 2-1-19 lfØ; fu{ksi μ fdlh xSl ds jsfM;ks,sfDVo {k; dsi'pkr~ lrg ij fu{ksfir jsfM;ks,sfDVo inkFkZA

2-1-20 2-1-20 2-1-20 2-1-20 2-1-20 fofdj.k μ inkFkZ ds d.kksa ds :i esa vFkokfo|qrpqEcdh; rjaxksa ds :i esa mQtkZ dk mRltZuA

2-1-21 2-1-21 2-1-21 2-1-21 2-1-21 ,sYiQk&d.k μ fdlh ukfHkdh; :ikUrj.k esa mRlftZrghfy;e&4 ukfHkd] foLrkj ls] dksbZ Hkh ghfy;e&4 ukfHkdA

2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 ,sYiQk fofdj.k μ jsfM;ks,sfDVo ijek.kqvksa ls mRlftZrgksrs ,sYiQk d.kA

2-1-23 2-1-23 2-1-23 2-1-23 2-1-23 ,ysDVªkWu μ ½.kkRed fo|qr vkos'k dh lw{ere Kkrek=kk ;qDr ,d ewy d.kA bldk nzO;eku 9.108 × 10-28 xzkegksrk gSA bysDVªkWu ij vkos'k e =1.6 × 10-20 emu.

2-1-24 2-1-24 2-1-24 2-1-24 2-1-24 chVk d.k μ ,d ,ysDVªkWu] ;k rks èkkuvkosf'kr(β +) ;k èkuvkosf'kr (β –) tks fdlh jsfM;ks,sfDVo :ikUrj.kizfØ;k esa ijek.kq ds ukfHkd (U;wfDy;l) esa ls ;k U;wVªkWu esals mRlftZr fd;k x;k gksA

2-1-25 2-1-25 2-1-25 2-1-25 2-1-25 ikWthVªkWu μ ;g ,d ,ysDVªkWu ds le:i gksrk gSfdUrq ml ij ?kukRed vkos'k gksrk gSA

2-1-26 2-1-26 2-1-26 2-1-26 2-1-26 chVk fo?kVu μ ,d U;wDykbM vFkok U;wVªkWu dkjsfM;ks,sfDVo :ikUrj.k ftlesa ijek.kq la[;k,a ±1 ls ifjofrZrgks tkrh gS vkSj nzO;eku la[;k vifjofrZr jgrh gSA ijek.kqla[;k esa o`f¼ rc gksrh gS tc ½.kkRed chVk d.k dkmRltZu gksrk gS_ èkukRed chVk d.k (ikWthVªkWu) ds mRltZu;k bysDVªkWu ds izxzg.k ds dkj.k ijek.kq la[;k de gksrh gSA

Page 8: Electrotechnical Vocabulary Nuclear Power Plants

3

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

2.1.27 Beta-Ray Spectrum — Distribution, in energy orin momentum, of beta particles (not including conversionelectrons) emitted by beta disintegration process.

2.1.28 Electron-Positron Pair — Electron and positronsimultaneously created, in a process called ‘pairproduction’.

2.1.29 Photon — Quantum of electromagneticradiation.

2.1.30 X-Radiation — An electromagnetic radiationproduced by interaction of an electron with the coulombfield of a nucleus or by orbital electron transitions.

2.1.31 Gamma Radiation — Electromagnetic radiationemitted in the process of nuclear transition or particleannihilation

2.1.32 Capture Gamma Radiation — Gamma radiationemitted immediately after the capture of a neutron by anuclide.

2.1.33 Prompt Gamma Radiation — Gamma radiationaccompanying the fission process without measurabledelay.

2.1.34 Bremsstrahlung — The electromagneticradiation associated with the deceleration oracceleration of charged particles.

2.1.35 Photoelectron — Electron emitted by somemetals in a phenomenon called photoelectric effect.

2.1.36 Photoneutron — Neutron emitted during aphotonuclear reaction.

2.1.37 Nucleon — A proton or a neutron.

2.1.38 Proton — An elementary particle carrying thesmallest charge of positive electricity and having a massnear that of the hydrogen atom. The mass of the protonis mp = 1.672 × 10–24 gram = 1.007 59 atomic massunits.

2.1.39 Neutron — An elementary particle with nocharge, having a mass of 1.675 × 10–24 gram or 1.008 98atomic mass units

2.1.40 Neutron Excess — Number of neutrons in anucleus in excess of the number of protons.

2.1.41 Fission Neutrons — Neutrons originating in thefission process (including both prompt and delayedneutrons) which have retained their original energy.

NOTE — The restriction of this term to neutrons with fissionspectrum is essential (see 2.2.57).

2.1.42 Prompt Neutrons — Neutrons emitted onlyduring the process of fission and do not include neutronsemitted by fission products in the process of their chaindecay.

2-1-27 2-1-27 2-1-27 2-1-27 2-1-27 chVk&fdj.k LisDVªe μ chVk fo?kVu izfØ;k lsmRlftZr chVk d.kksa (ftuesa :ikUrjd bysDVªkWu lfEefyrugha gSa) dh mQtkZ vFkok laosx dk forj.kA

2-1-28 2-1-28 2-1-28 2-1-28 2-1-28 bysDVªkWu&ikWthVªkWu ;qXe μ ^;qXe&mRiknu* ukedizfØ;k esa ,dlkFk cuus okys bysDVªkWu vkSj ikWthVªkWuA

2-1-29 2-1-29 2-1-29 2-1-29 2-1-29 iQksVkWu μ fo|qr pqEcdh; fofdj.k dh ek=kkA

2-1-30 2-1-30 2-1-30 2-1-30 2-1-30 X- fofdj.k μ ,d izdkj ds fo|qr&pqEcdh; fofdj.k]tks ,d bysDVªkWu dh fdlh U;wfDy;l ds dwykWe {ks=k ds lkFkvU;ksU; fØ;k ls ;k d{kh; bysDVªkWuksa ds LFkkukUrj.k lsmRiUu gksrs gSaA

2-1-31 2-1-31 2-1-31 2-1-31 2-1-31 xkek fofdj.k μ ukfHkdh; laØe.k ;k d.k 'kwU;hdj.kdh izfØ;k esa mRlftZr fo|qr pqEcdh; fofdj.kA

2-1-32 2-1-32 2-1-32 2-1-32 2-1-32 izxzg.k xkek fofdj.k μ fdlh U;wDykbM }kjk ,dU;wVªkWu ds izxzg.k ds rqjUr i'pkr~ mRlftZr xkek fofdj.kA

2-1-33 2-1-33 2-1-33 2-1-33 2-1-33 rkRdkfyd xkek fofdj.k μ fo[k.Mu izfØ;k dslkFk rRdky (fcuk dksbZ izs{k.kh; foyEc ds) xkek fofdj.kA

2-1-34 2-1-34 2-1-34 2-1-34 2-1-34 czseLVªkWyqax μ vkosf'kr d.kksa ds eanu ;k Roj.k lslEc¼ fo|qr&pqEcdh; fofdj.kA

2-1-35 2-1-35 2-1-35 2-1-35 2-1-35 izdk'k bysDVªkWu μ izdk'k&fo|qr izHkko uked ?kVukesa dqN èkkrqvksa }kjk mRlftZr bysDVªkWuA

2-1-36 2-1-36 2-1-36 2-1-36 2-1-36 izdk'k U;wVªkWu μ fdlh izdk'k ukfHkdh; vfHkfØ;kesa mRlftZr U;wVªkWuA

2-1-37 2-1-37 2-1-37 2-1-37 2-1-37 U;wfDyvkWu μ ,d izksVªksu ;k ,d U;wVªkWuA

2-1-38 2-1-38 2-1-38 2-1-38 2-1-38 izksVksu μ ,d ewy d.k] tks èku fo|qr vkos'k dhlw{ere ek=kk ls vkosf'kr gksrk gS] vkSj bldk nzO;eku yxHkxgkbMªkstu ijek.kq ds nzO;eku ftruk gksrk gSA izksVªksu dknzO;eku mp= 1.072 × 10–24 xzke = 1.007 59 ijekf.odnzO;eku bdkbZ (amu)A

2-1-39 2-1-39 2-1-39 2-1-39 2-1-39 U;wVªkWu μ ,d ewy d.k ftl ij vkos'k ugha gksrkvkSj bldk nzO;eku 1.675×10–24 xzke ;k 1.008 98 ijekf.kdnzO;eku bdkbZ (amu) gksrk gSA

2-1-40 2-1-40 2-1-40 2-1-40 2-1-40 U;wVªkWu vkfèkD; μ ukfHk; (U;wfDy;l) esa izksVªksu dhla[;kA

2-1-41 2-1-41 2-1-41 2-1-41 2-1-41 fo[k.Mu U;wVªkWu μ fo[k.Mu izfØ;k esa mRiUu gksusokys U;wVªkWu (ftuesa rkRdkfyd o foyfEcr nksuksa U;wVªkWulfEefyr gSa) tks viuh ewy mQtkZ dks cpk, j[krs gSaA

uksVuksVuksVuksVuksV μ fo[k.Mu LisDVªe ds lkFk bl in dk izfrcUèk vfuok;Z gS(ns[ksa 2-2-572-2-572-2-572-2-572-2-57)A

2-1-42 2-1-42 2-1-42 2-1-42 2-1-42 rkRdkfyd U;wVªkWu μ dsoy os U;wVªkWu tks fo[k.MuizfØ;k dh vofèk esa mRlftZr gksrs gSa] vkSj buesa os U;wVªkWulfEefyr ugha gksrs tks fo[k.Mu mRiknksa }kjk muds Üka[kykc¼{k; dh izfØ;k esa mRlftZr gksrs gSaA

Page 9: Electrotechnical Vocabulary Nuclear Power Plants

4

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

2.1.43 Delayed Neutrons — Neutrons emitted byfission products in the process of their chain decay.

2.1.44 Fast Neutrons — Neutrons of kinetic energygreater than some specified value. This value may varya wide range and will be dependent upon theapplication, such as reactor physics, shielding, ordosimetry. In reactor physics the value is frequentlychosen to be 0.1 MeV.

2.1.45 Resonance Neutrons — Neutrons of kineticenergy between the energies of slow and fast neutrons.In reactor physics the range might be 1 eV to 0.1MeV.

2.1.46 Resonance Neutrons — Intermediate energyneutrons having energies from eV region to keV region,in which resonance of fissile and fertile materials lie.

2.1.47 Epicadmium Neutrons — Neutrons of kineticenergy greater than the cadmium cut-off energy.

2.1.48 Cadmium Cut-Off — Neutron energy valuebelow which the transmission factor through a cadmiumsheet of specified thickness can be considerednegligible.

2.1.49 Effective Cadmium Cut-Off — That energyvalue which, for a given experimental configuration,is determined by the condition that, if a cadmium coversurrounding a detector were replaced by a fictitiouscover opaque to neutrons with energy below this valueand transparent to neutrons with energy above thisvalue, the observed detector response would beunchanged.

2.1.50 Subcadmium Neutrons — Neutrons of kineticenergy less than the cadmium cut-off energy.

2.1.51 Slow Neutrons — Neutrons of kinetic energyless than some specified value. This value may varyover a wide range and will depend on the application,such as reactor physics, shielding or dosimetry. Inreactor physics the value is frequently chosen to be1 eV; in dosimetry the cadmium cut-off energy is used.

2.1.52 Epithermal Neutrons — Neutrons of kineticenergy greater than that of thermal agitation; the termis often restricted to energies just above thermal, thatis, energies comparable with those of chemical bonds.

2.1.53 Thermal Neutrons — Neutrons essentially inthermal equilibrium with the molecules of the mediumin which they exist.

2.2 Interactions

2.2.1 Disordering — Displacement of an atom due to

2-1-43 2-1-43 2-1-43 2-1-43 2-1-43 foyfEcr U;wVªkWu μ fo[k.Vu mRiknksa }kjk mudsÜka[kykc¼ {k; gksus dh izfØ;k esa mRlftZr U;wVªkWuA

2-1-44 2-1-44 2-1-44 2-1-44 2-1-44 rhozxkeh U;wVªkWu μ os U;wVªkWu ftudh xfrt mQtkZ ,dfufnZ"V eku ls vfèkd gksA ;g eku ,d cM+h ijkl ds eè;ifjofrZr gks ldrk gS vkSj vuqiz;ksx ij fuHkZj djsxk] tSlsHkV~Vh (fj,DVj) HkkSfrdh] ifjj{k.k ;k MkslhehVªhA ijek.kqHkV~Vh HkkSfrdh esa izk;% bldk eku 0.1 MeV pquk tkrk gSA

2-1-45 2-1-45 2-1-45 2-1-45 2-1-45 eè;orhZ U;wVªkWu μ os U;wVªkWu ftudh xfrt mQtkZrhozxkeh vkSj eUnxkeh U;wVªkWuksa dh mQtkZvksa ds eè; gksrh gSAijek.kq HkV~Vh HkkSfrdh esa bldk ijkl 1 eV ls 0.1 MeV rdgks ldrk gSA

2-1-46 2-1-46 2-1-46 2-1-46 2-1-46 vuquknh U;wVªkWu μ eè;orhZ mQtkZ ds U;wVªkWu ftudhmQtkZ eV ls KeV {ks=k esa gks] ftlesa fonY; vkSj moZj inkFkks±dk vuqukn vofLFkr gksA

2-1-47 2-1-47 2-1-47 2-1-47 2-1-47 ,fidSMfe;e U;wVªkWu μ U;wVªkWu ftudh xfrt mQtkZdSMfe;e dV&vkWiQ (laLrCèk) mQtkZ ls vfèkd gksA

2-1-48 2-1-48 2-1-48 2-1-48 2-1-48 oSQMfe;e laLrCèk (dV&vkWiQ) μ U;wVªkWu dh mQtkZdk og eku ftlls de gksus ij fufnZ"V eksVkbZ dh dSMfe;eijr esa gksdj ikjxE;rk xq.kkad ux.; ekuk tk ldsA

2-1-49 2-1-49 2-1-49 2-1-49 2-1-49 izHkkoh dSMfe;e laLrCèk (dV&vkWiQ) μ mQtkZ dkog eku tks fdlh izk;ksfxd la:i.k ds fy, bl 'krZ ijfuèkkZfjr fd;k tkrk gS ;fn fdlh lalwpd ij yxs dSMfe;evkoj.k dks ,d ,sls dkYifud vkoj.k ls izfrLFkkfir djfn;k tk, tks blls de mQtkZ okys U;wVªkWuksa ds fy, vikjxE;gks vkSj blls vfèkd eku dh mQtkZ ds fy, ikjxE; gks] rkslalwpd dh izsf{kr vuqfØ;k vifjofrZr gh jgsxhA

2-1-50 2-1-50 2-1-50 2-1-50 2-1-50 lcdSMfe;e U;wVªkWu μ ,sls U;wVªkWu ftudh xfrtmQtkZ dSMfe;e laLrCèk (dV&vkWiQ) mQtkZ ls de gksA

2-1-51 2-1-51 2-1-51 2-1-51 2-1-51 eUnxkeh U;wVªkWu μ os U;wVªkWu ftudh xfrt mQtkZ,d fufnZ"V eku ls de gksA ;g eku ,d cM+h ijkl dseè; ifjofrZr gks ldrk gS] vkSj vuqiz;ksx ij fuHkZj djsxk];Fkk ijek.kq HkV~Vh (fj,DVj) HkkSfrdh] ifjj{k.k ;k MkslhehVªhAijek.kq HkV~Vh (fj,DVj) HkkSfrdh esa ;g eku izk;% l eVpquk tkrk gSA MkslhehVªh esa dSMfe;e laLrCèk mQtkZ iz;qDrgksrh gSA

2-1-52 2-1-52 2-1-52 2-1-52 2-1-52 vYirkih U;wVªkWu μ os U;wVªkWu ftudh xfrt mQtkZmQ"eh; iz{kksHk ls vfèkd gksA ;g in izk;% mQ"eh; ls dqN ghvfèkd mQtkZvksa rd ds fy, lhfer gksrk gS] vFkkZr~ jklk;fudcUèkksa dh mQtkZvksa ds led{k mQtkZvksa ds fy,A

2-1-53 2-1-53 2-1-53 2-1-53 2-1-53 rkih; U;wVªkWu μ os U;wVªkWu tks ftl ekè;e esa fLFkr gSamlds v.kqvka ds lkFk vo'; gh mQ"eh; lkE; voLFkk esa gksaA

2-2 vU;k s U; fØ;k, a2-2 vU;k s U; fØ;k, a2-2 vU;k s U; fØ;k, a2-2 vU;k s U; fØ;k, a2-2 vU;k s U; fØ;k, a

2-2-1 2-2-1 2-2-1 2-2-1 2-2-1 Øe fopfyr gksuk μ fdlh fØLVy tkyd esa fdlh

Page 10: Electrotechnical Vocabulary Nuclear Power Plants

5

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

radiation from the position it occupies in a crystallattice.

2.2.2 Wigner Effect — In reactor operation, the changein physical properties of graphite resulting fromdisplacement of lattice atoms by high-energy neutronsand other energetic particles.

2.2.3 Ionization — Ion formation by the division ofmolecules or by the addition of electrons to orseparation of electrons from atoms, molecules orformations of molecules.

2.2.4 Total Ionization

a) Total electric charge of ions of the same signproduced by a moving particle which has lostits entire kinetic energy in its path. Totalionization for a given gas is nearlyproportional to the initial energy, and nearlyindependent of the nature of the ionizingparticle. It is often used as a measure of theenergy of a particle.

b) Total number of ion pairs produced by acharged particle along its trajectory.

2.2.5 Primary Ionization — In a counter tube, totalionization produced by the incident radiation prior tomultiplication due to the gas.

2.2.6 Specific Ionization or Linear Ionization (at aPoint) — The number of 10ion pairs produced in a givenmaterial by any radiation per unit length of its path.

2.2.7 Photoelectric Effect

a) Ejection of bound electrons of a system underthe influence of incident photons, in which allthe energy (h v) of a photon is absorbed forevery electron ejected.

b) Ejection of a bound electron from an atomwhen a photon collides with the atom, in whichthe entire energy is transferred to the boundelectron.

c) The process in which a photon interacts withan atom transferring its entire energy to abound electron which is subsequentlyejected.

2.2.8 Photonuclear Reaction — Nuclear reactionresulting from the ineraction between a photon and anucleus.

2.2.9 Nuclear Disintegration — Transformation of thenucleus, involving a splitting into two or more nucleior particles with emission of energy; this

ijek.kq dk vius LFkku ls fdlh fofdj.k ds dkj.k foLFkkiugksukA

2-2-2 2-2-2 2-2-2 2-2-2 2-2-2 foxuj izHkko μ ijek.kq HkV~Vh (fj,DVj) dh izfØ;kesa mPp mQtkZ okys U;wVªkWuksa ;k vU; mQtkZ ;qDr d.kksa ds }kjktkyd esa ijek.kqvksa ds foLFkkiu ds iQyLo:i xzsiQkbV dsHkkSfrd xq.kksa esa ifjorZu gksukA

2-2-3 2-2-3 2-2-3 2-2-3 2-2-3 vk;uhdj.k μ v.kqvksa ds foHkktu ds dkj.k] ;kijek.kqvksa] v.kqvksa esa bysDVªkWuksa ds tqM+us ;k muesa ls i`Fkd~gksus] ;k v.kqvksa ds cuus ls vk;uksa dk cuukA

2-2-42-2-42-2-42-2-42-2-4 lEiw.kZ vk;uhdj.k

d) ,d xfr'khy d.k] tks vius iFk esa viuh leLrxfrt mQtkZ O;; dj nsrk gS] rks mlds }kjk mRiUu,d gh izdkj ds vk;uksa dk lEiw.kZ fo|qr vkos'kAfdlh nh xbZ xSl ds fy, iw.kZ vk;uhdj.k yxHkxmldh izkjfEHkd mQtkZ ds lekuqikrh gksrk gS] vkSjvk;uhdkjd d.k dh izkÑfr ls yxHkx eqDr gksrkgSA bldks izk;% fdlh d.k dh mQtkZ dh eki ds:i esa iz;qDr fd;k tkrk gSA

[k) fdlh vkosf'kr d.k ds }kjk blds iz{ksi iFk dsvuqfn'k mRiUu vk;u ;qXeksa dh dqy la[;kA

2-2-5 2-2-5 2-2-5 2-2-5 2-2-5 izkFkfed vk;uhdj.k μ ,d xf.k=k ukfydk esa vkifrrfofdj.k }kjk] xSl ds dkj.k cgqxf.kr gksus ls iwoZ] mriUulEiw.kZ vk;uhdj.kA

2-2-6 2-2-6 2-2-6 2-2-6 2-2-6 fof'k"V vk;uhdj.k ;k js[kh; vk;uhdj.k (,d fcUnqij) μ fdlh fn, x, inkFkZ esa fdlh fofdj.k }kjk vius iFkij izfr ,dkad yEckbZ esa mRiUu vk;u ;qXeksa dh la[;kA

2-2-7 2-2-7 2-2-7 2-2-7 2-2-7 izdk'k fo|qr izHkko

d) fdlh fudk; esa c¼ bysDVªkWuksa dk mu ij vkifrriQksVkWu ds izHkko ls mRltZu ftleas iQksVkWu dhleLr mQtkZ (h v) izR;sd mRlftZr bysDVªkWu dsfy, vo'kksf"kr gks tkrh gSA

[k) tc ,d iQksVkWu fdlh ijek.kq ls Vdjkrk gS rc ijek.kqeas ls c¼ bysDVªkWudk mRltZu gksuk] ftlesa iQksVksu dhleLr mQtkZ c¼ bysDVªkWu esa gLrkUrfjr gks tkrh gSA

x) og izfØ;k ftlesa ,d iQksVkWu fdlh ijek.kq dslkFk vU;ksU; fØ;k dj viuh leLr mQtkZ mlesac¼ ,d bysDVªkWu dks gLrkUrfjr dj nsrk gS]iQyLo:i og mRlftZr gks tkrk gSA

2-2-8 2-2-8 2-2-8 2-2-8 2-2-8 izdk'k&ukfHkdh; vfHkfØ;k μ ,d iQksVkWu vkSj ,dukfHkd dh vU;ksU; fØ;k ds iQyLo:i gksus okyh ukfHkdh;vfHkfØ;kA

2-2-9 2-2-9 2-2-9 2-2-9 2-2-9 ukfHkdh; fo?kVu μ U;wfDy;l dk :ikUrj.k] ftlesa;g nks ;k vfèkd ukfHkdksa (U;wfDy;l) ;k d.kksa esa foHkkftrgks tkrk gS] lkFk esa mQtkZ mRlftZr gksrh gSA ;g :ikUrj.k

Page 11: Electrotechnical Vocabulary Nuclear Power Plants

6

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

transformation can be spontaneous, or induced by anucleus or a particle.

2.2.10 Disintegration Constant — Probability that aradioactive atom will disintegrate spontaneously in unittime.

2.2.11 Disintegration Rate — Number ofdisintegrations per unit time occurring in a radioactivesubstance.

NOTE — The activity concept having been defined for a pureradionuclide, that of disintegration rate is for use in the case ofa mixture of radionuclides.

2.2.12 Disintegration Energy — Energy released in anuclear disintegration.

2.2.13 Radioactivity — The property of certain nuclideswhereby particles or gamma radiation arespontaneously emitted or whereby orbital electrons ofthe nuclide are captured.

2.2.14 Natural Radioactivity — Spontaneousradioactivity of natural elements.

2.2.15 Induced Radioactivity — Radioactivity causedby bombarding nuclides with particles or radiation.

2.2.16 Radioactive Decay — Transformation of anuclide by spontaneous emission of particles with orwithout the emission of gamma radiation or by captureof an orbital electron of the nuclide.

2.2.17 Activation — Process of inducing radioactivity,for example, by neutron bombardment.

2.2.18 Activity (of a Quantity of a Radioactive Nuclide)(A) — The quotient of ΔN ÷ Δt, where ΔN is the numberof nuclear transformations which occur in this quantityin time Δt. A = ΔN/Δt, where Δt is very small.

2.2.19 Curie (Ci) — The special unit of activity.

1 Ci = 3.7 × 1010 disintegrations per second

2.2.20 Specific Activity — Nuclear activity per unitmass.

2.2.21 Unit-Volume Activity — Nuclear activity per unitvolume.

2.2.22 Activity Curve — Curve representing the activityof a radioactive source as a function of time.

2.2.23 Radioactive Half-Life — For a single radioactivedecay process the mean time required for the activityto decrease to half its value by that process.

2.2.24 Exponential Decay (of a Quantity) — Variationof the quantity A in accordance with the law:

A = Aoe–λ t

Lor% izofrZr gks ldrk gS vFkok fdlh U;wfDy;l ;k fdlhd.k }kjk izsfjr gksdjA

2-2-10 2-2-10 2-2-10 2-2-10 2-2-10 fo?kVu fLFkjkad μ fdlh jsfM;ks,sfDVo ijek.kq ds,d bdkbZ le; esa Lor% izofrZr fo?kVu gksus dh izkf;drkA

2-2-11 2-2-11 2-2-11 2-2-11 2-2-11 fo?kVu nj μ fdlh jsfM;ks,sfDVo inkFkZ ds izfr bdkbZle; esa gksus okys fo?kVuksa dh la[;kA

uksVuksVuksVuksVuksV μ lfØ;rk dh ladYiuk ,d 'kq¼ jsfM;ksU;wDykbM ds fy,ifjHkkf"kr dh xbZ gS] fo?kVu nj dh ladYiuk jsfM;ks U;wDykbMksa dsfeJ.k ds fy, iz;qDr dh tkrh gSA

2-2-12 2-2-12 2-2-12 2-2-12 2-2-12 fo?kVu mQtkZ μ ukfHkdh; fo?kVu esa fueqZDr mQtkZA

2-2-13 2-2-13 2-2-13 2-2-13 2-2-13 jsfM;ks,sfDVfoVh μ dqN U;wDykbMksa dk ,d xq.kftlds dkj.k blesa ls dqN d.k ;k xkek fofdj.k Lor%mRlftZr gksrs gSa] vFkok U;wDykbM ds d{kh; bysDVªkWuksa dkizxzg.k gksrk gSA

2-2-14 2-2-14 2-2-14 2-2-14 2-2-14 izkÑfrd jsfM;ks,sfDVfoVh μ izkÑfrd rRoksa dh Lor%izofrZr jsfM;ks ,sfDVfoVhA

2-2-15 2-2-15 2-2-15 2-2-15 2-2-15 izsfjr jsfM;ks,sfDVfoVh μ U;wDykbMksa ij d.kksa ;kfofdj.kksa dh ckSNkj djus ls mRiUu jsfM;ks ,sfDVfoVhA

2-2-16 2-2-16 2-2-16 2-2-16 2-2-16 jsfM;kslfØ; {k; μ fdlh U;wDykbM eas ls] xkekfofdj.k lfgr ;k blds fcuk] d.kksa dk Lor% izofrZrmRltZu gksus vFkok U;wDykbM ds ,d d{kh; bysDVªkWu dkizxzg.k gksus ds dkj.k mldk :ikUrj.kA

2-2-17 2-2-17 2-2-17 2-2-17 2-2-17 lfØ;.k μ jsfM;ks,sfDVfoVh izsfjr djus dh izfØ;k]mnkgj.kkFkZ] U;wVªkWu dh ckSNkj }kjkA

2-2-18 2-2-18 2-2-18 2-2-18 2-2-18 lfØ;rk (fdlh jsfM;kslfØ; U;wDykbM dh dqNek=kk dh (A) – ΔN ÷ Δt dk HkkxiQy] tgka ΔN bl nh xbZla[;k esa le; esa gksus okys fo?kVuksa dh la[;k Δt - A = ΔN/Δt, tgk¡ Δt vR;Yi gSA

2-2-19 2-2-19 2-2-19 2-2-19 2-2-19 D;wjh (Ci) μ lfØ;rk dh ,d fo'ks"k ek=kdA

1 Ci = 3.7 × 1010 fo?kVu izfr lsd.M

2-2-20 2-2-20 2-2-20 2-2-20 2-2-20 fof'k"V lfØ;rk μ izfr bdkbZ nzO;eku dh ukfHkdh;lfØ;rkA

2-2-21 2-2-21 2-2-21 2-2-21 2-2-21 bdkbZ vk;ru lfØ;rk μ izfr bdkbZ vk;ru dhukfHkdh; lfØ;rkA

2-2-22 2-2-22 2-2-22 2-2-22 2-2-22 lfØ;rk oØ μ fdlh jsfM;ks,sfDVo lzksr dh lfØ;rkdks le; ds iQyu ds :i esa n'kkZus okyk oØA

2-2-23 2-2-23 2-2-23 2-2-23 2-2-23 jsfM;ks,sfDVo v¼Z&vk;q μ fdlh ,dy jsfM;ks,sfDVo{k; izfØ;k ds fy, og ekè; le; tks ml izfØ;k }kjklfØ;rk dk eku vkèkk gks tkus ds fy, vko';d gSA

2-2-24 2-2-24 2-2-24 2-2-24 2-2-24 pjèkkrkadh {k; (fdlh jk'kh dk) μ jkf'k A esa fu;eds vuqlkj ifjorZu%

A = Aoe–λ t

Page 12: Electrotechnical Vocabulary Nuclear Power Plants

7

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

where

A and Ao are the respective values of the quantityat times t and zero. λ is a constant depending onthe nature of A and on the process that causes itto decrease, sometimes referred to as the ‘decayconstant’.

2.2.25 Mean Life — The average lifetime for an atomicor nuclear system in a specified state. For anexponentially decaying system, the average time forthe number of atoms or nuclei in a specified state todecrease by a factor of e.

2.2.26 Neutron Diffusion — A phenomenon in whichneutrons in a medium through process of successivescattering collisions with the atoms or molecules of themedium tend to migrate from one region to another.

2.2.27 Diffusion Coefficient for Neutron Flux Density— The ratio of the neutron current density at a particularenergy to the negative gradient of the neutron fluxdensity at the same energy in the direction of thatcurrent.

2.2.28 Build-up Factor — In the passage of radiationthrough a medium, the ratio of the total value of aspecified radiation quantity at any point to thecontribution to that value from radiation reaching thepoint without having undergone a collision.

2.2.29 Albedo (Neutron) — The probability underspecified conditions that a neutron entering into a regionthrough a surface will return through that surface.

2.2.30 Leakage (Reactor Theory) — The net loss ofneutrons from a region of a reactor by escape acrossthe boundries of the region.

2.2.31 Capture — Any process by which an atomic ornuclear system acquires an additional particle.

2.2.32 Radiative Capture — Capture of an incidentparticle resulting in the emission of γ - rays.

2.2.33 Resonance Level — Energy level of a compoundnucleus, giving rise to resonances.

2.2.34 Resonance Capture — Capture of an incidentparticle at a resonance level of the resultant compoundnucleus.

2.2.35 Neutron Absorption — Nuclear interaction inwhich the incident neutron disappears as a free particleeven when one or more neutrons are subsequentlyemitted accompanied by other particles, for example,in fission.

tgka

jkf'k A o A0 Øe'k% ml le; t o 'kwU; ij eku gSaA λ,d fLFkjkad gS tks A dh izÑfr vkSj ml izfØ;k ijfuHkZj djrk gS ftlds dkj.k {k; gksrk gSA dHkh&dHkhbls ^fLFkjkad* Hkh dgk tkrk gSA

2-2-25 2-2-25 2-2-25 2-2-25 2-2-25 ekè; vk;q μ fdlh ijekf.od vFkok ukfHkdh;fudk; dh ,d fufnZ"V voLFkk esa vkSlr thou dkyA fdlhpj?kkrkadh {k; gksus okys fudk; ds fy, ijek.kqvksa ;kukfHkdksa dh ,d fufnZ"V voLFkk eas la[;k dks ,d xq.kd e}kjk de gksus ds fy, vko';d vkSlr le;A

2-2-26 2-2-26 2-2-26 2-2-26 2-2-26 U;wVªkWu dk folj.k μ ,d ?kVuk] ftlesa fdlhekè;e esa U;wVªkWuksa ds mÙkjksÙkj izdh.kZu o ekè;e ds ijek.kqvksa;k v.kqvksa ls VDdjksa dh izfØ;k }kjk U;wVªkWu ,d {ks=k ls nwljs{ks=k esa vfHkxeu dks izo`Ùk gksrs gSaA

2-2-27 2-2-27 2-2-27 2-2-27 2-2-27 U;wVªkWu ÝyDl ?kuRo ds fy, folj.k xq.kkad μfdlh fof'k"V mQtkZ ij U;wVªkWu èkkjk ?kuRo vkSj mlh mQtkZ ijbl èkkjk dh fn'kk eas U;wVªkWu ÝyDl ?kURo dh ½.kkRedizo.krk dk vuqikrA

2-2-28 2-2-28 2-2-28 2-2-28 2-2-28 fcYM&vi xq.kd μ fdlh ekè;e ls gksdj fofdj.kds izokg esa fdlh fcUnq dk ,d fof'k"V fofdj.k jkf'k dkdqy eku rFkk blesa ml fcUnq ij fcuk dksbZ VDdj [kk,igqapus okys fofdj.kksa ds ;ksxnku dk vuqikrA

2-2-29 2-2-29 2-2-29 2-2-29 2-2-29 ,YchMks (U;wVªkWu) μ fufnZ"V izfrcUèkksa ds vUrxZr,d U;wVªkWu tks fdlh {ks=k esa ,d lrg esa gksdj izos'k djrkgS] mlh lrg eas gksdj okil ykSVsxk] bldh izkf;drkA

2-2-30 2-2-30 2-2-30 2-2-30 2-2-30 {kj.k (fj,DVj fl¼kUr) μ ijek.kq HkV~Vh ds fdlhHkkx esa ls ml Hkkx dh lhekvksa ds vkj&ikj fudy tkus lsgksus okyh U;wVªkWuksa dh usV {kfrA

2-2-31 2-2-31 2-2-31 2-2-31 2-2-31 izxzg.k μ dksbZ izfØ;k ftlds }kjk ,d ijekf.od;k ukfHkdh; fudk; ,d vfrfjDr d.k izkIr dj ysrk gSA

2-2-32 2-2-32 2-2-32 2-2-32 2-2-32 fofdj.kdkjh izxzg.k μ ,d ,sls vkifrr d.k dkizxzg.k] ftlds iQyLo:i γ - fdj.kksa dk mRltZu gksA

2-2-33 2-2-33 2-2-33 2-2-33 2-2-33 vuqukn Lrj μ ,d la;qDr U;wfDy;l dh mQtkZ dkLrj tks vuqukn mRiUu dj nsA

2-2-34 2-2-34 2-2-34 2-2-34 2-2-34 vuquknh izxzg.k μ ifj.kke la;qDr U;wfDy;l dsvuqukn Lrj ij ,d vkifrr d.k dk izxzg.kA

2-2-35 2-2-35 2-2-35 2-2-35 2-2-35 U;wVªkWu vo'kks"k.k μ ukfHkdh; vU;ksU; fØ;k] ftlesavkifrr U;wVªkWu ,d eqDr d.k ds :i esa vn`'; gks tkrk gS];|fi blds i'pkr~ ,d ;k vfèkd U;wVªkWu vU; d.kksa ds lkFkmRlftZr Hkh gksrs gSa] mnkgj.kkFkZ] fo[k.Mu izfØ;k esaA

Page 13: Electrotechnical Vocabulary Nuclear Power Plants

8

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

2.2.36 Resonance Absorption — Capture of an incidentparticle at a resonance level of the resultant compoundnucleus.

2.2.37 Attenuation — The reduction of a radiationquantity upon passage of radiation through matterresulting from all types of interaction with the matter.The radiation quantity may be, for example, the particleflux density or the energy flux density (see also 2.2.38).

2.2.38 Geometric Attenuation — The reduction of aradiation quantity due to the effect only of the distancebetween the point of interest and the source, excludingthe effect of any matter present (for example, the inversesquare law for a point source).

2.2.39 Attenuation Coefficient — Of a substance, fora parallel beam of specified radiation, is the quantityμ in the expression μΔx for the fraction removed byattenuation, in passing through a thin layer of thicknessΔx of that substance. It is a function of the energy ofthe radiation. According as Δx is expressed in termsof length, mass per unit area, or moles per unit area, μis called the linear, mass or molar attenuationcoefficient.

2.2.40 Attenuation Factor — For a given attenuatingbody in a given configuration, the factor by which aradiation quantity at some point of interest is reducedowing to the interposition of the body between thesource of radiation and the point of interest.

2.2.41 Absorption

a) A phenomenon in which a beam of incidentradiation transfers to the matter which ittraverses some or all of its energy.

NOTE — The Compton effect is considered to be partof the absorption process.

b) For a specified particle, an atomic or nuclearinteraction in which the incident particledisappears as a free particle even when oneor more of the same or different particles aresubsequently emitted.

NOTE — Scattering is not considered to be part of theabsorption process.

2.2.42 Exponential Absorption — Decrease inradiation quantity (particle flux densities or energyflux density) of a beam of particles or photons duringits passage through matter in accordance with thefunction:

I = I0 e–μx

where

I = the energy flux density of the beam,

2-2-36 2-2-36 2-2-36 2-2-36 2-2-36 vuquknh vo'kks"k.k μ ifj.kkeh la;qDr U;wfDy;l dhvuqukn Lrj ij fdlh vkifrr d.k dk vo'kks"k.kA

2-2-37 2-2-37 2-2-37 2-2-37 2-2-37 {kh.ku μ inkFkZ esa gksdj fofdj.k dk izokg gksus ijinkFkZ ds lkFk lHkh izdkj dh vU;ksU; fØ;kvksa ds ifj.kkeLo:ifofdj.k dh ek=kk esa deh gksukA fofdj.k dh ek=kk] mnkgj.kkFkZ]d.kksa dk ÝyDl ?kuRo ;k mQtkZ ÝyDl ?kuRo gks ldrh gSaA(2-2-382-2-382-2-382-2-382-2-38 Hkh ns[ksa)A

2-2-38 2-2-38 2-2-38 2-2-38 2-2-38 T;kferh; {kh.ku μ dsoy lzksr vkSj vHkh"V fcUnq dschp nwjh ds izHkko ds dkj.k fofdj.k dh ek=kk esa deh]ftlesa fdlh mifLFkr inkFkZ dh vU;ksU; fØ;k dk izHkkolfEefyr ugha gS (mnkgj.kkFkZ] ,d fcUnq&lzksr ds fy, O;qRØeoxZ fu;e)A

2-2-39 2-2-39 2-2-39 2-2-39 2-2-39 {kh.ku xq.kkad μ fdlh inkFkZ dh Δx eksVkbZ dhiryh ijr esa gksdj fdlh fufnZ"V fofdj.k dh lekUrjfdj.k&iqat ds izokfgr gksus ij {kh.ku ds dkj.k i`Fkd~ gq,va'k ds fy, in μΔx eas μ jkf'k ml inkFkZ dk {kh.k xq.kkadgSA ;g ml fofdj.k dh mQtkZ dk ,d iQyu gSA Δx dksyEckbZ] nzO;eku izfr ,dkad {ks=kiQy ;k eksy izfr ,dkad{ks=kiQy esa O;Dr fd;k tk,] rks rnuqlkj gh μ js[kh;]nzO;eku ;k eksyj {kh.ku xq.kkad dgykrk gSA

2-2-40 2-2-40 2-2-40 2-2-40 2-2-40 {kh.ku xq.kd μ fdlh fn, x, foU;kl esa fdlh{kh.kdkjh dk; ds fy, og xq.kd ftlls fdlh vHkh"V fcUnqij fofdj.k dh ek=kk mlds lzksr vkSj vHkh"V fcUnq ds eè;dk; dh vofLFkfr ds dkj.k de gksrh gSA

2-2-41 2-2-41 2-2-41 2-2-41 2-2-41 vo'kks"k.k

d) ,d ?kVuk] ftlesa vkifrr fofdj.kksa dh ,dfdj.k&iqat viuh dqN vFkok leLr mQtkZ dks mlinkFkZ dks gLrkUrfjd dj nsrh gS] ftlesa gksdj ogizokfgr gksrh gSAuksV μ dkWEiVu izHkko dks vo'kks"k.k izfØ;k dk gh ,dHkkx ekuk tkrk gSA

[k) fdlh fufnZ"V d.k ds fy, ,d ijekf.od ;kukfHkdh; vU;ksU; fØ;k] ftlesa vkifrr d.k ,deqDrd.k ds :i eas foyqIr gks tkrk gS tcfd mlhizdkj ds vFkok fHkUu izdkj ds ,d ;k vfèkdd.k ijorhZ mRlftZr gksrs gSaAuksV μ izdh.kZu dks vo'kks"k.k izfØ;k dk Hkkx ugha ekuktkrk gSA

2-2-42 2-2-42 2-2-42 2-2-42 2-2-42 pj?kkrkadh vo'kks"k.k μ fdlh inkFkZ esa gksdj izokfgrgksus ij d.kksa ;k iQksVkWuksa dh fdj.k&iqat dh fofdj.k ek=kk(d.k ÝyDl ?kuRo ;k mQtkZ ÝyDl ?kuRo) dk iQyu fu;eosQ vuqlkj de gksuk%

I = I0e–μx

tgk¡

I = fdj.k iqat dk mQtkZ ÝyDl ?kuRo]

Page 14: Electrotechnical Vocabulary Nuclear Power Plants

9

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

x = measure of the amount of matter traversed,I0 = initial energy flux density, andμ = appropriate absorption coefficient.

2.2.43 Absorption Coefficient — Of a substance, for aparallel beam of specified radiation, the quantity μabsin the expression μabs Δx for the fraction absorbed inpassing through a thin layer of thickness Δx of thatsubstance. It is function of the energy of the radiation.According as Δx is expressed in terms of length, massper unit area, or moles per unit area, μabs is called thelinear, mass or molar absorption coefficient.

NOTE — It is that part of the attenuation coefficient resultingfrom absorption processes only.

2.2.44 Scattering — A process in which a change indirection or energy of an incident particle is caused bya collision with a particle or a system of particles.

2.2.45 Coherent Scattering — A process in whichradiation is scattered in such a manner that a definitephase relation exists between the scattered and incidentwaves.

2.2.46 Incoherent Scattering — A process in whichradiation is scattered in such a manner that no definitephase relation exists between the scattered and incidentwaves.

2.2.47 Elastic Scattering —A scattering process inwhich the energy of a scattered particle is unchangedin the centre-of-mass system.

2.2.48 Inelastic Scattering —A scattering process inwhich the energy of a scattered particle is changed inthe centre-of-mass system. This process can occur ineither of the following ways:

a) In radiactive inelastic scattering — some ofthe kinetic energy of an incident particle inthe centre-of-mass system goes into excitationof the target nucleus, follwed by subsequentde-excitation through the emission of one ormore photons.

b) In thermal inelastic scattering — Energy isexchanged between a slow neutron or anyother particle and molecules or latticesresulting in their extranuclear excitation.

2.2.49 Moderation — The process by which neutronenergy is reduced through scattering collisions.

2.2.50 Nuclear Fusion Reaction — A reaction betweentwo light nuclei resulting in the production of at leastone nuclear species heavier than either initial nucleus,together with excess energy.

2.2.51 Mass Defect — Difference between the sum ofthe masses of the nucleons forming the nucleus and themass of the nucleus.

x = ikj dh xbZ inkFkZ dh ek=kk dk eki]I0 = izkjfEHkd mQtkZ ÝyDl ?kuRo] vkSjμ = ;Fkksfpr vo'kks"k.k x.kkadA

2-2-43 2-2-43 2-2-43 2-2-43 2-2-43 vo'kks"k.k xq.kkad μ fdlh inkFkZ dh Δx eksVkbZ dhiryh ijr esa gksdj fdlh fufnZ"V fofdj.k dh lekUrjfdj.k iaqt ds izokfgr gksus ij vo'kksf"kr gq, va'k ds fy,in μabsΔx esa jkf'k μabs ml inkFkZ dk vo'kks"k.k xq.kkaddgykrk gSA ;g ml fofdj.k dh mQtkZ dk ,d iQyu gksrkgSA Δx dks yEckbZ] nzO;eku izfr ,dkad {ks=kiQy ;k eksy izfr,dkad {ks=k esa O;Dr fd;k tkrk gS] rnuqlkj gh μabs js[kh;]nzO;eku ;k eksyj vo'kks"k.k xq.kkad dgykrk gSA

uksV μ ;g {kh.ku xq.kkad dk og Hkkx gksrk gS tks dsoy vo'kks"k.kds ifj.kkeLo:i gksrk gSA

2-2-44 2-2-44 2-2-44 2-2-44 2-2-44 izdh.kZu μ ,d izfØ;k] ftlesa fdlh d.k vFkokd.kksa ds fudk; ls Vdjkus ds dkj.k vkifrr d.k dh fn'kk;k mQtkZ es ifjorZu gks tkrk gSA

2-2-45 2-2-45 2-2-45 2-2-45 2-2-45 dyk lEc¼ izdh.kZu μ ,d izfØ;k ftlesa fofdj.kdk izdh.kZu bl izdkj ls gksrk gS fd izdhf.kZr vkSj vkifrrrjaxksa ds eè; ,d fuf'pr dyk lEcUèk gksrk gSA

2-2-46 2-2-46 2-2-46 2-2-46 2-2-46 dyk vlEc¼ izdh.kZu μ ,d izfØ;k ftlesa fofdj.kdk izdh.kZu bl izdkj ls gksrk gS fd izdhf.kZr vkSj vkifrrrjaxksa ds eè; ,d fuf'pr dyk lEcUèk gksrk gSA

2-2-47 2-2-47 2-2-47 2-2-47 2-2-47 izR;kLFk izdh.kZu μ ,d izdh.kZu fØ;k ftlesa izdhf.kZrd.k dh mQtkZ nzO;eku&dsUnz fudk; esa vifjofrZr jgrh gSA

2-2-48 2-2-48 2-2-48 2-2-48 2-2-48 vizR;kLFk izdh.kZu μ ,d izdh.kZu fØ;k ftlesaizdhf.kZr d.k dh mQtkZ nzO;eku dsUnz fudk; esa ifjofrZr gkstkrhA ;g izfØ;k fuEukafdr fdlh ,d izdkj ls gks ldrh gS%

d) fofdj.kkRed vizR;kLFk izdh.kZu esa μ nzO;ekudsUnz fudk; esa vkifrr d.k dh xfrt mQtkZ dkdqN Hkkx y{; ukfHkd dks mÙksftr djus vkSjmlds i'pkr~ ,d ;k vfèkd iQksVkWuksa ds mRltZu}kjk vu&mÙksftr djus esa iz;qDr gks tkrk gSA

[k) mQ"eh; vizR;kLFk izdh.kZu esa μ mQtkZ dk vknku&iznku,d eUnxkeh U;wVªkWu ;k fdlh vU; d.k vkSjv.kqvksa ;k tkydksa ds eè; gksrk gS ftldsifj.kkeLo:i mudk ukfHkd cká mÙkstu gksrk gSA

2-2-49 2-2-49 2-2-49 2-2-49 2-2-49 eanu μ og izfØ;k ftlesa U;wVªkWu dh mQtkZ dksizdh.kZu VDdjksa }kjk de fd;k tkrk gSA

2-2-50 2-2-50 2-2-50 2-2-50 2-2-50 ukfHkdh; lay;u vfHkfØ;k μ nks gYds ukfHkdksa dseè; vfHkfØ;k ftlds ifj.kkeLo:i vR;fèkd mQtkZ dslkFk&lkFk de&ls&de ,d ukfHkdh; fdLe fdlh Hkh izkjfEHkdukfHkd ls Hkkjh] mRiUu gksrh gSA

2-2-51 2-2-51 2-2-51 2-2-51 2-2-51 nzO;eku {kfr μ U;wfDy;l dh jpuk djus okysU;wfDyvkWuksa ds nzO;ekuksa ds ;ksx vkSj U;wfDy;l ds nzO;ekudk vUrjA

Page 15: Electrotechnical Vocabulary Nuclear Power Plants

10

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

NOTE — Originally this expression meant the differencebetween the physical atomic mass and the mass number.

2.2.52 Binding energy

a) For a particle in the system — The net energyrequired to remove it from the system.

b) For a system — The net energy required todecompose it into its constituent particles.

2.2.53 Fertile — Of a nuclide, capable of beingtransformed, directly or indirectly, into a fissile nuclideby neutron capture. Of a material, containing one ormore fertile nuclides.

2.2.54 Fissionable — Of a nuclide, capable ofundergoing fission by any process. Neutron capture isthe most frequent cause of fission.

2.2.55 Nuclear Fission — The division of a heavynucleus into two (or sometimes more) parts with massesof equal order of magnitude; usually accompanied bythe emission of neutrons, gamma rays, and, sometimessmall charged nuclear fragments.

2.2.56 Neutron Multiplication — The process in whicha neutron when it is captured produces on the averagethrough fission more than one neutron in a mediumcontaining fissionable material.

2.2.57 Fission Spectrum — Energy distribution offission neutrons.

2.2.58 Fission Yield — Ratio of the number of fissionsleading to a given nuclide, in a direct manner or bydisintegration of other primary fission products, to thetotal cumber of fissions. It may be expressed in percent.

2.2.59 Primary Fission Yield, Direct Fission Yield orIndependent Fission Yield — Ratio of number of nucleiof a given nuclide directly produced in fission to thetotal.

2.2.60 Cumulative Fission Yield — The ratio of numberof nuclei of a given nuclide, either directly or indirectlyproduced in fission up to a specified time, to the total.If no time is specified, the yield is considered to be theasymptotic value.

2.2.61 Chain Fission Yield — For a particular massnumber is the sum of the independent fission yields forall isobars of that mass number.

2.2.62 Fast Fission — Fission caused by fastneutrons.

2.2.63 Prompt Neutron Fraction — The ratio of themean number of prompt neutrons per fission to themean total number of neutrons (prompt plus delayed)per fission.

uksV μ ewyr% bl in ls rkRi;Z ijek.kq ds HkkSfrd nzO;eku vkSjnzO;eku la[;k esa vUrj ls FkkA

2-2-52 2-2-52 2-2-52 2-2-52 2-2-52 cUèku mQtkZ

d) fdlh fudk; esa ,d d.k ds fy, μ bl d.k dksfudk; esa ls fudkyus ds fy, vko';d usV mQtkZA

[k) fdlh fudk; ds fy, μ fudk; dks mlds vo;ohd.kksa esa vi?kfVr djus ds fy, vko';d usV mQtkZA

2-2-53 2-2-53 2-2-53 2-2-53 2-2-53 moZj μ ,d U;wDykbM dk] tks izR;{k ;k ijks{k :ils U;wVªkWu izxzg.k }kjk fonY; U;wDykbM esa :ikUrfjr gksldrk gSA fdlh inkFkZ dk] ftlesa ,d ;k vfèkd moZjU;wDykbM mifLFkr gksaA

2-2-54 2-2-54 2-2-54 2-2-54 2-2-54 fo[k.Muh; μ ,d U;wDykbM ftldk fdlh fofèk lsfo[k.Mu fd;k tk ldsA vfèkdrj U;wVªkWu izxzg.k fofèk }kjkfo[k.Mu fd;k tkrk gSA

2-2-55 2-2-55 2-2-55 2-2-55 2-2-55 ukfHkdh; fo[k.Mu μ ,d Hkkjh U;wfDy;l dk nks(;k dHkh&dHkh vfèkd) yxHkx leku nzO;eku okys Hkkxksa esafoHkkftr gksukA izk;% blds lkFk U;wVªkWu] xkek fdj.ksa odHkh&dHkh lw{e vkosf'kr ukfHkdh; [k.M Hkh mRlftZr gksrs gSaA

2-2-56 2-2-56 2-2-56 2-2-56 2-2-56 U;wVªkWu xq.ku μ og izfØ;k ftlls fdlh fo[k.Muh;inkFkZ ;qDr ekè;e esa tc ,d U;wVªkWu dk izxzg.k gksrk gS rks ;gfo[k.Mu }kjk vkSlru ,d ls vfèkd U;wVªkWu mRiUu djrk gSA

2-2-57 2-2-57 2-2-57 2-2-57 2-2-57 fo[k.Mu LisDVªe μ fo[k.Mudkjh U;wVªkWuksa dk mQtkZforj.kA

2-2-58 2-2-58 2-2-58 2-2-58 2-2-58 fo[k.Mu yfCèk μ izR;{k :i ls ;k vU; izkFkfedfo[k.Mu mRiknksa ds fo?kVu ls] ,d fn, x, U;wDykbM dscuus ds fy, fo[k.Muksa dh la[;k vkSj fo[k.Muksa dh dqyla[;k dk vuqikrA bls izfr'kr eas O;Dr fd;k tk ldrk gSA

2-2-59 2-2-59 2-2-59 2-2-59 2-2-59 izkFkfed fo[k.Mu yfCèk] izR;{k fo[k.Mu yfCèk ;kLorU=k fo[k.Mu yfCèk μ fo[k.Mu }kjk izR;{k :i ls izkIrfdlh U;wDykbM ds ukfHkdksa dh la[;k vkSj ukfHkdksa dh dqyla[;k dk vuqikrA

2-2-60 2-2-60 2-2-60 2-2-60 2-2-60 lap;h fo[k.Mu yfCèk μ fo[k.Mu esa ,d fufnZ"Vle; rd izR;{k ;k ijks{k :i ls mRiUu fdlh fn, x,U;wDykbM ds ukfHkdksa dh la[;k vkSj budh dqy la[;k dkvuqikrA ;fn dksbZ fufnZ"V ugha gks rks yfCèk dk eku mixkehekuk tkrk gSA

2-2-612-2-612-2-612-2-612-2-61 Üka[kyk fo[k.Mu yfCèk μ fdlh fof'k"V nzO;ekula[;k ds fy, ml nzO;eku la[;k ds lHkh leHkkfjdksa dhLorU=k fo[k.Mu yfCèk;ksa dk ;ksxA

2-2-62 2-2-62 2-2-62 2-2-62 2-2-62 rhoz fo[k.Mu μ rhozxkeh U;wVªkWuksa }kjk fd;k x;kfo[k.MuA

2-2-63 2-2-63 2-2-63 2-2-63 2-2-63 rkRdkfyd U;wVªkWu izHkkt μ izfr fo[k.Mu rkRdkfydU;wVªkWuksa dh vkSle la[;k vkSj izfr fo[k.Mu U;wVªkWuksa (rkRdkfyd+ foyfEcr) dh dqy vkSlr la[;k dk vuqikrA

Page 16: Electrotechnical Vocabulary Nuclear Power Plants

11

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

2.2.64 Delayed Neutron Fraction — The ratio of themean number of delayed neutrons per fission to themean total number of neutrons (prompt plus delayed)per fission.

2.2.65 Effective Delayed Neutron Fraction — Theratio of the mean number of fission caused by delayedneutrons to the mean total number of fissions causedby delayed plus prompt neutrons.

NOTE — The effective delayed neutron fraction is generallylarger than the actual delayed neutron fraction.

2.2.66 Fissile — Of a nuclide, capable of undergoingfission by interaction with thermal neutrons.

2.2.67 Thermal Fission — Fission caused by thermalneutrons.

2.3 Cross-Sections

2.3.1 Cross-Section or Microscopic Cross-Section —A measure of the probability of a specified interactionbetween an incident radiation and a target particle orsystem of particles. It is the reaction rate per targetparticle for a specified process divided by the fluxdensity of the incident radiation (microscopic cross-section).

NOTE — Unless otherwise qualified the term ‘Cross-Section’shall mean ‘Microscopic Cross-Section’.

2.3.2 Barn — A unit of area used in expressing a nuclearcross-section (1 barn = 10–24 cm2).

2.3.3 Macroscopic Cross-Sections — In reactor physicsthe term is applied to a specified group of targetparticles and implies sum of the cross-sections relatedto a certain type of interaction per unit volume of thetarget matter.

2.3.4 Activation Cross-Section — The cross-section forthe formation of a radionuclide by a specifiedinteraction.

2.3.5 Differential Cross-Section — The cross-sectionfor an interaction process involving one or moreoutgoing particles with specified direction or energyper unit interval of solid angle or energy.

2.3.6 Doppler-Averaged Cross-Section — A cross-section averaged over energy, employing appropriateweighting factors, to take into account the effect ofthermal motion of the target particles such that theproduct of the average cross-section so obtained andthe flux density in the laboratory system gives thecorrect reaction rate.

2.3.7 Thermal Cross-Section — The cross-section forinteraction by thermal neutrons.

NOTE — Since thermal neutrons have different energydistributions in different situations (for example, at different

2-2-64 2-2-64 2-2-64 2-2-64 2-2-64 foyfEc U;wVªkWu izHkkt μ izfr fo[k.Mu foyfEcrU;wVªkWuksa dh vkSlr la[;k vkSj izfr fo[k.Mu U;wVªkWuksa (rkRdkfyd+ foyfEcr)dh dqy vkSlr la[;k dk vuqikrA

2-2-65 2-2-65 2-2-65 2-2-65 2-2-65 izHkkoh foyfEcr U;wVªkWu izHkkt μ foyfEcr U;wVªkWu}kjk fo[k.Muksa dh vkSlr la[;k vkSj foyfEcr o rkRdkfydlHkh U;wVªkWuksa }kjk dqy fo[k.Muksa dh vkSlr la[;k dk vuqikrA

fVIi.kh μ izHkkoh foyfHor U;wVªkWu izHkkt izk;% okLrfod foyfEcrU;wVªkWu izHkko ls cM+k gksrk gSA

2-2-66 2-2-66 2-2-66 2-2-66 2-2-66 fonY; μ fdlh U;wDykbM dk] ftldk mQ"eh;U;wVªkWuksa dh vU;ksU; fØ;k }kjk fo[k.Mu fd;k tk ldsA

2-2-67 2-2-67 2-2-67 2-2-67 2-2-67 m"eh; fo[k.Mu μ rkih; U;wVªkWuksa fd;k x;k fo[k.MuA

2-3 vuqi zLFk dkV (ifj{k s = k)2-3 vuqi zLFk dkV (ifj{k s = k)2-3 vuqi zLFk dkV (ifj{k s = k)2-3 vuqi zLFk dkV (ifj{k s = k)2-3 vuqi zLFk dkV (ifj{k s = k)

2-3-1 2-3-1 2-3-1 2-3-1 2-3-1 vuqizLFk dkV ;k lw{e vuqizLFk dkV ifj{ks=k μ ,dvkifrr fofdj.k vkSj yf{kr d.k vFkok d.kksa ds fudk; dseè; fdlh fufnZ"V vU;ksU; fØ;k ds gksus dh izkf;drk dk,d ekiA ;g fdlh fufnZ"V izfØ;k ds fy, yf{kr izfr d.kvfHkfØ;k dh nj dks vkifrr fofdj.k ds ÝyDl ?kURo lsHkkx nsus ij izkIr gksrh gSA

uksV μ tc vU;Fkk mYys[k ugha fd;k x;k gks] rks in vuqizLFk dkVifj{ks=k dk rkRi;Z lw{e vuqizLFk dkV ifj{ks=k gh gksxkA

2-3-2 2-3-2 2-3-2 2-3-2 2-3-2 ckuZ μ ukfHkdh; vuqizLFk dkV ifj{ks=k dks O;Dr djus dsfy, iz;qDr {ks=kiQy dh ,d ek=kd (1 ckuZ = 10-24 lseh-2)A

2-3-3 2-3-3 2-3-3 2-3-3 2-3-3 LFkwy ifj{ks=k μ ijek.kq HkV~Vh HkkSfrdh esa ;g inyf{kr d.kksa ds ,d fufnZ"V lewg ds fy, iz;qDr fd;ktkrk gSA ;g yf{kr inkFkZ ds izfr ,dkad vk;ru esa gksus okyh,d izdkj dh vU;ksU; fØ;k ls lEcfUèkr ifj{ks=kksa (vuqizLFkdkVksa) dk ;ksx gksrk gSA

2-3-4 2-3-4 2-3-4 2-3-4 2-3-4 lfØ;.k izkf;drk {ks=k μ ,d fufnZ"V vU;ksU; fØ;k }kjkjsfM;ksU;wDykbM cuus ds fy, miyCèk vuqizLFk dkV (ifj{ks=k)A

2-3-5 2-3-5 2-3-5 2-3-5 2-3-5 foHksnh ifj{ks=k (vuqizLFk dkV) μ ,d vU;ksU; fØ;kds fy,] ftlesa fufnZ"V fn'kk ;k mQtkZ ds ,d ;k vfèkdfu"dkflr d.k fyIr gksa] ?ku dks.k ;k mQtkZ ds izfr ,dkadvUrjky esa ifj{ks=k (vuqizLFk dkV)A

2-3-6 2-3-6 2-3-6 2-3-6 2-3-6 MkWIyjμvkSlr vuqizLFk dkV (ifj{ks=k) μ yf{kr d.kksadh rkih; xfr ds izHkko dks lfEefyr djrs gq,] leqfpr Hkkjiznku djus okys dkjdksa dk iz;ksx dj mQtkZ ds vuqlkj izkIrvkSlr ifj{ks=k_ bl izdkj izkIr vkSlr ifj{ks=k vkSj iz;ksx'kkykds fudk; esa ÝyDl ?kURo dk xq.kuiQy vfHkfØ;k osx dklgh eku gksrk gSA

2-3-7 2-3-7 2-3-7 2-3-7 2-3-7 rkih; ifj{ks=k (vuqizLFk dkV) μ rkih; U;wVªkWuksa }kjkvU;ksU; fØ;k ds fy, vuqizLFk dkV ifj{ks=kA

uksV μ pwafd rkih; U;wVªkWuksa dh mQtkZ dk forj.k fHkUu&fHkUuifjfLFkfr;ksa ea tSls fofHkUu rkiØeksa ij] fHkUu&fHkUu gksrk gS] vr%

Page 17: Electrotechnical Vocabulary Nuclear Power Plants

12

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

temperatures), this is not a precise term, and for this reasoncross-sections for 2 200 m/s neutrons are commonly quoted.

2.3.8 Effective Thermal Cross-Section or WestcottCross-Section — A fictitious cross-section for aspecified interaction which when multiplied by theconventional flux density gives the correct reaction rate.

NOTE — The use of this term is usually restricted to captureand fission in well-moderated systems.

2.3.9 Scattering Cross-Section — The cross-section forthe scattering process.

2.3.10 Coherent Scattering Cross-Section — The cross-section for the coherent scattering process.

2.3.11 Incoherent Scattering Cross-Section — Thecross-section for the incoherent scattering process.

2.3.12 Elastic Scattering Cross-Section — The cross-section for the elastic scattering process.

2.3.13 Inelastic Scattering Cross-Section — The cross-section for the inelastic scattering process.

2.3.14 Radiative Inelastic Scattering Cross-Section —The cross-section for the radiactive inelastic scatteringprocess.

2.3.15 Thermal Inelastic Scattering Cross-Section —The cross-section for the thermal inelastic scatteringprocess.

2.3.16 Transport Cross-Section — The total cross-section less the product of the scattering cross-sectionand the average cosine of the scattering angle in thelaboratory system. The reciprocal of the macroscopictransport cross-section is the transport mean free path.

2.3.17 Group Transfer Scattering Cross-Section — Theweighted average ‘cross-section’, characteristic of theenergy group structure, that will account for the transferof neutrons by scattering from one specified group toanother specified group. It is one element of thecorresponding group transfer scattering matrix.

2.3.18 Group Removal Cross-Section — The weightedaverage ‘cross-section’, characteristic of an energygroup, that will account for the removal of neutronsfrom that group by all processes.

2.3.19 Non-elastic (Interaction) Cross-Section — Thedifference between the total cross-section and the elasticscattering cross-section.

NOTE — The non-elastic cross-section is different from theinelastic scattering cross-section.

2.3.20 Capture Cross-Section — The cross-section forthe capture process.

;g ,d ifj'kq¼ in ugha gS] vkSj blh dkj.k ls lkekU;r% 2 200 m/sU;wVªkWuksa ds fy, ifj{ks=kksa dk mYys[k fd;k tkrk gSA

2-3-8 2-3-8 2-3-8 2-3-8 2-3-8 izHkkoh rkih; ifj{ks=k ;k oSLVdkWV ifj{ks=k μ fdlhvU;ksU; fØ;k ds fy, ,d dfYir ifj{ks=k] ftldks :<+ÝyDl ?kuRo ls xq.kk djus ij vfHkfØ;k dh lgh nj izkIrgksrh gSA

uksV μ μ μ μ μ bl in mi;ksx izk;% iw.kZr% eafnr fudk; esa fo[k.Mu ;k

izxzg.k rd ds fy, lhfer gksrk gSA

2-3-9 2-3-9 2-3-9 2-3-9 2-3-9 izdh.kZu ifj{ks=k μ izdh.kZu fØ;k ds fy, ifj{ks=kA

2-3-10 2-3-10 2-3-10 2-3-10 2-3-10 dyk&lEc¼ izdh.kZu ifj{ks=k μ dyk lEc¼ fØ;kds fy, ifj{ks=kA

2-3-112-3-112-3-112-3-112-3-11 dykvlEc¼ izdh.kZu ifj{ks=k μ dyk&vlEc¼izdh.kZu fØ;k ds fy, ifj{ks=kA

2-3-12 2-3-12 2-3-12 2-3-12 2-3-12 izR;kLFk izdh.kZu ifj{ks=k μ izR;kLFk izdh.kZu fØ;kds fy, ifj{ks=kA

2-3-13 2-3-13 2-3-13 2-3-13 2-3-13 vizR;kLFk izdh.kZu ifj{ks=k μ vizR;kLFk izdh.kZufØ;k ds fy, ifj{ks=kA

2-3-14 2-3-14 2-3-14 2-3-14 2-3-14 fofdj.kkRed vizR;kLFk izdh.kZu ifj{ks=k μfofdj.kkRed vizR;kLFk izdh.kZu fØ;k ds fy, ifj{ks=kA

2-3-15 2-3-15 2-3-15 2-3-15 2-3-15 rkih; vizR;kLFk izdh.kZu ifj{ks=k μ rkih; vizR;kLFkizdh.kZu fØ;k ds fy, ifj{ks=kA

2-3-16 2-3-16 2-3-16 2-3-16 2-3-16 vfHkxeu ifj{ks=k μ lEiw.kZ ifj{ks=k esa ls izdh.kZuifj{ks=k vkSj iz;ksx'kkyk ds fudk; esa izdh.kZu dks.k dsvkSlr dkslkbu ds xq.kiQy dks ?kVkus ls izkIr ifj{ks=kA LFkwyvfHkxeu ifj{ks=k dk O;qRØe ekè; eqDr iFk gksrk gSA

2-3-17 2-3-17 2-3-17 2-3-17 2-3-17 lewg vUrj.k izdh.kZu ifj{ks=k μ mQtkZ lewg lajpukdk ,d vfHky{kf.kd] Hkkfjr eè; ifj{ks=k] tks izdh.kZu }kjkU;wVªkWuksa ds ,d fufnZ"V lewg ls nwljs fufnZ"V lewg esa LFkkukUrfjrgksus dh O;k[;k djrk gSA ;g vius laxr lewg vUrj.kizdh.kZu eSfVªDl dk ,d vo;o gksrk gSA

2-3-18 2-3-18 2-3-18 2-3-18 2-3-18 lewg fu"dklu ifj{ks=k μ ,d mQtkZ lewg dkvfHkyk{kf.kd Hkkfjr eè; ifj{ks=k] tks ml lewg esa ls lHkhfØ;kvksa }kjk U;wVªkWuksa ds fu"dklu ds fy, mÙkjnk;h gksrkgSA

2-3-19 2-3-19 2-3-19 2-3-19 2-3-19 vizR;kLFk (vU;ksU; fØ;k) ifj{ks=k μ lEiw.kZ ifj{ks=kvkSj izR;kLFk izdh.kZu ifj{ks=k dk vUrjA

uksV μ ;g vizR;kLFk ifj{ks=k vizR;kLFk izdh.kZu ifj{ks=k ls fHkUu gSA

2-3-20 2-3-20 2-3-20 2-3-20 2-3-20 izxzg.k ifj{ks=k μ izxzg.k fØ;k ds fy, ifj{ks=kA

Page 18: Electrotechnical Vocabulary Nuclear Power Plants

13

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

2.3.21 Radiative Capture Cross-Section — The cross-section for the radiative capture process.

2.3.22 Neutron Absorption Cross-Section — The cross-section for the neutron absorption process. It is thedifference between the total cross-section and thescattering cross-section.

2.3.23 Fission Cross-Section — The cross-section forthe fission process.

2.3.24 Alpha Ratio — As applied to fissionable nuclei,the ratio of the radiative capture cross-section to thefission cross-section.

2.3.25 Total Cross-Section — The sum of the cross-sections for all the separate interactions between theincident radiation and a specified target.

3 REACTOR THEORY

3.1 Expressions Relating to Neutrons

3.1.1 Mean Free Path — The average distance thatparticles of a specified type travel before a specifiedtype (or types) of interaction in a given medium. Themean free path may thus be specified for allinteractions (such as total mean free path) or forparticular types of interaction such as scattering,capture or ionization.

3.1.2 Transport Mean Free Path — The reciprocal ofthe macroscopic transport cross-section.

3.1.3 Slowing-Down Area — One-sixth of the meansquare distance traveled by neutrons in an infinitehomogeneous medium from their points of origin tothe points where they have been slowed down fromthe initial energy to a specified energy.

3.1.4 Slowing-Down Length — The square root of theslowing-down area.

3.1.5 Diffusion Area — One-sixth of the mean squaredistance travelled by a particle of a given type andclass from appearance to disappearance (within thetype and class) in an infinite homogeneous medium.

3.1.6 Diffusion Length — The square root of thediffusion area.

3.1.7 Migration Area — The sum of the slowing-downarea from fission energy to thermal energy and thediffusion area for thermal neutrons.

3.1.8 Migration Length — The square root of themigration area.

3.1.9 Lethargy — The natural logarithm of the ratioof a reference energy to the energy of a neutron.

3.1.10 Average Logarithmic Energy Decrement — Themean value of the increase in lethargy per neutroncollision.

2-3-21 2-3-21 2-3-21 2-3-21 2-3-21 fofdj.kkRed izxzg.k ifj{ks=k μ fofdj.kkRed izxzg.kfØ;k ds fy, ifj{ks=kA

2-3-22 2-3-22 2-3-22 2-3-22 2-3-22 U;wVªkWu vo'kks"k.k ifj{ks=k μ U;wVªkWu ds vo'kks"k.k dhfØ;k ds fy, ifj{ks=kA ;g lEiw.kZ ifj{ks=k vkSj izdh.kZuifj{ks=k dk vUrj gksrk gSA

2-3-23 2-3-23 2-3-23 2-3-23 2-3-23 fo[k.Mu ifj{ks=k μ fo[k.Mu fØ;k ds fy, ifj{ks=kA

2-3-242-3-242-3-242-3-242-3-24 ,YiQk vuqikr μ fo[k.Mu ;ksX; ukfHkdksa ds fy,iz;qDr] fofdj.kkRed izxzg.k ifj{ks=k vkSj fo[k.Mu ifj{ks=kdk vuqikrA

2-3-25 2-3-25 2-3-25 2-3-25 2-3-25 lEiw.kZ ifj{ks=k μ vkifrr fofdj.k vkSj fdlhfufnZ"V y{; ds eè; lHkh fofHkUu vU;ksU; fØ;kvksa ds fy,ifj{ks=kksa dk ;ksxiQyA

3 ijek.k q HkV ~Vh (fj,DVj) dk fl¼kUr3 ijek.k q HkV ~Vh (fj,DVj) dk fl¼kUr3 ijek.k q HkV ~Vh (fj,DVj) dk fl¼kUr3 ijek.k q HkV ~Vh (fj,DVj) dk fl¼kUr3 ijek.k q HkV ~Vh (fj,DVj) dk fl¼kUr

3-1 U;wVªkWuks a ls lEcfUèkr in3-1 U;wVªkWuks a ls lEcfUèkr in3-1 U;wVªkWuks a ls lEcfUèkr in3-1 U;wVªkWuks a ls lEcfUèkr in3-1 U;wVªkWuks a ls lEcfUèkr in

3-1-1 3-1-1 3-1-1 3-1-1 3-1-1 ekè; eqDr iFk μ ,d fufnZ"V izdkj ds d.kksa }kjkfdlh ekè;e esa fufnZ"V izdkj (;k izdkjksa)dh vU;ksU;fØ;k ls iwoZ pyh xbZ vkSlr nwjhA bl izdkj ekè; eqDr iFklHkh vU;ksU; fØ;kvksa ds fy, fufnZ"V fd;k tk ldrk gS(;Fkk lEiw.kZ ekè; eqDr iFk) vFkok fdUgha fo'ks"k izdkjdh vU;ksU; fØ;k] tSls izdh.kZu] izxzg.k ;k vk;uu] dsfy,A

3-1-2 3-1-2 3-1-2 3-1-2 3-1-2 vfHkxeu ekè; eqDr iFk μ LFkwy vfHkxeu ifj{ks=kdk O;qRØeA

3-1-3 3-1-3 3-1-3 3-1-3 3-1-3 eanu {ks=k μ ,d vuUr lekax ekè;e esa U;wVªkWuksa }kjkvius mn~xe fcUnqvka ls mu fcUnqvkas rd] tgk¡ mudh xfrizkjfEHkd mQtkZ ls ,d fufnZ"V mQtkZ rd de gks tkrh gS]pyh xbZ ekè; oxZ nwjh dk 1@6 HkkxA

3-1-4 3-1-4 3-1-4 3-1-4 3-1-4 eanu yEckbZ (nwjh) μ eanu {ks=k dk oxZewyA

3-1-5 3-1-5 3-1-5 3-1-5 3-1-5 folj.k {ks=k μ ,d vuUr lekax ekè;e eas ,d fn,x, izdkj o Js.kh ds d.k }kjk (mlh izdkj o Js.kh dsvUrxZr)izdV gksus ls ysdj vn`'; gks tkus rd pyh xbZekè; oxZ nwjh dk 1@6 HkkxA

3-1-6 3-1-6 3-1-6 3-1-6 3-1-6 folj.k nwjh (yEckbZ) μ folj.k {ks=k dk oxZewyA

3-1-7 3-1-7 3-1-7 3-1-7 3-1-7 vfHkxeu {ks=k μ fo[k.Mu mQtkZ ls mQ"eh; mQtkZ rdeanu {ks=k vkSj rkih; U;wVªkWuksa ds folj.k {ks=k dk ;ksxiQyA

3-1-8 3-1-8 3-1-8 3-1-8 3-1-8 vfHkxeu nwjh μ vfHkxeu {ks=k dk oxZewyA

3-1-9 3-1-9 3-1-9 3-1-9 3-1-9 fu'ps"Vrk μ ,d lUnHkZ mQtkZ vkSj ,d U;wVªkWu dhmQtkZ ds vuqikr dk izkÑr y?kqx.kdA

3-1-10 3-1-10 3-1-10 3-1-10 3-1-10 vkSlr y?kqx.kdh; mQtkZ vi{k; μ izfr U;wVªkWuVDdj fu'ps"Vrk esa o`f¼ dk vkSlr ekuA

Page 19: Electrotechnical Vocabulary Nuclear Power Plants

14

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

3.1.11 Slowing-Down Power — For a given medium,the product of the average logarithmic energydecrement and the macroscopic neutron scatteringcross-section.

3.1.12 Neutron Energy Group — One of a set of groupsconsisting of neutrons having energies withinarbitrarily chosen intervals. Each group may beassigned effective values for the characteristics of theneutrons within the group.

3.1.13 Multigroup Model — A model which dividesthe neutron population into a finite number of energygroups with each group being assigned a singleeffective energy.

3.1.14 Generation Time — The mean time requiredfor neutrons arising from fission to produce otherfissions.

3.1.15 Neutron Cycle — The average energy,interaction and migration history of neutrons in areactor, beginning with fission and continuing untilthey have leaked out or have been absorbed.

3.1.16 Neutron Economy — Balance account, in areactor, of the neutrons created and the neutrons lost,and problems related thereto.

3.1.17 Beam — A unidirectional, or nearlyunidirectional, flow of electromagnetic radiation orof particles.

3.1.18 Neutron or Particle Current Density — A vectorsuch that its component along the normal to a surfaceequals the net number of particles crossing that surfacein the positive direction per unit area per unit time.

3.1.19 Neutron (Number) Density — The number offree neutrons per unit volume. Partial densities maybe defined for neutrons characterized by suchparameters as energy and direction.

3.1.20 Particle Fluence or Fluence — At a given pointin space, the number of particles or photons incidentduring a given time interval on a sphere of unit area.It is identical with the time integral of the flux density.

3.1.21 Particle Flux Density (ϕ) or Flux — At a givenpoint in space, the number of particles or photonsincident per unit time on a sphere of unit area. It isidentical with the product of the particle density andthe average speed. The term is commonly called ‘Flux’.

3.1.22 Radiant Energy Flux Density (I) — At a givenpoint in space, the quantity of energy per unit timeentering on a sphere of unit area.

3-1-11 3-1-11 3-1-11 3-1-11 3-1-11 eanu 'kfDr μ fdlh fn, x, ekè;e ds fy,] vkSlry?kqx.kdh; mQtkZ vi{k; vkSj LFkwy U;wVªkWu izdh.kZu ifj{ks=kdk xq.kuiQyA

3-1-12 3-1-12 3-1-12 3-1-12 3-1-12 U;wVªkWu mQtkZ lewg μ LosPN x`ghr mQtkZ vUrjkyksa dseè; mQtkZvksa ls ;qDr U;wVªkWuksa ds lewgksa dk ,d leqPp;AizR;sd lewg dks mlesa U;wVªkWuksa ds vfHky{k.k ds fy, izHkkoheku iznku fd, tk ldrs gSaA

3-1-13 3-1-13 3-1-13 3-1-13 3-1-13 cgqlewg ekWMy (izfr:i) μ ,d ,slk ekWMy (izfr:i)tks lexz U;wVªkWuksa dks mQtkZ lewgksa dh ,d fuf'pr la[;k esafoHkkftr djrk gS_ izR;sd lewg dh ,d izHkkoh mQtkZ fufnZ"Vdh xbZ gksrh gSA

3-1-14 3-1-14 3-1-14 3-1-14 3-1-14 mRiknu dky μ fo[k.Mu ls mRiUu U;wVªkWuksa }kjkvU; fo[k.Mu fØ;k djkus ds fy, vko';d vkSlr le;A

3-1-15 3-1-15 3-1-15 3-1-15 3-1-15 U;wVªkWu pØ μ ijek.kq HkV~Vh esa fo[k.Mu ls izkjEHkgksdj fujUrj fØ;k djrs gq, vUr esa tc rd {kj.k (yhd)gksdj ckgj u fudy tk,] ;k vo'kksf"kr u gks tk,] rc rdU;wVªkWuksa dh vkSlr mQtkZ] vU;ksU; fØ;k vkSj vfHkxeu dkfooj.kA

3-1-16 3-1-16 3-1-16 3-1-16 3-1-16 U;wVªkWuksa dh ferO;;h O;oLFkk μ ijek.kq HkV~Vh esaU;wVªkWuksa ds mRinu] vkSj muds yqIr gksus] rFkk blls lEcfUèkrleL;kvksa dk lUrqfyr ys[kkA

3-1-17 3-1-17 3-1-17 3-1-17 3-1-17 fdj.k&iqat μ fo|qr fofdj.kksa ;k d.kksa dk ,dfn'kh;vFkok yxHkx ,dfn'kh; izokgA

3-1-18 3-1-18 3-1-18 3-1-18 3-1-18 U;wVªkWu ;k d.kh; èkkjk ?kuRo μ ,d lfn'k] ftldkfdlh i`"B ds yEcor~ ?kVd ml i`"B ls èkukRed fn'kk esaizfr ,dkad {ks=kiQy esa gksdj izfr ,dkad le; esa xqtjus okysd.kksa dh usV la[;k gksrk gSA

3-1-19 3-1-19 3-1-19 3-1-19 3-1-19 U;wVªkWu (la[;k) ?kuRo μ izfr ,dkad vk;ru easeqDr U;wVªkWuksa dh la[;kA mQtkZ vkSj fn'kk tSls izkpyuksa lsvfHkyf{kr U;wVªkWuksa ds fy, vkaf'kd ?kuRo Hkh ifjHkkf"kr fd,tk ldrs gSaA

3-1-20 3-1-20 3-1-20 3-1-20 3-1-20 d.kèkkjk izokg ;k èkkjk izokg μ vUrjkdk'k esa fdlhfu;r fcUnq ij ,dkad {ks=kiQy ds xksys ij ,d fu;r le;vUrjky esa vkfrr d.kksa ;k iQksVkWuksa dh la[;kA

3-1-21 3-1-21 3-1-21 3-1-21 3-1-21 d.k ÝyDl ?kuRo (ϕ) ;k ÝyDl μ vUrjkdk'k esafdlh fu;r fcUnq ij ,dkad {ks=kiQy ds xksys ij izfr ,dkadle; esa vkifrr d.kksa ;k iQksVkWuksa dh la[;kA ;g d.k ?kuRovkSj vkSlr pky ds xq.kuiQy ds lerqY; gksrh gSA bl in dkslkekU;r% ÝyDl dgk tkrk gSA

3-1-22 3-1-22 3-1-22 3-1-22 3-1-22 fofdj.k mQtkZ ÝyDl ?kURo (I) μ vUrjkdk'k esafdlh fcUnq ij ,dkad {ks=kiQy ds ,d xksys ij izfr ,dkad{ks=kiQy ds xksys esa izfr ,dkad le; esa izos'k djus okyhmQtkZ jkf'kA

Page 20: Electrotechnical Vocabulary Nuclear Power Plants

15

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

3.1.23 Conventional Flux Density or 2 200 Metre perSecond Flux Density — A fictitious flux density equalto the product of the total number of neutrons per cubiccentimeter and a neutron speed of 2.2 × 105 centimetresper second.

3.1.24 Age

a) One-sixth of the normalized second spatialmoment of the neutron flux density (flux age)at energy E, or the neutron slowing-downdensity past energy E (slowing-down age), fora point isotropic neutron source, that is

( , )( )

( , )

μ

μ=f r f E r r dr

Ef f E r r dr

2 20

20

16

t

where

τ = radial distance from the source, andf (E, r) = either the neutron flux density or

the neutron slowing-down densityas appropriate.

b) When Fermi age theory of slowing-down isapplicable, the value of the age is given bythe following expression for the Fermi age (fora monoenergetic source at energy EO),

s

( )( , )( )¢ ¢

=S ¢ ¢Ú

oEo

E

D E dEE Exi E E

t

where

E' = the neutron energy,D = diffusion coefficient of neutron flus

density,xi = average logarithmic energy

decrement, andΣs = scattering cross section per unit volume.

3.1.25 Disadvantage Factor — In a reactor cell, the ratioof the average neutron flux density in a material to thatin the fuel. Usually, the term refers to the moderatormaterial and to the thermal neutron flux denisity.

3.2 Expressions Relating to Reactors

3.2.1 Nuclear Energy — Energy released in nuclearreactions or transitions.

3.2.2 Nuclear Chain Reaction (or ConvergentReaction) — A series of successive similar nuclearreactions in which every reaction in every generationgives rise to one or more agents which can triggersubsequent similar reactions.

3.2.3 Divergence — Growth of a reaction rate with time.

3.2.4 Reactor Time Constant or Reactor Period — Thetime required for the neutron flux density in a reactorto change by a factor of e (2.718…).

3-1-23 3-1-23 3-1-23 3-1-23 3-1-23 :<+ ÝyDl ?kuRo ;k 2 200 ehVj izfr lsd.M ÝyDl?kuRo μ ,d dfYir ÝyDl ?kuRo] tks izfr ?ku lsUVhehVj esaT;wVªkWuksa dh dqy la[;k vkSj U;wVªkWu ds osx 2.2×105 lsUVhehVjizfr lsds.M ds xq.kuisQy ds rqY; gksrk gSA

3-1-24 3-1-24 3-1-24 3-1-24 3-1-24 vk;q

d) mQtkZ (E) ij U;wVªkWu ÝyDl ?kUro (ÝyDl vk;q)ds izlkekU;Ñr f}rh; LFkkfud vk?kw.kZ dk 1@6Hkkx] vFkok lenSf'kd U;wVªkWuksa ds ,d fcUnq lzksr dsfy, mQtkZ (E) (eanu vk;q)ls vkxs U;wVªkWu dkeanu ?kuRo] vFkkZr~

( , )( )

( , )

μ

μt =f r f E r r dr

Ef f E r r dr

2 20

20

16

tgka

τ = lzksr ls f=kT;h; nwjh] vkSjf (E, r) = U;wVªkWu ÝyDl ?kuRo] vFkok U;wVªkWu eanu

?kuRo (tks leqfpr gks)A[k) tc eanu dk iQehZ vk;q fl¼kUr vuqiz;qDr gks] rks

vk;q dk eku (fdlh lemQthZ lzksr ds fy, mQtkZE

0 ij) iQthZ vk;q ds fuEufyf[kr O;atd }kjk

izkIr gksrk gS&

s

( )( , )

( )t =

oE

oE

D E dEE Exi E E

¢ ¢S ¢ ¢Ú

tgka

E' = U;wVªkWu dh mQtkZ]D = U;wVªkWu ÝyDl ?kuRo dk folj.k xq.kkad]xi = vkSlr ykWxsfjFeh; mQtkZ vi{k;] vkSjΣs = izfr ,dkad vk;ru izdh.kZu ifj{ks=kA

3-1-25 3-1-25 3-1-25 3-1-25 3-1-25 vykHkdkjh ?kVd μ ,d ijek.kq HkV~Vh ;k lSy eas]fdlh inkFkZ esa vkSlr U;wVªkWu ÝyDl ?kuRo vkSj b±èku esavkSlr U;wVªkWu ÝyDl ?kuRo dk vuqikrA izk;% ;g in eandinkFkZ vkSj rkih; U;wVªkWu ÝyDl ?kURo ds lUnHkZ esa iz;qDrgksrk gSA

3-2 ijek.k q HkV ~Vh (fj,DVj) ls lEcfUèkr in3-2 ijek.k q HkV ~Vh (fj,DVj) ls lEcfUèkr in3-2 ijek.k q HkV ~Vh (fj,DVj) ls lEcfUèkr in3-2 ijek.k q HkV ~Vh (fj,DVj) ls lEcfUèkr in3-2 ijek.k q HkV ~Vh (fj,DVj) ls lEcfUèkr in

3-2-1 3-2-1 3-2-1 3-2-1 3-2-1 ukfHkdh; mQtkZ μ ukfHkdh; vfHkfØ;kvksa ;k laØe.kksaesa mUeksfpr mQtkZA

3-2-2 3-2-2 3-2-2 3-2-2 3-2-2 ukfHkdh; Üka[kyk fØ;k (vFkok vfHklkjh fØ;k) μØfed :i ls gksus okyh ,d leku ukfHkdh; fØ;k dhÜka[kyk] ftlesa izR;sd fØ;k ds izR;sd tuu eas ,d ;k vfèkdog dkj.k d.k mRiUu gksrs gSa] tks mlh izdkj dh vkxkehfØ;k dks pkyw dj ldrs gSaA

3-2-3 3-2-3 3-2-3 3-2-3 3-2-3 vilj.k μ le; ds lkFk vfHkfØ;k osx dk c<+ukA

3-2-4 3-2-4 3-2-4 3-2-4 3-2-4 fj,DVj dk le; fu;rkad vFkok fj,DVj dky μ ,dfj,DVj (ijek.kq HkV~Vh)esa U;wVªkWu ÝyDl ?kuRo ds xq.kd e(2.718...) }kjk ifjofrZr gksus ds fy, vko';d le;A

Page 21: Electrotechnical Vocabulary Nuclear Power Plants

16

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

NOTE — The term ‘Reactor time constant’ is preferred to‘Reactor period’.

3.2.5 Critical — State of a nuclear chain reacting mediumwhen its effective multiplication factor equals unity. (Areactor is critical when the rate of neutron production,excluding neutron sources whose strengths are not afunction of fission rate is equal to the rate of neutron loss.)

3.2.6 Prompt Critical — State of a nuclear chainreacting medium when rendered critical by the use ofprompt neutrons only.

3.2.7 Delayed Critical — State of a nuclear chainreacting medium when rendered critical predominantlyby the use of delayed neutrons.

3.2.8 Critical Experiment — A test or series of testsperformed with an assembly of reactor materials whichcan be gradually brought to the critical state for the purposeof determining the nuclear characteristics of a reactor. Theexperiment is usually performed at very low power.

3.2.9 Critical Equation — Any equation relatingparameters of an assembly which shall be satisfied forthe assembly to be critical.

3.2.10 Critical Mass — The minimum mass of fissilematerial which will sustain a nuclear chain reaction fora specified geometrical arrangement and materialcomposition.

3.2.11 Critical Size — The minimum physicaldimensions of a reactor core or an assembly which canbe made critical for a specified geometricalarrangement and material composition.

3.2.12 Relative Importance — For neutrons of type‘A’ relative to neutrons of type ‘B’, the average numberof neutrons with velocity and position ‘B’ which shallbe added to a critical system to keep the chain reactionrate constant after removal of a neutron with velocityand position ‘A’.

3.2.13 Importance Function — In a critical system,the average asymptotic number of neutrons in thesystem descended from a neutron of a given positionand velocity. It is proportional to the adjoint of theneutron flux density.

3.2.14 Iterated Fission Expectation — In a criticalreactor, the average value of the number of fissionsper generation arising from neutrons of subsequentgenerations of a given neutron. Frequently called‘Iterated Fission Probability’.

3.2.15 Multiplication (Subcritical) — Given asubcritical assembly of reactor materials, the subcriticalmultiplication factor is the ratio of the number of

uksV μ ^fj,DVj dky* dh rqyuk esa fjDVj le; fu;rkad in dksojh;rk nh tkrh gSA

3-2-5 3-2-5 3-2-5 3-2-5 3-2-5 ØkfUrd μ fdlh ukfHkdh; Üka[kyk fØ;k djus okysekè;e dh og voLFkk tc bldk izHkkoh xq.ku [k.M ,dkadgksrk gSA (dksbZ fj,[email protected] HkV~Vh ØkfUrd voLFkk eas rcgksrh gS tc U;wVªkWuksa ds mRiknu dh nj (mu U;wVªkWuksa dksNksM+dj ftudh mQtkZ fo[k.Mu nj dk iQyu ugha gksrh)U;wVªkWuksa dh {kfr dh nj ds leku gksrh gSA)

3-2-6 3-2-6 3-2-6 3-2-6 3-2-6 rRdky ØkfUrd μ ukfHkdh; Üka[kyk fØ;k djus okysekè;e dh og voLFkk tc ;g dsoy rkRdkfyd U;wVªkWuksa dksiz;qDr dj ØkfUrd fd;k x;k gSA

3-2-7 3-2-7 3-2-7 3-2-7 3-2-7 foyfEcr ØkfUrd μ ukfHkdh; Üka[kyk fØ;k djusokys ekè;e dh og voLFkk tc ;g vfèkdrj foyfEcrU;wVªkWuksa dks iz;qDr dj ØkfUrd fd;k x;k gSA

3-2-8 3-2-8 3-2-8 3-2-8 3-2-8 ØkfUrd ijh{k.k μ fdlh fj,DVj (ijek.kq HkV~Vh)dsvfHky{kf.kd fuèkkZfjr djus ds mís'; ls fj,DVj inkFkks±(ftudks Øe'k% ØkfUrd voLFkk esa yk;k tk lds) ds lewgdk ijh{k.k ;k ijh{k.kksa dh ,d Üka[kykA ;g ijh{k.k izk;%cgqr de 'kfDr ij fd, tkrs gSaA

3-2-9 3-2-9 3-2-9 3-2-9 3-2-9 ØkfUrd lehdj.k μ fdlh lewg ds izkpyksa ds eè;crkus okyk lehdj.k] tks ml lewg ds ØkfUrd gksus ds fy,lUrq"V gksxkA

3-2-10 3-2-10 3-2-10 3-2-10 3-2-10 ØkfUrd nzO;eku μ fonY; inkFkZ dk og U;wurenzO;eku tks ,d fufnZ"V T;kferh; O;oLFkk o inkFkks± dsla?kVu esa ukfHkdh; Üka[kyk fØ;k dks fujUrj pkyw j[k ldsA

3-2-11 3-2-11 3-2-11 3-2-11 3-2-11 ØkfUrd lkbt (eki) μ fdlh fj,DVj (ijek.kqHkV~Vh) ;k ,d lewg ftldks ,d fufnZ"V T;kferh; O;oLFkko inkFkks± ds la?kVu ds fy, ØkfUrd cuk;k tk lds] mldhU;wure HkkSfrd yEckbZ&pkSM+kbZ ;k foLrkjA

3-2-12 3-2-12 3-2-12 3-2-12 3-2-12 lkis{k egÙo μ 'B' izdkj ds U;wVªkWuksa ds lkis{k 'A'izdkj ds U;wVªkWuksa ds fy,] osx vkSj fLFkfr 'B' okys U;wVªkWuksa dhvkSlr la[;k tks osx vkSj fLFkfr 'A' okys ,d U;wVªkWu dks gVknsus ds i'pkr~ Üka[kyk fØ;k dh xfr dks fLFkj cuk, j[kus dsfy, ØkfUrd fudk; esa feykuh gksxhA

3-2-13 3-2-13 3-2-13 3-2-13 3-2-13 egÙo iQyu μ fdlh ØkfUrd fudk; eas ,dfufnZ"V osx vkSj fLFkfr ds U;wVªkWu ls vojksfgr gksus okysU;wVªkWuksa dh vkSlr mixkeh la[;kA ;g U;wVªkWu ÝyDl ?kuRods lg[k.Mt ds lekuqikrh gksrk gSA

3-2-14 3-2-14 3-2-14 3-2-14 3-2-14 iqujko`Ùk fo[k.Mu izR;k'kk μ ,d ØfUrd ijek.kqHkV~Vh esa ,d fufnZ"V U;wVªkWu ds ijorhZ tuuksa ls izkIr U;wVªkWuksads dkj.k izfr tuu gksus okys fo[k.Muksa dh la[;k dk vkSlrekuA bls izk;% ^iqujko`Ùk fo[k.Mu izk;fdrk* dgk tkrk gSA

3-2-15 3-2-15 3-2-15 3-2-15 3-2-15 xq.ku (mi&ØkfUrd) μ fj,DVj (ijek.kq HkV~Vh)inkFkks±ds fdlh miØkfUrd laxzg ds fy, mi&ØkfUrd xq.ku ?kVd]

Page 22: Electrotechnical Vocabulary Nuclear Power Plants

17

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

neutrons maintained in the system by a neutron sourceto the number that would be maintained if the fissionwere suppressed without making any other changes inthe materials.

3.2.16 Exponential Experiment — An experiment,performed with a sub-critical assembly of reactormaterials and an independent neutron source, used todetermine the neutron characteristics of a configurationof these materials. With the usual placement of theneutron source (that is, thermal neutrons introducedthrough one face of a cube or end of a cylinder) theneutron flux density in the assembly decreasesexponentially with distance from the boundary adjacentto the source.

3.2.17 Exponential Assembly — A sub-critical assemblyused for an exponential experiment.

3.2.18 Material Buckling — A parameter, B2m, providing

a measure of the multiplying properties of a mediumas a function of the materials and their disposition. Inage-diffusion theory B2

m is the value of B2 satisfyingthe equation:

ke–B2τ = 1 + B2L2

where

k = infinite multiplication factor,τ = the age, andL = diffusion length of the neutrons.

NOTE — The equation is derived from one group theory.

3.2.19 Geometric Buckling — A parameter, B2g

depending on the shape and the external dimensions ofan assembly, for example, a reactor core. For a barereactor, the constant B2

g is given by the equation:

∇2 ϕ(r) + B2ϕ(r) = 0

where

r = the radius vector, will the condition that theneutron flux density ϕ(r) is zero at theextrapolated boundary of the assembly.

3.2.20 Multiplication Factor — The ratio of the totalnumber of neutrons produced during a time interval(excluding neutrons produced by sources whosestrengths are not a function of fission rate) to the totalnumber of neutrons lost by absorption and leakageduring the same interval. When the quantity is evaluatedfor an infinite medium or for an infinite repeating latticeit is referred to as the infinite multiplication factor (k00),and when the quantity is evaluated for a finite mediumit is referred to as the effective multiplication factor(keff). Also called ‘multiplication constant’.

ml fudk; esa ,d U;wVªkWu lzksr }kjk iksf"kr U;wVªkWuksa dh la[;kvkSj ;fn inkFkks± esa vU; dksbZ ifjorZu fd, fcuk fo[k.Mudks jksd fn;k tk,] rks iksf"kr gksus okyh la[;k dk vuqikrgksrk gSA

3-2-16 3-2-16 3-2-16 3-2-16 3-2-16 pj?kkrkadh iz;ksx μ fj,DVj inkFkks± ds mi&ØkfUrdlaxzg vkSj ,d LorU=k U;wVªkWu lzksr ds lkFk fd;k x;k iz;ksx]tks mu inkFkks± ds fdlh foU;kl ds U;wVªkWu vfHkyk{kf.kdfuèkkZfjr djus ds fy, fd;k tkrk gSA U;wVªkWu lzksr dks lkekU;fLFkfr esa j[kus ij (vFkkZr~ rkih; U;wVªkWuksa dks ?ku ds ,d i`"Bls ;k csyu ds fljs ls izfo"V djkus ij)laxzg eas U;wVªkWuÝyDl ?kuRo lzksr ds fudVorhZ lhek ls nwjh ds lkFkpj?kkrkadh :i ls de gksrk gSA

3-2-17 3-2-17 3-2-17 3-2-17 3-2-17 pj?kkrkadh laxzg μ ,d pj?kkrkadh iz;ksx ds fy,iz;qDr mi&ØkfUrd laxzgA

3-2-18 3-2-18 3-2-18 3-2-18 3-2-18 inkFkZ vkdqapu μ ,d izkpy] B2m, tks fdlh ekè;e

ds xq.ku xq.kèkeks± dh eki inkFkks± vkSj mudh O;oLFkk dsiQyu ds :i esa iznku djrk gSA vk;q&folj.k fl¼kUr esa B2

mdk eku B2 gksrk gS tks fuEu lehdj.k dks lUrq"V djrk gS%

ke–B2τ = 1 + B2L2

tgka

k = vuUr xq.ku [k.M]

τ = vk;q] vkSj

L = U;wVªkWuksa dh folj.k yEckbZ (nwjh)A

uksV μ ;g lehdj.k ,d xqzi fl¼kUr ls O;qRiUu fd;k x;k gSA

3-2-19 3-2-19 3-2-19 3-2-19 3-2-19 T;kferh; vkdqapu μ ,d izkpy] B2g, tks fdlh

laxzg (tSls ijek.kq HkV~Vh dk ØksM+) dh vkÑfr o ckgjh eki(yEckbZ&pkSM+kbZ) ij fuHkZj djrk gSA [kkyh fj,DVj ds fy,fu;rkad B2

g dk eku fuEu lehdj.k ls izkIr gksrk gS%

∇2 ϕ(r) + B2ϕ(r) = 0

tgka

r = f=kT;k lfn'k] bl izfrcUèk ds lkFk fd laxzg dhckáxf.kr lhek js[kk ij U;wVªkWu ÝyDl ?kuRo ϕ(r) 'kwU; gksrk gSA

3-2-20 3-2-20 3-2-20 3-2-20 3-2-20 xq.ku ?kVd (fu;rkad) μ fdlh le; vUrjky esamRiUu U;wVªkWuksa dh dqy la[;k (mu lzksrksa ls mRiUu U;wVªkWuksadks NksM+dj] ftudh 'kfDr;ka fo[k.Mu nj dk iQyu ugha gSa)vkSj mlh le; vUrjky esa vo'kks"k.k vkSj {kj.k ds dkj.kyqIr gq, U;wVªkWuksa dh dqy la[;k dk vuqikrA tc bl jkf'kdh x.kuk ,d vuUr ekè;e ;k vuUr vkorhZ tkyd dsfy, dh tk, rks bls vuUr xq.ku ?kVd (k00)dgk tkrk gSAtc bl jkf'k dh x.kuk ,d ifjfer ekè;e ds fy, dh tkrhgS] rks bls izHkkoh xq.ku ?kVd (keff) dgk tkrk gSA bUgsa xq.kufu;rkad Hkh dgrs gSaA

Page 23: Electrotechnical Vocabulary Nuclear Power Plants

18

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

3.2.21 Infinite Multiplication Constant — See 3.2.20.

3.2.22 Effective Multiplication Constant — See 3.2.20.

3.2.23 Eta Factor — The average number of fissionneutrons (including delayed neutrons) emitted perneutron absorbed. It is a function of the energy of theabsorbed neutrons. The term may be applied to afissionable nuclide or to a nuclear fuel, as specified.

3.2.24 Fast Fission Factor — In an infinite medium,the ratio of the mean number of neutrons produced byfissions due to neutrons of all energies, to the meannumber of neutrons produced by thermal fissions only.

3.2.25 Reactivity — A parameter, ρ, giving the deviationfrom criticality of a nuclear chain reacting medium.Positive values correspond to a supercritical state andnegative values to a subcritical state.

Quantitatively

ρ = eff

k11

where keff is the effective multiplication factor.

3.2.26 Reactivity Temperature Coefficient — Thepartial derivative of reactivity with respect totemperature.

NOTE — The temperature may be specified for some locationor component.

3.2.27 Burn-Up — Nuclear transformation of reactormaterials by neutron absorption during reactor operation.The term may be specified to fuel or other materials.

3.2.28 Burn-Up Fraction — The fraction, usuallyexpressed as a percentage, of an initial quantity of nucleiof a given type which has undergone burn-up

3.2.29 Specific Burn-Up or Fuel Irradiation Level —The total energy that has been released per unit massof fissile and fertile material. Usually expressed in‘megawatt days per tonne’.

3.2.30 Specific Power — The power produced per unitmass of fuel in a reactor.

3.2.31 Depletion — Reduction of the concentration ofone or more specified isotopes in a material.

3.2.32 Enrichment — The process by which the contentsof a specified isotope in an element is increased.

NOTE — Enrichment has also been taken to mean:a) isotopic abundance,b) enrichment factor, and

c) enrichment factor minus one (degree of enrichment).

These usages should be avoided.

3-2-21 3-2-21 3-2-21 3-2-21 3-2-21 vuUr xq.ku fu;rkad μ nsf[k;s 3-2-203-2-203-2-203-2-203-2-20A

3-2-22 3-2-22 3-2-22 3-2-22 3-2-22 izHkkoh xq.ku fu;rkad μ nsf[k;s 3-2-203-2-203-2-203-2-203-2-20A

3-2-23 3-2-23 3-2-23 3-2-23 3-2-23 bZVk ?kVd μ vo'kksf"kr gksus okys izfr U;wVªkWu }kjkfo[k.Mu ls mRlftZr U;wVªkWuksa (foyfEcr U;wVªkWuksa lfgr) dhvkSlr la[;kA ;g vo'kksf"kr U;wVªkWuksa dh mQtkZ dk ,d iQyugksrk gSA ;g in ,d fo[k.Mu ;ksX; U;wDykbM ds fy,vFkok ,d ukfHkdh; b±èku ds fy,] tSlk fufnZ"V gks] vuqiz;qDrfd;k tk ldrk gSA

3-2-24 3-2-24 3-2-24 3-2-24 3-2-24 rhoz fo[k.Mu ?kVd μ ,d vuUr ekè;e esa] lHkhmQtkZvksa ds U;wVªkWuksa ds dkj.k fo[k.Mu }kjk mRiUu U;wVªkWuksa dhvkSlr la[;k vkSj dsoy rkih; fo[k.Muksa ls mRiUu U;wVªkWuksadh vkSlr la[;k dk vuqikrA

3-2-253-2-253-2-253-2-253-2-25 lfØ;rk μ ,d izkpy] ρ, tks ,d ukfHkdh; Üka[kykfØ;k'khy ekè;e dk ØkfUrd voLFkk ls fopyu n'kkZrk gSAbldk èkukRed eku vfrØkfUrd voLFkk vkSj ½.kkRed ekumi&ØkfUrd voLFkk ds laxr gksrk gSA la[;kRed :i esa]

ρ = eff

k11

tgka keff izHkkoh xq.ku fu;rkad gSA

3-2-26 3-2-26 3-2-26 3-2-26 3-2-26 lfØ;rk rki fu;rkad μ lfØ;rk dk rki ds lkis{kvkaf'kd vodytA

uksV μ rki fdlh fLFkfr vFkok vo;o ds fy, fufnZ"V fd;k tkldrk gSA

3-2-27 3-2-27 3-2-27 3-2-27 3-2-27 cuZ&vi (ngu) μ ijek.kq HkV~Vh esa fØ;k ds nkSjkuU;wVªkWu vo'kks"k.k }kjk inkFkks± dk ukfHkdh; :ikUrj.kA ;g inb±èku ;k fdlh vU; inkFkZ ds fy, fufnZ"V fd;k tk ldrk gSA

3-2-28 3-2-28 3-2-28 3-2-28 3-2-28 ngu (cuZ&vi) izHkkt μ fdlh fufnZ"V izdkj dsukfHkdksa dh izkjfEHkd ek=kk dk og va'k ftldk ngu (cuZ&vi)gkspqdk gSA bls izk;% izfr'kr esa O;Dr fd;k tkrk gSA

3-2-29 3-2-29 3-2-29 3-2-29 3-2-29 fof'k"V ngu ;k b±èku dk fdj.ku Lrj μ fonY; vkSjmoZj inkFkZ ds izfr ,dkad nzO;eku ls eqDr gqbZ dqy mQtkZA blsizk;% ^esxkokV fnol izfr Vu* esa O;Dr fd;k tkrk gSA

3-2-30 3-2-30 3-2-30 3-2-30 3-2-30 fof'k"V 'kfDr μ ijek.kq HkV~Vh (fj,DVj) esa izfr,dkad nzO;eku b±èku ls mRiUu 'kfDrA

3-2-31 3-2-31 3-2-31 3-2-31 3-2-31 vo{k; μ fdlh inkFkZ esa ,d vFkok vfèkd fufnZ"VleLFkkfudksa dh lkUnzrk esa dehA

3-2-32 3-2-32 3-2-32 3-2-32 3-2-32 le`f¼ μ og izfØ;k ftlds }kjk fdlh rRo easa ,dfufnZ"V leLFkkfud dh ek=kk esa o`f¼ gksrh gSA

uksV μ le`f¼ ds fuEukafdr vFkZ Hkh gksrs gSa%

d) leLFkkfud dk cgqY;]

[k) le`f¼ ?kVd] vkSj

x) le`f¼ ?kVd ls ,d de (le`f¼ dh dksfV)A

buds iz;ksx ls cpuk pkfg,A

Page 24: Electrotechnical Vocabulary Nuclear Power Plants

19

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

3.2.33 Conversion (Reactor Technology) — Nucleartransformation of a fertile substance into a fissilesubstance.

3.2.34 Conversion Ratio — The ratio of the numberof fissile nuclei produced by conversion to the numberof fissile nuclei destroyed. The term can refer to aninstant of time or to a period of time.

3.2.35 Breeding — Conversion when the conversionratio is greater than unity.

3.2.36 Breeding Ratio — The conversion ratio whenit is greater than unity.

3.2.37 Breeding Gain — Breeding ratio minus one.

4 REACTOR TECHNOLOGY AND WORKING

4.1 Reactors

4.1.1 Nuclear Reactor or Pile — A device in which aself-sustaining nuclear fission chain reaction can bemaintained and controlled (fission reactor). The termis sometimes applied to a device in which a nuclearfusion reaction can be produced and controlled (fusionreactor).

4.1.2 Homogeneous Reactor — A reactor in whichthe core materials are distributed in such a mannerthat its neutron characteristics can be accuratelydescribed by the assumption of homogeneousdistribution of the materials throughout the core.

4.1.3 Heterogeneous Reactor — A reactor in whichthe core materials are segregated to such an extentthat its neutron characteristics can not be accuratelydescribed by the assumption of homogeneousdistribution of the materials throughout the core.

4.1.4 Natural Uranium Reactor — Reactor fed withnatural uranium.

4.1.5 Enriched Reactor — Reactor fed with a nuclearfuel obtained from natural uranium, enriched withuranium 235, or with any other fissile matter (uranium233, plutonium, etc) added to it.

4.1.6 Plutonium Reactor — Reactor fed with fissilefuel of which plutonium is the main fissile matter.

4.1.7 Fluidized Reactor — Reactor using a fuel ofwhich certain characteristics are very nearly those ofa fluid.

4.1.8 Circulating Reactor — Nuclear reactor in whichthe fissile matter circulates through the core. Usuallythis means using fissile matter in fluid form or in theform of small particles in suspension in a fluid.

3-2-33 3-2-33 3-2-33 3-2-33 3-2-33 :ikUrj.k (fj,DVj rduhd) μ ,d moZj inkFkZ dkfonY; inkFkZ esa ukfHkdh; :ikUrj.kA

3-2-34 3-2-34 3-2-34 3-2-34 3-2-34 :ikUrj.k vuqikr μ :ikUrj.k }kjk mRiUu fonY;ukfHkdksa dh la[;k vkSj u"V gq, fonY; ukfHkdksa dh la[;kdk vuqikrA

3-2-35 3-2-35 3-2-35 3-2-35 3-2-35 iztuu μ :ikUrj.k] tc :ikUrj.k vuqikr dk eku,d ls vfèkd gksA

3-2-36 3-2-36 3-2-36 3-2-36 3-2-36 iztuu vuqikr μ :ikUrj.k vuqikr] tc bldk eku,d ls vfèkd gksA

3-2-37 3-2-37 3-2-37 3-2-37 3-2-37 iztuu ykHk μ iztuu vuqikr ls ,d deA

4 fj,DVj rduhd vk Sj dk; Zi z.k kyh4 fj,DVj rduhd vk Sj dk; Zi z.k kyh4 fj,DVj rduhd vk Sj dk; Zi z.k kyh4 fj,DVj rduhd vk Sj dk; Zi z.k kyh4 fj,DVj rduhd vk Sj dk; Zi z.k kyh

4-1 ijek.kq HkV~Vh (fj,DVj)4-1 ijek.kq HkV~Vh (fj,DVj)4-1 ijek.kq HkV~Vh (fj,DVj)4-1 ijek.kq HkV~Vh (fj,DVj)4-1 ijek.kq HkV~Vh (fj,DVj)

4-1-1 4-1-1 4-1-1 4-1-1 4-1-1 U;wDyh;j fj,DVj ;k iqat μ ,d ,slh ;qfDr ftlesaLo;a&iksf"kr ukfHkdh; fo[k.Mu dh Üka[kyk fØ;k fu;fU=kr<ax ls djkbZ tk lds (fo[k.Mu fj,DVj)A ;gh in dHkh&dHkhml ;qfDr ds fy, Hkh iz;qDr gksrk gS ftlesa ukfHkdh; lay;ufØ;k mRiUu dh tk lds vkSj fu;fU=kdh dh tk lds(lay;u fj,DVj)A

4-1-2 4-1-2 4-1-2 4-1-2 4-1-2 lekax fj,DVj μ og fj,DVj ftlesa ØksM+ inkFkks± dkforj.k bl izdkj ls gks fd blds U;wVªkWu vfHky{kf.kdksa dk;FkkFkZrk ls fuèkkZj.k fd;k tk lds] ;g eku dj fd iwjs ØksM+esa inkFkks± dk forj.k lekaxh gSA

4-1-3 4-1-3 4-1-3 4-1-3 4-1-3 fo"kekax fj,DVj μ og fj,DVj ftlesa ØksM+ inkFkZ,slh lhek rd i`FkDÑr gksa fd mlds U;wVªkWu vfHkyf{k.kdksadk ;FkkFkZ fuèkkZj.k iwjs ØksM+ esa inkFkks± dk lekaxh forj.kekudj ugha fd;k tk ldsA

4-1-4 4-1-4 4-1-4 4-1-4 4-1-4 izkÑfrd ;wjsfu;e fj,DVj μ og fj,DVj ftlesaizkÑfrd ;wjsfu;e Hkjk x;k gksA

4-1-54-1-54-1-54-1-54-1-5 le`¼ fj,DVj μ og fj,DVj ftlesa izkÑfrd ;wjsfu;eesa ;wjsfu;e 235 ;k dksbZ vU; fonY; inkFkZ (;wjsfu;e 233IywVksfu;e vkfn) feykdj le`¼ fd;k x;k ukfHkdh; b±èkuHkjk x;k gksA

4-1-6 4-1-6 4-1-6 4-1-6 4-1-6 IywVksfu;e fj,DVj μ og fj,DVj ftlesa fonY; b±èku,sls Hkjk gks ftlesa eq[; fonY; inkFkZ IywVksfu;e gksA

4-1-7 4-1-7 4-1-7 4-1-7 4-1-7 rjyhÑr fj,DVj μ og fj,DVj ftlesa ,slk b±èkuiz;qDr fd;k tkrk gS ftlds dqN vfHky{kf.kd yxHkx ,drjy ds tSls gksaA

4-1-8 4-1-8 4-1-8 4-1-8 4-1-8 ifjlapkjh fj,DVj μ U;wDyh;j fj,DVj ftlesa fonY;inkFkZ ØksM+ esa ifjlapkfjr gksrk gSA izk;% bldk vfHkizk; ;ggS fd fony inkFkZ dks rjy :i esa ;k fdlh rjy easfuyfEcr lw{e d.kksa ds :i esa iz;qDr fd;k tk,A

Page 25: Electrotechnical Vocabulary Nuclear Power Plants

20

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

4.1.9 Fast Reactor — A reactor in which fission isinduced predominantly by fast neutrons.

4.1.10 Intermediate Reactor or Intermediate SpectrumReactor — A reactor in which fission is inducedpredominantly by intermediate neutrons.

4.1.11 Epithermal Reactor — A reactor in which thefission is induced predominantly by epithermalneutrons.

4.1.12 Thermal Reactor — A reactor in which fissionis induced predominantly by thermal neutrons.

4.1.13 Converter Reactor — A reactor whose purposeis to convert a fertile material into a fissionable material.

4.1.14 Breeder Reactor — A reactor which producesmore fissile material than it consumes, that is, has aconversion ratio greater than unity.

4.1.15 Spectral Shift Reactor — A reactor in which,for control or other purposes, the neutron spectrum maybe adjusted by varying the properties or amount ofmoderator.

4.1.16 Power Reactor — A reactor whose primarypurpose is to produce power. Reactors in this classinclude:

a) electricity production reactor,b) propulsion reactor, andc) heat-production reaction.

4.1.17 Research Reactor — A reactor of any powerlevel used primarily as a research tool for basic orapplied research. Reactors in this class include:

a) low-flux research reactor,b) high-flux research reactor,c) pulse reactor,d) testing reactor, ande) zero-power reactor (may also be an

experimental reactor).

4.1.18 Experimental Reactor — A reactor operatedprimarily to obtain reactor physics or engineering datafor the design or development of a reactor or reactortype. Reactors in this class include:

a) zero-power reactor (may also be a researchreactor),

b) reactor experiment, andc) prototype reactor.

4.1.19 Production Reactor — A reactor whose primarypurpose is to produce fissile or other materials or toperform irradiation on an industrial scale. Unless

4-1-9 4-1-9 4-1-9 4-1-9 4-1-9 rhoz fj,DVj μ og fj,DVj ftlesa fo[k.Mu fØ;keq[;r% rhozxkeh U;wVªkWuksa }kjk izsfjr gksrh gSA

4-1-10 4-1-10 4-1-10 4-1-10 4-1-10 eè;orhZ fj,DVj ;k eè;orhZ LisDVªe fj,DVj μ ogfj,DVj ftlesa fo[k.Mu fØ;k eq[;r% eè;orhZ U;wVªkWuksa }kjkizfjr gksrh gSA

4-1-11 4-1-11 4-1-11 4-1-11 4-1-11 vYirkih fj,DVj μ og fj,DVj ftlesa fo[k.MufØ;k eq[;r% vYirkih U;wVªkWuksa }kjk izsfjr gksrh gSA

4-1-12 4-1-12 4-1-12 4-1-12 4-1-12 rkih; fj,DVj μ og fj,DVj ftlesa fo[k.Mu fØ;keq[;r% rkih; U;wVªkWuksa }kjk izsfjr gksrh gSA

4-1-13 4-1-13 4-1-13 4-1-13 4-1-13 ifjorZd fj,DVj μ og fj,DVj ftldk dk;Z ,dmoZj inkFkZ dks fo[k.Muh; inkFkZ esa ifjofrZr djuk gksrk gSA

4-1-14 4-1-14 4-1-14 4-1-14 4-1-14 iztud fj,DVj μ og fj,DVj] ftlesa ftruk fonY;inkFkZ O;; gksrk gS mlls vfèkd ek=kk esa ;g mRiUu gksrk gS]vFkkZr~] bldk ifjorZu vuqikr dk eku ,d ls vfèkd gksrk gSA

4-1-15 4-1-15 4-1-15 4-1-15 4-1-15 LisDVªeh foLFkkiu fj,DVj μ og fj,DVj ftlesa] fu;U=k.k;k vU; fdlh mís'; ls] eand ds xq.kèkeks± ;k bldh ek=kk esaifjorZu dj U;wVªkWuksa ds LisDVªe dks lek;ksftr fd;k tk ldrk gSA

4-1-16 4-1-16 4-1-16 4-1-16 4-1-16 'kfDr fj,DVj μ og fj,DVj ftldk izkFkfed mís';'kfDr mriknu djuk gksrk gSA bl izdkj ds fj,DVjksa esa lfEefyr gSa%

d) fo|qr mRiknd fj,DVj]

[k) uksnu fj,DVj] vkSj

x) mQ"ek mRiknd fj,DVjA

4-1-17 4-1-17 4-1-17 4-1-17 4-1-17 vuqlaèkku fj,DVj μ fdlh Hkh 'kfDr Lrj dkfj,DVj ftldk mi;ksx izkFkfed :i ls vkèkkjHkwr ;k vuqiz;qDrvuqlaèkku ds fy, midj.k ds :i eas fd;k tkrk gSA blizdkj ds fj,DVjksa esa lfEefyr gSa%

d) U;wu&ÝyDl vuqlaèkku fj,DVj][k) mPp&ÝyDl vuqlaèkku fj,DVj]x) Liafnr fj,DVj]?k) ijh{k.k fj,DVj] vkSjM+) 'kwU;&'kfDr fj,DVj (,d izk;ksfxd fj,DVj Hkh gks

ldrk gS)A

4-1-18 4-1-18 4-1-18 4-1-18 4-1-18 izk;ksfxd fj,DVj μ fj,DVj ;k fj,DVj ds izdkj dhvfHkdYiuk (Mtkbu) djus ;k mlesa lqèkkj djus ds fy,fj,DVj HkkSfrd ;k vfHk;kfU=kdh lead izkIr djus ds fy,ewyr% lapkfyr fj,DVjA bl izdkj ds fj,DVjksa esa lfEefyr gSa%

d) 'kwU;&'kfDr fj,DVj (vuqlaèkku fj,DVj Hkh gks ldrkgS)]

[k) fj,DVj iz;ksx] vkSjx) vkfn iz:i fj,DVjA

4-1-19 4-1-19 4-1-19 4-1-19 4-1-19 mRiknd fj,DVj μ og fj,DVj ftldk ewy mís';vkS|ksfxd Lrj ij fonY; ;k vU; inkFkks± dk mRiknu djuk

Page 26: Electrotechnical Vocabulary Nuclear Power Plants

21

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

otherwise specified the term usually refers to aplutonium-production reactor. Reactors in this classinclude:

a) fissile-material production reactor,b) isotope-production reactor, andc) irradiation reactor.

4.1.20 Training Reactor — A reactor operated primarilyfor training in reactor operation and instructing inreactor behaviour.

4.2 Constituent Parts

4.2.1 Nuclear Fuel — Material containing fissilenuclides which when placed in a reactor enables a chainreaction to be achieved.

4.2.2 Enriched Material — Material in which theconcentration of one or more specified isotopes of aconstituent is greater than its natural value.

4.2.3 Depleted Material — Material which hasundergone depletion.

4.2.4 Fuel Element or Fuel Rod — The smalleststructurally discrete part of a reactor which has fuel asits principal constituent.

4.2.5 Slug — A small fuel element of cylindrical form.

4.2.6 Fuel Assembly — A fuel element or a group offuel elements in the form of cluster of rods or a bundleof plates, with all its accessories.

4.2.7 Cladding or Can — An external layer of materialapplied, usually to a nuclear fuel, to provide protectionfrom a chemically reactive environment, to providecontainment of radioactive products produced duringthe irradiation of the composite, or to provide structuralsupport.

4.2.8 Plug

a) Piece of material used for plugging a hole ina screen of protective material so as to preventthe passage of radiations.

b) A part welded to the cladding, so as to makeit efficiently radiation proof.

4.2.9 Channel — Duct provided in a reactor.

4.2.10 Charge — The fuel placed in a reactor.

4.2.11 Active Core — Medium inside which chainfissions can take place.

4.2.12 Core — That region of a reactor in which achain reaction can take place.

4.2.13 Cell (Reactor) — One of a set of elementary

vFkok fdj.ku djkuk gksrk gSA tc rd vU;Fkk fufnZ"V ufd;k x;k gks] ;g in izk;% IywVksfu;e mRiknd fj,DVj dksO;Dr djrk gSA bl izdkj ds fj,DVjksa eas lfEefyr gSa%

d) fonY; inkFkZ mRiknd fj,DVj][k) leLFkkfud mRiknd fj,DVj] vkSjx) fdj.ku fj,DVjA

4-1-20 4-1-20 4-1-20 4-1-20 4-1-20 izf'k{k.k fj,DVj μ og fj,DVj ftldk lapkyuewyr% fj,DVjksa ds lapkyu dk izf'k{k.k vkSj blds O;ogkjlEcUèkh funsZ'k nsus ds fy, fd;k tkrk gSA

4-2 vo;oh Hk kx4-2 vo;oh Hk kx4-2 vo;oh Hk kx4-2 vo;oh Hk kx4-2 vo;oh Hk kx

4-2-1 4-2-1 4-2-1 4-2-1 4-2-1 ukfHkdh; b±èku μ fonY; U;wDykbMksa ls ;qDr inkFkZftldks fj,DVj (ijek.kq HkV~Vh) esa j[kus ij Üka[kyk fØ;kdjokbZ tk ldsA

4-2-2 4-2-2 4-2-2 4-2-2 4-2-2 le`¼ inkFkZ μ og inkFkZ ftlesa mlds fdlh vO;ods ,d ;k vfèkd fufnZ"V leLFkkfudksa dh lkUnzrk viusizkÑr eku ls vfèkd gksA

4-2-3 4-2-3 4-2-3 4-2-3 4-2-3 vo{k;hr inkFkZ μ og inkFkZ ftldk vo{k; gks x;k gSA

4-2-4 4-2-4 4-2-4 4-2-4 4-2-4 b±èku rRo ;k b±èku NM+ μ lajpukRed :i ls fj,DVjdk lw{erre fofoDr Hkkx] ftldk eq[; vo;o b±èku gksrk gSA

4-2-5 4-2-5 4-2-5 4-2-5 4-2-5 Lyx μ csyukdkj :i esa ,d lw{e b±èku rUrq (,fyesUV)A

4-2-6 4-2-6 4-2-6 4-2-6 4-2-6 b±èku lap; μ NM+ksa ds xqPN ;k ifV~Vdkvksa ds caMyds :i esa b±èku rUrq ;k b±èku rUrqvksa dk lewg] viuh lHkhlgk;d lkexzh lfgrA

4-2-7 4-2-7 4-2-7 4-2-7 4-2-7 vkoj.k ;k ik=k (DySfMax) μ fdlh inkFkZ dh ,d czkáijr tks izk;% ukfHkdh; b±èku ij p<+kbZ tkrh gS] bldks jklk;fudvfHkfØ;k'khy okrkoj.k ls lqj{kk iznku djus ds fy,] la;kstuls fdj.ku ds nkSjku mRiUu gksus okys jsfM;ks lfØ; mRiknksa dksjksds j[kus ds fy,] ;k lajpukRed vkèkkj iznku djus ds fy,A

4-2-8 4-2-8 4-2-8 4-2-8 4-2-8 Iyx

d) fofdj.kksa dks ckgj fudyus ls jksdus ds fy, j{kdinkFkZ ds vkoj.k esa fdlh fNnz dks cUn djus dsfy, iz;qDr fdlh inkFkZ dk ,d VqdM+kA

[k) vkoj.k ds lkFk >ykbZ dj tksM+k x;k ,d Hkkx]ftlls ;g vfèkd n{k fofdj.k jksèkh cu tk,A

4-2-94-2-94-2-94-2-94-2-9 pSuy μ fj,DVj esa yxkbZ xbZ iz.kkyh@okfguhA

4-2-10 4-2-10 4-2-10 4-2-10 4-2-10 pktZ (èkku) μ fj,DVj esa j[kk x;k b±èkuA

4-2-11 4-2-11 4-2-11 4-2-11 4-2-11 lfØ; ØksM+ μ ekè;e] ftlds vUnj fo[k.MuÜka[kyk lEiUu gks ldsA

4-2-124-2-124-2-124-2-124-2-12 ØksM+ μ fj,DVj dk og Hkkx ftlesa Üka[kyk fØ;klEiUu gks ldsA

4-2-13 4-2-13 4-2-13 4-2-13 4-2-13 lSy (fj,DVj) μ ,d fo"kekaxh fj,DVj esa izkjfEHkd

Page 27: Electrotechnical Vocabulary Nuclear Power Plants

22

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

regions in a heterogeneous reactor each, of which hasthe same geometrical form and neutron characteristicsas the other.

4.2.14 Reactor Lattice — An array of fuel and othermaterials arranged according to a regular pattern.

4.2.15 Blanket — A region of fertile material placedaround or within the core of a reactor for the purposeof conversion.

4.2.16 Irradiation Channel — A hole through a reactorshield into the interior of the reactor in whichirradiations are carried out. Sometimes calledexperimental hole.

4.2.17 Beam Hole — A hole through a reactor shieldinto the interior of the reactor for the passage of a beamof radiation for experiments outside the reactor.

4.2.18 Moderator — A material used to reduce byscattering collisions and without appreciable captureof the kinetic energy of neutrons.

4.2.19 Reflector — A material or a body of materialwhich reflects incident radiation. In nuclear reactortechnology, this term is usually restricted to designatea part of a reactor placed adjacent to the core for thepurpose of returning some of the escaping neutrons tothe core by means of scattering collisions.

4.2.20 Secondary Coolant Circuit — A circulatingsystem used to remove heat from the primary coolantcircuit.

4.2.21 Containment — The prevention of release, evenunder the conditions of a reactor accident, ofunacceptable quantities of radioactive material beyonda controlled zone. Also, commonly, the containingsystem itself.

4.2.22 Shield — A body of material intended to reducethe intensity of radiation entering a region.

4.2.23 Thermal Shield — A shield intended to reduceheat generation by ionizing radiation in, and heattransfer to exterior regions.

4.2.24 Biological Shield — A shield whose primepurpose is to reduce ionizing radiation to biologicallypermissible levels.

4.2.25 Extrapolated Boundary — A hypotheticalsurface outside an assembly on which the neutron fluxdensity would be zero if the flux existing a few meanfree paths from the physical surface were extrapolated.

4.2.26 Reactor Vessel — The principal vesselsurrounding at east the reactor core.

{ks=kksa dk ,d lSV (leqPp;)] ftuesa izR;sd dh T;kferh;:ijs[kk vkSj U;wVªkWu vfHky{kf.kd ,d leku gksaA

4-2-14 4-2-14 4-2-14 4-2-14 4-2-14 fj,DVj tkyd μ b±èkj vkSj vU; inkFkks± dk ,dfu;fer izfr:i (iSVuZ) ds vuqlkj O;ofLFkr O;wgA

4-2-15 4-2-15 4-2-15 4-2-15 4-2-15 vkoj.k (CySadsV) μ ifjorZu djkus ds mís'; lsfj,DVj ds ØksM+ ds vUnj ;k blds vkl&ikl j[ks x, moZjinkFkZ dk {ks=kA

4-2-16 4-2-16 4-2-16 4-2-16 4-2-16 fdj.ku okfguh μ fj,DVj ds vkUrfjd Hkkx esafj,DVj ifjj{kd (<ky) esa ,d fNnz ftlesa gksdj fdj.kudjok;k tkrk gSA dHkh&dHkh bls izk;ksfxd fNnz Hkh dgrs gSaA

4-2-17 4-2-17 4-2-17 4-2-17 4-2-17 fdj.k iqat fNnz μ fj,DVj ds vkUrfjd Hkkx esafj,DVj ifjj{kd (<ky) esa ,d fNnz ftlesa gksdj fj,DVj dsckgj gksus okys iz;ksxksa ds fy, fofdj.k iaqt dks ekxZ feytk,A

4-2-18 4-2-18 4-2-18 4-2-18 4-2-18 eand μ ,d inkFkZ tks izdhf.kZr VDdjksa }kjk vkSjdksbZ izs{k.kh; izxzg.k gq, fcuk U;wVªkWuksa dh xfrt mQtkZ dksde djus ds fy, iz;qDr fd;k tk,A

4-2-19 4-2-19 4-2-19 4-2-19 4-2-19 ijkorZd μ dksbZ inkFkZ ;k inkFkZ dk fi.M tksvkifrr fofdj.kksa dks ijkofrZr dj nsrk gSA ukfHkdh; fj,DVjrduhdh esa ;g in izk;% fj,DVj eas dqN cp fudyus okysU;wVªkWuksa dks izdh.kZu VDdj }kjk iqu% ØksM+ esa ykSVk nsus dsmís'; ls ØksM+ ds fudV j[ks x, ,d Hkkx dks ukfer djusrd lhfer gSA

4-2-20 4-2-20 4-2-20 4-2-20 4-2-20 f}rh;d 'khryu ifjiFk μ ,d ifjlapkjh iz.kkyh]tks izkFkfed 'khryu ifjiFk esa ls mQ"ek dks fudkyus ds fy,iz;qDr gksrh gSA

4-2-21 4-2-21 4-2-21 4-2-21 4-2-21 vojksèkd μ jsfM;ks lfØ; inkFkZ dh vokafNr ek=kkdks ,d fu;fU=kr {ks=k ls ckgj fudyus ls jksduk (fj,DVj esanq?kZVuk gksus ij Hkh)A vUrosZ'kh vkoj.k iz.kkyh Lo;a HkhA

4-2-22 4-2-22 4-2-22 4-2-22 4-2-22 ifjj{kd μ fdlh {ks=k eas izos'k djus okys fofdj.kksa dhrhozrk dks de djus ds fy, iz;qDr fdlh inkFkZ dk ,d fi.MA

4-2-23 4-2-23 4-2-23 4-2-23 4-2-23 rkih; ifjj{kd μ vUnj vk;uhdkjd fofdj.kksa lsmRiUu mQ"ek dks de djus vkSj mQ"ek dk cká {ks=kksa esaLFkkukUrj.k dks jksdus ds mís'; ls iz;qDr ifjj{kdA

4-2-24 4-2-24 4-2-24 4-2-24 4-2-24 tSfod ifjj{kd μ ,d ifjj{kd ftldk eq[;mís'; vk;uhdkjd fofdj.kksa dks tSfod vuqes; Lrj rdde djuk gksrk gSA

4-2-25 4-2-25 4-2-25 4-2-25 4-2-25 ckáx.ku ls izkIr lhek js[kk μ fdlh ,d=k.k dsckgj ,d dfYir i`"B (lrg) ftl ij U;wVªkWu ÝyDl ?kuRodk eku 'kwU; gksxk] ;fn HkkSfrd lrg ls dqN ekè;&eqDr iFkksaij ÝyDl ds vfLrRo dk ckáx.ku fd;k tk,A

4-2-26 4-2-26 4-2-26 4-2-26 4-2-26 fj,DVj ik=k μ og eq[; ik=k tks de&ls&defj,DVj ds ØksM+ dks ?ksjs jgrk gSA

Page 28: Electrotechnical Vocabulary Nuclear Power Plants

23

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

4.2.27 Neutron Converter — A device placed in a fluxof slow neutrons to produce fast neutrons.

4.3 Reactor Operation

4.3.1 Radiation Source — An apparatus or a materialemitting or capable of emitting ionizing radiation.

4.3.2 Radioactive Source — Any quantity of radioactivematerial which is intended for use as a source ofionizing radiation.

4.3.3 Sealed Source — A hermetically encapsulatedradioactive source.

4.3.4 Source Range — The range of reactor operationwithin which a supplementary neutron source isrequired to facilitate the measurement of neutron fluxdensity.

4.3.5 Counter Range — The range of reactor powerlevel within which a particle counter is required foradequate measurement of the neutron flux density.

4.3.6 Operating Range — The range of reactor powerlevel within which a reactor is designed to operate in asteady-state condition.

4.3.7 Power Range — The range of power level withinwhich the control of a reactor is primarily based uponmeasurement of temperature or neutron flux densityrather than time constant (period).

4.3.8 Time Constant Range or Period Range — Therange of power level within which the reactor timeconstant (reactor period) rather than reactor power, isof primary importance for reactor control.

4.3.9 Reactor Regulation — Sequence of operationsfor the purpose of starting up the reactor and keepingit at the desired power level.

4.3.10 Reactor Control — The intentional variation ofthe reaction rate in a reactor, or the adjustment ofreactivity to maintain steady-state operation.

4.3.11 Configuration Control — Reactor control bychanging its configuration.

4.3.12 Fuel Control — control of a reactor byadjustment of the properties, position, or quantity offuel in such a way as to change the reactivity.

4.3.13 Moderator Control — Control of a reactor byan adjustment of the properties, position or quantity ofthe moderator in such a way as to change the reactivity.

4.3.14 Spectral Shift Control — A special type ofmoderator control.

4.3.15 Absorption Control — control of a reactor by

4-2-27 4-2-27 4-2-27 4-2-27 4-2-27 U;wVªkWu ifjorZd μ eUnxkeh U;wVªkWuksa ds ÝyDl esafLFkr ,d ;qfDr tks rhozxkeh U;wVªkWu mRiUu djrh gSA

4-3 fj,DVj dk izpkyu4-3 fj,DVj dk izpkyu4-3 fj,DVj dk izpkyu4-3 fj,DVj dk izpkyu4-3 fj,DVj dk izpkyu

4-3-1 4-3-1 4-3-1 4-3-1 4-3-1 fofdj.k lzksr μ ,d midj.k ;k inkFkZ tks vk;uhdkjdfofdj.k mRlftZr djs ;k mRlftZr djus esa l{ke gksA

4-3-2 4-3-2 4-3-2 4-3-2 4-3-2 jsfM;kslfØ; lzksr μ jsfM;kslfØ; inkFkZ dh dksbZ ek=kkftldk mís'; vk;uhdkjd fofdj.k ds lzksr ds :i esaiz;qDr fd;k tkuk gksA

4-3-3 4-3-3 4-3-3 4-3-3 4-3-3 lhycUn lzksr μ dSIlwy esa leqafnzr jsfM;ks lfØ; lzksrA

4-3-4 4-3-4 4-3-4 4-3-4 4-3-4 lzksr dh ijkl μ ,d fj,DVj ds izpkyu dh ijkl]ftlesa U;wVªkWu ÝyDl ?kuRo ds ekiu dh lqxerk ds fy, ,diwjd U;wVªkWu lzksr dh vko';drk gksrh gSA

4-3-5 4-3-5 4-3-5 4-3-5 4-3-5 xf.k=k ijkl μ fj,DVj dh 'kfDr Lrj dk ijklftlds eè; U;wVªkWu ÝyDl ?kuRo ds ;Fks"V ekiu ds fy,,d d.k xf.k=k dh vko'drk gksrh gSA

4-3-64-3-64-3-64-3-64-3-6 izpkyu ijkl μ fj,DVj dh 'kfDr Lrj dh ijklftlds eè; LFkk;h n'kk ifjfLFkfr esa izpkyu ds fy, fj,DVjdh vfHkDyiuk dh xbZ gSA

4-3-7 4-3-7 4-3-7 4-3-7 4-3-7 'kfDr ijkl μ 'kfDr Lrj dh ijkl ftlds eè; fj,DVjdk fu;U=k.k ewyr% le; fu;rkad (vkorZdky) dh vis{kk rkivFkok U;wVªkWu ÝyDl ?kuRo dh eki ij vkèkkfjr gksrk gSA

4-3-8 4-3-8 4-3-8 4-3-8 4-3-8 le; fu;rkad ijkl ;k vkorZdky ijkl μ 'kfDr Lrjdh ijkl ftlds eè; fj,DVj ij fu;U=k.k ds fy, fj,DVj'kfDr dh vis{kk fj,DVj ds le; fu;rkad (vkorZdky)dkizkFkfed egRo gSA

4-3-9 4-3-9 4-3-9 4-3-9 4-3-9 fj,DVj dk fu;eu μ fj,DVj dks pkyw djus vkSj bls,d bfPNr 'kfDr Lrj ij cuk, j[kus ds fy, fØ;kvksa dkvuqØeA

4-3-10 4-3-10 4-3-10 4-3-10 4-3-10 fj,DVj ij fu;U=k.k μ fj,DVj esa fØ;k dh xfr easok¡fNr ifjroZu] vFkok LFkk;h n'kk eas fØ;k gksrh jgs bldsfy, lfØ;rk dks lek;ksftr djukA

4-3-11 4-3-11 4-3-11 4-3-11 4-3-11 foU;klh fu;U=k.k μ fj,DVj ij blds foU;kl esaifjorZu }kjk fu;U=k.k djukA

4-3-12 4-3-12 4-3-12 4-3-12 4-3-12 b±èku fu;U=k.k μ b±èku ds xq.kèkeks±] fLFkfr ;k ek=kk esabl izdkj lek;kstu djuk fd bldh lfØ;rk esa ifjorZu gkstk,] vkSj blds }kjk fj,DVj ij fu;U=k.k djukA

4-3-13 4-3-13 4-3-13 4-3-13 4-3-13 eand fu;U=k.k μ eand ds xq.kèkeks±] fLFkfr ;k ek=kkesa bl izdkj lek;kstu djuk fd lfØ;rk esa ifjorZu gks tk,vkSj blds }kjk fj,DVj ij fu;U=k.k djukA

4-3-14 4-3-14 4-3-14 4-3-14 4-3-14 LisDVªeh foLFkkiu fu;U=k.k μ ,d fo'ks"k izdkj dkeand fu;U=k.kA

4-3-154-3-154-3-154-3-154-3-15 vo'kks"k.k fu;U=k.k μ b±èku] eand vksj ijkorZd

Page 29: Electrotechnical Vocabulary Nuclear Power Plants

24

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

adjustment of the properties, position, or quantity ofneutron-absorbing material, other than fuel, moderatorand reflector material, in such a way as to change thereactivity.

4.3.16 Neutron Absorber (Material) — A material withwhich neutrons interact significantly by reactionsresulting in their disappearance as free particles.

4.3.17 Neutron Absorber (Object) — An object withwhich neutrons interact significantly or predominantlyby reactions resulting in their disappearance as freeparticles without production of other neutrons.

4.3.18 Poison — A substance, which, owing to its highabsorption cross section, reduces the reactivity of areactor.

4.3.19 Burnable Poison — Poison purposely includedin a reactor to help control long-term reactivity changesby its progressive burn-up.

4.3.20 Xenon Effect — Phenomenon that takes placein thermal reactors due to a build up of xenon which isa very important nuclear poison.

4.3.21 Fluid Poison Control — Control of a reactor byadjustment of the position, or quantity of a fluid nuclearpoison in such a way as to change the reactivity. Thefluid poison may include soluble chemicals or particlesin suspension.

4.3.22 Reflector Control — Control of a reactor byadjustment of the properties, position, or quantity ofthe reflector in such a way as to change the reactivity.

4.3.23 Self-Regulation — An inherent tendency undercertain conditions of a reactor to operate at a constantpower level because of the effect on reactivity of achange in power level.

4.3.24 Control Member or Control Element — Amovable part of a reactor which itself affects reactivityand is used for reactor control.

4.3.25 Control Rod — A control member in the formof a rod.

4.3.26 Control Drive — A device used for moving acontrol member in the course of reactor control.

4.3.27 Coarse Control Member or Control Element— A control member used for gross adjustment of thereactivity of a reactor or for altering flux distribution.

4.3.28 Fine Control — Fine regulation for the purposeof correcting reactivity drift of small amplitude.

4.3.29 Fine Control Member or Fine Control Elementor Regulating Member or Regulating Element — A

inkFkZ ds vfrfjDr vU; U;wVªkWu vo'kks"kd inkFkZ ds xq.kèkeks±]fLFkfr ;k ek=kk esa lek;kstu }kjk lfØ;rk eas ifjorZu djuk]vkSj blds }kjk fj,DVj ij fu;U=k.k djukA

4-3-16 4-3-16 4-3-16 4-3-16 4-3-16 U;wVªkWu vo'kks"kd (inkFkZ) μ ,slk inkFkZ ftlds lkFkU;wVªkWu lkFkZd vU;ksU; fØ;k djrs gSa vkSj fØ;kvksa dsifj.kkeLo:i os eqDr d.k ds :i esa foyqIr gks tkrs gSaA

4-3-17 4-3-17 4-3-17 4-3-17 4-3-17 U;wVªkWu vo'kks"kd (oLrq) μ ,slh oLrq ftlds lkFkU;wVªkWu lkFkZd ;k fo'ks"kr;k vU;ksU; fØ;k djrs gSa vkSj fØ;kds ifj.kkeLo:i fcuk vU; U;wVªkWu mRiUu fd,] os viuseqDr d.k ds :i esa foyqIr gks tkrs gSaA

4-3-18 4-3-18 4-3-18 4-3-18 4-3-18 fo"k μ ,slk inkFkZ] tks vius mPp vo'kks"k.k ifj{ks=kds dkj.k fdlh fj,DVj dh lfØ;rk dks de dj nsrk gSA

4-3-19 4-3-19 4-3-19 4-3-19 4-3-19 ngu;ksX; fo"k μ ,slk fo"k] tks izxkeh :i ls ngugksrk jgdj lfØ;rk esa nh?kkZofèk ifjorZuksa ij fu;U=k.k djusesa lgk;d gks] bl mís'; ls fj,DVj esa lfEefyr fd;ktkrk gSA

4-3-20 4-3-20 4-3-20 4-3-20 4-3-20 thukWu izHkko μ rkih; fjDVjksa esa thukWu] tks ,dcgqr egRoiw.kZ ukfHkdh; fo"k gS] cuus ds dkj.k gksus okyh?kVukA

4-3-21 4-3-21 4-3-21 4-3-21 4-3-21 rjy fo"k fu;U=k.k μ fdlh rjy ukfHkdh; fo"k dhfLFkfr ;k ek=kk esa lek;kstu djds lfØ;rk esa ifjorZu djukvkSj blds }kjk fj,DVj ij fu;U=k.k djukA

4-3-22 4-3-22 4-3-22 4-3-22 4-3-22 ijkorZd fu;U=k.k μ ijkorZd ds xq.kèkeks±] fLFkfr ;kek=kk ea lek;kstu }kjk lfØ;rk esa ifjorZu djuk vkSj blds}kjk fj,DVj ij fu;U=k.k djukA

4-3-23 4-3-23 4-3-23 4-3-23 4-3-23 Lo;a&fu;U=k.k μ dqN ifjfLFkfr;ksa eas ,d fj,DVj esavUrfuZfgr izo`fÙk] ftlds vUrxZr 'kfDr Lrj eas ifjorZu dklfØ;rk ij izHkko gksus ds dkj.k ;g ,d fLFkj 'kfDr Lrjij izpfyr jgrk gSA

4-3-24 4-3-24 4-3-24 4-3-24 4-3-24 fu;U=k.k vax ;k fu;U=kd vo;o μ fdlh fj,DVjdk ,d pyk;eku Hkkx tks Lo;a lfØ;rk dks izHkkfor djrkgS vkSj fj,DVj ij fu;U=k.k djus ds fy, iz;qDr gksrk gSA

4-3-25 4-3-25 4-3-25 4-3-25 4-3-25 fu;U=kd NM+ μ NM+ ds :i esa ,d fu;U=k.k vaxA

4-3-26 4-3-26 4-3-26 4-3-26 4-3-26 fu;U=kd pkyd μ ,d ;qfDr tks fj,DVj ij fu;U=k.kds le; fu;U=k.k vax dks pykus ds fy, iz;qDr gksrh gSA

4-3-27 4-3-27 4-3-27 4-3-27 4-3-27 LFkwy fu;U=kd vax ;k LFkwy fu;U=kd vO;o μ ,dfu;U=k.k vax tks fdlh fj,DVj dh lfØ;rk esa LFkwy lek;kstudjus ;k ÝyDl ds forj.k esa ifjorZu djus ds fy, iz;qDrfd;k tkrk gSA

4-3-28 4-3-28 4-3-28 4-3-28 4-3-28 lw{e fu;U=k.k μ NksVs vk;ke ds lfØ;rk ds vuqxeuesa lqèkkj ds mís'; ls lw{e fu;eu djukA

4-3-29 4-3-29 4-3-29 4-3-29 4-3-29 lw{e fu;U=kd vax ;k lw{e fu;U=kd vO;o μ ,dfu;U=k.k vax tks fj,DVj dh lfØ;rk ls lw{e vkSj ifj'kqn~èk

Page 30: Electrotechnical Vocabulary Nuclear Power Plants

25

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

control member used for small and preciseadjustment of the reactivity of a reactor.

4.3.30 Coarse Control (Shimming) — Coarseregulation for the purpose of correcting reactivity driftof major amplitudes spreading over a long period.

4.3.31 Shim Member or Shim Element — A controlmember used to compensate for long-term reactivityand flux density distribution effects in a reactor.

4.3.32 Emergency Shutdown or Scram — The actof shutting down a reactor suddenly to prevent orminimize a dangerous condition.

4.3.33 Emergency Shutdown Rod — Safety memberfor immediate action if required.

4.3.34 Safety Member — A control member which,singly or in concert with others, provides a reserveof negative reactivity for the purpose of emergencyshutdown of a reactor.

4.3.35 Reactor Safety Fuse — A self-containeddevice designed to respond to excessive temperatureor flux in a reactor and to act to reduce the reactionrate to a safe level. The device may or may notcontain stored energy to facilitate its operation.

4.3.36 Leakage (Shielding) — Escape of radiationthrough a shield, especially by way of holes or cracksthrough the shield.

4.3.37 Radioactive Contamination — A radioactivesubstance dispersed in materials or places where itis undesirable.

4.3.38 Decontamination Factor — The ratio of theinitial concentration of contamination of radioactivematerial to the final concentration arrived at through aprocess of decontamination. (The term may refer to aspecified nuclide or to gross measurable radioactivity.)

4.4 Maintenance

4.4.1 Irradiation — Radiation exposure.

4.4.2 Radioactive Material — A material of whichone or more constituents exhibit radioactivity.

NOTE — For special purposes such as regulation, this termmay be restricted to radioactive material with an activity or aspecific activity greater than a specified value.

4.4.3 Radiation Damage — Deleterious changesin the physical or chemical properties of a materialas a result of exposure to ionizing radiation.

4.4.4 Radioactive Waste — Unusable radioactivematerials obtained in the processing or handlingof radioactive materials.

lek;kstu djus ds fy, iz;qDr gksrk gSA

4-3-30 4-3-30 4-3-30 4-3-30 4-3-30 LFkwy fu;U=k.k (f'kfeax ;k iPpj yxkuk) μ nh?kZvk;ke dh vkSj yEch voèkh esa folfjr lfØ;rk ds vuqxeuesa lqèkkj ds fy, LFkwy fu;euA

4-3-31 4-3-31 4-3-31 4-3-31 4-3-31 iPpj (f'ke) vax μ fj,DVj esa nh?kZ vofèk dhlfØ;rk vkSj ÝyDl ?kURo forj.k ds izHkkoksa ds izfrdkj gsrqiz;qDr ,d fu;U=k.k vaxA

4-3-32 4-3-32 4-3-32 4-3-32 4-3-32 vkikr fLFkr esa cUn djuk (LØSe) μ gkfudkjdifjfLFkfr dks jksdus ;k de djus ds fy, fj,DVj dks rRdkycan dj nsukA

4-3-33 4-3-33 4-3-33 4-3-33 4-3-33 vkikr fLFkfr eas cUn djus ds fy, NM+ μ vko';drkiM+us ij rqjUr dk;Z djus okyk ,d lqj{kk vaxA

4-3-34 4-3-34 4-3-34 4-3-34 4-3-34 lqj{kk vax μ ,d fu;U=k.k vax] tks vdsys ;k vkSjksads lkFk feydj vkikr fLFkfr esa fj,DVj dks cUn djus dsmís'; ls vkjf{kr ½.kkRed lfØ;rk iznku djrk gSA

4-3-35 4-3-35 4-3-35 4-3-35 4-3-35 fj,DVj lqj{kk Ý;wt μ ,d vUrfuZfgr ;qfDr tksfj,DVj esa vR;fèkd rki ;k ÝyDl ls vuqfØ;k djus vkSjfØ;k dh xfr dks lqjf{kr Lrj rd de dj nsus ds fy, cukbZxbZ gSA ;qfDr esa bldh dk;Ziz.kkyh dh lqxerk ds fy, mQtkZlaxzfgr Hkh gks ldrh gS ;k ugha HkhA

4-3-36 4-3-36 4-3-36 4-3-36 4-3-36 {kj.k (ifjj{k.k) μ ,d ifjj{kd esa gksdj fofdj.kksadk ckgj fudy tkuk] fo'ks"kdj] ifjj{kd esa fNnzksa ;k njkjksaesa gksdjA

4-3-37 4-3-37 4-3-37 4-3-37 4-3-37 jsfM;ks lfØ; lanw"k.k μ jsfM;ks lfØ; inkFkZ dk ,slsinkFkks± esa ;k txgksa ij ifj{ksi.k] tgka ;g vokafNr gksA

4-3-384-3-384-3-384-3-384-3-38 vlanw"k.k xq.kd μ jsfM;ks lfØ; inkFkZ ds lanw"k.k dkizkjfEHkd lkUnz.k vkSj lanw"k.k jfgr djus dh izfØ;k dsik'pkr~ izkIr vfUre lkUnz.k dk vuqikrA (;g in fdlhfufnZ"V U;wDykbM ds lUnHkZ esa ;k lEiw.kZ ekiuh; jsfM;kslfØ;rk ds lUnHkZ esa iz;qDr gks ldrk gSA)

4-4 j[k4-4 j[k4-4 j[k4-4 j[k4-4 j[k&j[k koj[k koj[k koj[k koj[k ko

4-4-1 4-4-1 4-4-1 4-4-1 4-4-1 fdj.ku μ fofdj.k ls izHkkfor djukA

4-4-2 4-4-2 4-4-2 4-4-2 4-4-2 jsfM;kslfØ; inkFkZ μ dksbZ inkFkZ ftlds ,d ;kvfèkd vo;o jsfM;ks&lfØ;rk n'kkZrs gksaA

uksV μ fo'ks"k mís';ksa] tSls fu;U=k.k ds fy, ;g in ml jsfM;kslfØ;inkFkZ rd lhfer gS ftldh lfØ;rk ;k fof'k"V lfØ;rk ,dfufnZ"V eku ls vfèkd gksA

4-4-3 4-4-3 4-4-3 4-4-3 4-4-3 fofdj.k gkfu μ vk;uhdkjd fofdj.kksa ds izHkkO; dsiQyLo:i fdlh inkFkZ ds HkkSfrd o jklk;fud xq.kèkeks± esa?kkrd ifjorZuA

4-4-4 4-4-4 4-4-4 4-4-4 4-4-4 jsfM;kslfØ; vif'k"V μ jsfM;kslfØ; inkFkks± ds lalkèku;k O;ogkj djus esa izkIr vuqi;ksxh jsfM;kslfØ; inkFkZA

Page 31: Electrotechnical Vocabulary Nuclear Power Plants

26

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

4.4.5 After-Heat

a) For a shut-down reactor the heat resulting fromresidual radioactivity and fission.

b) For reactor fuel or reactor components afterremoval from the reactor, the heat resultingfrom residues radioactivity.

4.4.6 Hot — An expression commonly used to mean‘highly radioactive’.

4.4.7 Fuel Burn-Out (Reactor Technology) — Inreactor technology, severe local damage of a fuelelement, due to failure of the coolant to dissipate allthe heat produced in the element.

4.4.8 Slug Burst — Occurrence of a leakage in thecladding.

4.4.9 Loading — Introduction of the nuclear fuel intothe reactor.

4.4.10 Fuel Charging Machine — Apparatus forintroducing the fuel into the reactor.

4.4.11 Fuel Discharging Machine — Apparatus forextracting the fuel from a reactor.

4.4.12 Cask — A shielded container used to store ortransport radioactive material.

4.4.13 Fuel Cooling Installation — A large containeror cell, usually filled with water, in which spent nuclearfuel is set aside until its radioactivity has decreased toa desired level.

4.4.14 Fuel Reprocessing — The processing of nuclearfuel, after its use in a reactor, to remove fissionproducts and recover fissile and fertile material.

4.4.15 Filter — Absorbing matter through whichradioactive material is passed to remove the absorbableconstitutents.

4.4.16 Cladding (Process) — The process of providinga material with a cladding.

4.4.17 Canning (Process) — The process of providinga material with a can.

4-4-5 4-4-5 4-4-5 4-4-5 4-4-5 mÙkj&mQ"ek

d) cUn fd, x, fj,DVj ds fy,] vof'k"VjsfM;kslfØ;rk vkSj fo[k.Mu ls mRiUu mQ"ekA

[k) fj,DVj ds b±èku ;k vU; ?kVdksa dks fj,DVj esa lsckgj fudkyus ds i'pkr~ muesa vof'k"V jsfM;kslfØ;rk ds dkj.k mRiUu gq, mQ"ekA

4-4-6 4-4-6 4-4-6 4-4-6 4-4-6 xeZ (gkWV) μ ,d in tks lkekU;r% ^vR;fèkdjsfM;kslfØ;* gksus ds vFkZ esa iz;qDr gksrk gSA

4-4-7 4-4-7 4-4-7 4-4-7 4-4-7 b±èku dk ty tkuk (cuZ&vkmV) μ fj,DVj rduhdhesa] b±èku izHkkx esa mRiUu mQ"ek dks 'khyrd }kjk folfjrdjus esa vliQy gksus ds dkj.k b±èku vo;o dh xaHkhjLFkkuh; gkfuA

4-4-8 4-4-8 4-4-8 4-4-8 4-4-8 Lyx izLiQksV μ vkoj.k (DySfMax) esa ls {kj.k gksukA

4-4-9 4-4-9 4-4-9 4-4-9 4-4-9 ?kku Mkyuk μ fj,DVj esa ukfHkdh; b±èku HkjukA

4-4-10 4-4-10 4-4-10 4-4-10 4-4-10 b±èku (èkku) Mkyus dh e'khu μ fj,DVj esa b±èkuHkjus ds fy, midj.kA

4-4-11 4-4-11 4-4-11 4-4-11 4-4-11 b±èku foltZu dh e'khu μ fj,DVj esa ls b±èku dksckgj fudkyus d fy, midj.kA

4-4-12 4-4-12 4-4-12 4-4-12 4-4-12 dkLd μ jsfM;kslfØ; inkFkks± ds Hk.Mkjk ;k ykus&ystkus ds fy, iz;qDr ,d ifjjf{kr ik=kA

4-4-13 4-4-13 4-4-13 4-4-13 4-4-13 b±èku 'khryu la;U=k μ ,d cM+k ik=k ;k lSy]lkekU;r% ikuh ls Hkjk gqvk] ftlesa ukfHkdh; b±èku dsvof'k"V dks bldh jsfM;ks lfØ;rk okafNr Lrj rd de gkstkus rd j[kk tkrk gSA

4-4-14 4-4-14 4-4-14 4-4-14 4-4-14 b±èku dk iqu% laLdj.k μ fj,DVj esa ,d ckj iz;qDrgks pqds b±èku esa ls fo[k.Mu mRikn i`Fkd~ djus vkSj fonY;o moZj inkFkZ iqu% izkIr djus ds fy, izfØ;kA

4-4-15 4-4-15 4-4-15 4-4-15 4-4-15 fuL;and (fiQYVj) μ vo'kks"kd inkFkZ] ftleasgksdj jsfM;ks lfØ; inkFkZ dks xqtkjk tkrk gS] ftlls vo'kksf"krgksus ;ksX; ?kVd i`Fkd~ gks tk,aA

4-4-16 4-4-16 4-4-16 4-4-16 4-4-16 vkoj.k (DySfMax) (izfØ;k) μ fdlh inkFkZ dks<dus ;k can djus ds fy, vkoj.k iznku djukA

4-4-17 4-4-17 4-4-17 4-4-17 4-4-17 fMCck canh (dSfuax) (izfØ;k) μ fdlh inkFkZ dksik=k esa can djus dh izfØ;kA

Page 32: Electrotechnical Vocabulary Nuclear Power Plants

27

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

IS No. Title1885 (Part 1) : Electrotechnical vocabulary: Part 11961 Fundamental definitions(Part 2 : 1961 Electrotechnical vocabulary: Part 2

Machines and transformers(Part 3/Sec 1) : Electrotechnical vocabulary: Part 3 1965 Acoustics, Section 1 Physical acoustics(Part 4/Sec 1) : Electrotechnical vocabulary: Part 41965 Electron tubes and values, Section 1

Receiving valves(Part 4/Sec 2) : Electrotechnical vocabulary: Part 41965 Electron tubes and valves, Section 2

X-ray tubes(Part 5) : 1965 Electrotechnical vocabulary: Part 5

Quartz crystals(Part 6) : 1965 Electrotechnical vocabulary: Part 6

Printed circuits(Part 7) : 1965 Electrotechnical vocabulary: Part 7

Semiconductor devices(Part 8) : 1965 Electrotechnical vocabulary: Part 8 Secondary cells and batteries(Part 9) : 1966 Electrotechnical vocabulary: Part 9

Electrical relays(Part 10) : 1993 Electrotechnical vocabulary: Part 10

Power system protection (firstrevision)

(Part 11) : 1966 Electrotechnical vocabulary: Part 11Electrical measurements

(Part 12) : 1966 Electrotechnical vocabulary: Part 12Ferromagnetic oxide materials

(Part 13/Sec 2) : Electrotechnical vocabulary: Part 13 1967 Telecommunication transmission

lines and waveguides, Section 2Microwave transmission lines andwaveguides

vkbZ,l la- 'kh"kZd1885 (Hkkx 1)% fo|qr rduhdh ikfjHkkf"kd 'kCnkoyh% Hkkx 11961 ekSfyd ifjHkk"kk,a

(Hkkx 2) % fo|qr rduhdh ikfjHkkf"kd 'kCnkoyh% Hkkx 21961 e'khusa vkSj VªkUliQkeZj

(Hkkx 3/ fo|qr rduhdh ikfjHkkf"kd 'kCnkoyh% Hkkx 3[k.M 1) % 1965 èofu&foKku] [k.M 1 HkkSfrd èofu&foKku

(Hkkx 4/ fo|qr rduhdh ikfjHkkf"kd 'kCnkoyh% Hkkx 4[k.M 1) % 1965 bysDVªkWu ufydk,a vkSj okYo] [k.M 1

vfHkxzkgh okYo

(Hkkx 4/ fo|qr rduhdh ikfjHkkf"kd 'kCnkoyh% Hkkx 4[k.M 2) % 1965 ,ysDVªkWu ufydk,a vkSj okYo] [k.M 2

X–fdj.k ufydk,a(Hkkx 5) % fo|qr rduhdh ikfjHkkf"kd 'kCnkoyh% Hkkx 51965 DokVZ~t (LiQfVd) fØLVy

(Hkkx 6) % fo|qr rduhdh ikfjHkkf"kd 'kCnkoyh% Hkkx 61965 eqfnzr ifjiFk (fizUVsM l£dV)(Hkkx 7) % fo|qr rduhdh ikfjHkkf"kd 'kCnkoyh% Hkkx 71965 v¼Zpkyd ;qfDr;ka

(Hkkx 8) % fo|qr rduhdh ikfjHkkf"kd 'kCnkoyh% Hkkx 81965 lapk;d lSy vkSj cSVfj;ka

(Hkkx 9) % fo|qr rduhdh ikfjHkkf"kd 'kCnkoyh% Hkkx 9

1966 oS|qr fjys

(Hkkx 10) % fo|qr rduhdh ikfjHkkf"kd 'kCnkoyh% Hkkx 101993 ikoj ra=k laj{k.k (igyk iqujh{k.k)

(Hkkx 11) % fo|qr rduhdh ikfjHkkf"kd 'kCnkoyh% Hkkx 111966 oS|qr ekisa(Hkkx 12) % fo|qr rduhdh ikfjHkkf"kd 'kCnkoyh% Hkkx 121966 yksg pqEcdh; vkWDlkbM inkFkZ

(Hkkx 13/ fo|qr rduhdh ikfjHkkf"kd 'kCnkoyh %[k.M 2) % 1967 Hkkx 13 nwj lapkj lapj.k ykbusa vkSj rjax

iFk fuèkkZfj=k] [k.M 2 lw{e rjax lapkjykbusa vkSj rjax iFk fuèkkZfj=k

APPENDIX A(Foreword)

PARTS OF IS 1885 ELECTROTECHNICAL VOCABULARY

vuqcaèk dvuqcaèk dvuqcaèk dvuqcaèk dvuqcaèk d(çkDdFku)

vkbZ,l 1885 fo|qr&rduhdh ikfjHkkf"kd 'kCnkoyh ds HkkxvkbZ,l 1885 fo|qr&rduhdh ikfjHkkf"kd 'kCnkoyh ds HkkxvkbZ,l 1885 fo|qr&rduhdh ikfjHkkf"kd 'kCnkoyh ds HkkxvkbZ,l 1885 fo|qr&rduhdh ikfjHkkf"kd 'kCnkoyh ds HkkxvkbZ,l 1885 fo|qr&rduhdh ikfjHkkf"kd 'kCnkoyh ds Hkkx

Page 33: Electrotechnical Vocabulary Nuclear Power Plants

28

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

A

Absorber

Neutron (material) 4.3.16Neutron (object) 4.3.17

Absorption 2.2.41

coefficient 2.2.43control 4.3.15Exponential 2.2.42Neutron 2.2.35Resonance 2.2.36

Abundance

Isotopic 2.1.9ratio 2.1.10

Activation 2.2.17

cross-section 2.3.4Active

core 4.2.11deposit 2.1.19

Activity

curve 2.2.22of a quantity of a radioactive nuclide 2.2.18Specific 2.2.20Unit-volume 2.2.21After-heat 4.4.5

Age 3.1.24

Albedo irt Neutron 2.2.29

Alpha

emitter 2.1.18particle 2.1.21radiation 2.1.22ratio 2.3.24

A

vo'kks"kd

U;wVªkWu (inkFkZ) 4-3-16U;wVªkWu (oLrq) 4-3-17

vo'kks"k.k 2-2-41

xq.kkad 2-2-43

fu;U=k.k 4-3-15

pj?kkrkadh 2-2-42

U;wVªkWu 2-2-35vuquknh 2-2-36

ckgqY;

leLFkkfudh; 2-1-9vuqikr 2-1-10

lfØ;.k 2-2-17

ifj{ks=k 2-3-4

lfØ;

ØksM 4-2-11fu{ksi 2-2-19

lfØ;rk

oØ 2-2-22jsfM;kslfØ; U;wDykbM dh dqN ek=kk dh 2-2-18fof'k"V 2-2-20bdkbZ&vk;ru 2-2-21mÙkj&mQ"ek 4-4-5

vk;q 3-1-24

,YchMks (U;wVªkWu ds fy,) 2-2-29

,sYiQk

mRltZd 2-1-18d.k 2-1-21fofdj.k 2-1-22vuqikr 2-3-24

vuqØef.kdkvuqØef.kdkvuqØef.kdkvuqØef.kdkvuqØef.kdkuksV μ ;g vuqØef.kdk vkbZ,l 1275 % 1958* ds vuqlkj cukbZ xbZ gSA vuqØe la[;k,a [kaM la[;k,a gSaA

Irt = osQ lanHkZ esa

INDEXNOTE — This index has been prepared in accordance with IS 1275 : 1938*. Index numbers are clause numbers.

Irt = in relation to

* o.kZØekuqlkj vuqØef.kdk cukus ds fu;eA * Rules for making alphabetical indexes.

Page 34: Electrotechnical Vocabulary Nuclear Power Plants

29

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

Area

Diffusion 3.1.5Migration 3.1.7Slowing-down 3.1.3

Assembly

Exponential 3.2.17Fuel 4.2.6

Atom 2.1.1

Atomic number 2.1.6

Attenuation 2.2.37

coefficient 2.2.39factor 2.2.40Geometric 2.2.38

Average logarithmic energy decrement 3.1.10

B

Barn 2.3.2

Beam 3.1.17

hole 4.2.17Beta

disintegration 2.1.26emitter 2.1.18particle 2.1.24ray spectrum 2.1.27

Binding energy 2.2.52

Biological shield 4.2.24

Blanket 4.2.15

Boundary extrapolated 4.2.25

Breeder reactor 4.1.14

Breeding 3.2.35

gain 3.2.37ratio 3.2.36

Bremsstrahlung 2.1.34

Buckling

Geometric 3.2.19Material 3.2.18

Build-up factor 2.2.28

burnable poison 4.3.19

Burn-up 3.2.27

fraction 3.2.28Burst, slug 4.4.8

{ks=k

folj.k 3-1-5vfHkxeu 3-1-7eanu 3-1-3

laxzg (lap;)

pj?kkrkadh 3-2-17b±èku 4-2-6

ijek.kq (,Ve) 2-1-1

ijek.kq la[;k 2-1-6

{kh.ku 2-2-37

xq.kkad 2-2-39xq.kd 2-2-40T;kferh; 2-2-38

vkSlr y?kqx.kdh; mQtkZ mi{k; 3-1-10

B

ckuZ 2-3-2

fdj.kiqat 3-1-17

fNnz 4-2-17

chVk

fo?kVu 2-1-26mRlZtd 2-1-18d.k 2-1-24fdj.k LisDVªe 2-1-27

cUèku mQtkZ 2-2-52

tSfod ifjj{kd 4-2-24

vkoj.k 4-2-15

ckáxf.kr lhek js[kk 4-2-25

iztud fj,DVj 4-1-14

iztuu 3-2-35

ykHk 3-2-37vuqikr 3-2-36

csszeLVªkyqax 2-1-34

vkdqapu

T;kferh; 3-2-19inkFkZ 3-2-18

fcYM&vi xq.kd 2-2-28

ngu;ksX; fo"k 4-3-19

cuZ&vi (ngu) 3-2-27

izHkkt 3-2-28

izLiQksV] Lyx 4-4-8

Page 35: Electrotechnical Vocabulary Nuclear Power Plants

30

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

C

dSMfe;e laLrCèk 2-1-48

izHkkoh 2-1-49

fMCckcanh (izfØ;k) 4-4-17

izxzg.k 2-2-31

ifj{ks=k 2-3-20xkek fofdj.k 2-1-32fofdj.kdkjh 2-2-32vuquknh 2-2-34

lSy (fj,DVj) 4-2-13

Üka[kyk fo[k.Mu yfCèk 2-2-61

pSuy 4-2-9

fdj.ku 4-2-16pktZ (?kku) 4-2-10

ifjiFk&fn~orh;d 'khryd 4-2-20

ifjlapkjh fj,DVj 4-1-8

vkoj.k ;k ik=k 4-2-7

vkoj.k (izfØ;k) 4-4-16

LFkwy fu;U=k.k 4-3-30

vax] vo;o 4-3-27

xq.kkad

vo'kks"k.k 2-2-43{kh.ku 2-2-39folj.k U;wVªkWu ÝyDl ?kuRo ds fy, 2-2-27lfØ;rk rki 3-2-26

dyk lEc¼ izdh.kZu 2-2-45

ifj{ks=k 2-3-10

la;qDr U;wfDy;l 2-1-4

foU;klh fu;U=k.k 4-3-11

fu;rkad (fLFkjkad)

fo?kVu 2-2-10izHkkoh xq.ku 3-2-22vuUr xq.ku 3-2-21

vo;oh Hkkx 4-2

vojksèkd 4-2-21

jsfM;kslfØ; lanw"k.k 4-3-37

fu;U=k.k

vo'kks"k.k 4-3-15pkyd 4-3-26vax 4-3-24

C

Cadmium cut-off 2.1.48

Effective 2.1.49Canning (process) 4.4.17

Capture 2.2.31

cross-section 2.3.20gamma radiation 2.1.32Radiative 2.2.32Resonance 2.2.34

Cell (reactor) 4.2.13

Chain fission yield 2.2.61

Channel 4.2.9

Irradiation 4.2.16Charge 4.2.10

circuit secondary coolant 4.2.20

Circulating reactor 4.1.8

Cladding or can 4.2.7

Cladding (process) 4.4.16

Coarse control 4.3.30

element: member 4.3.27Coefficient

Absorption 2.2.43Attenuation 2.2.39diffusion for neutron flux density 2.2.27Reactivity temperature 3.2.26

Coherent scattering 2.2.45

cross-section 2.3.10Compound nucleus 2.1.4

Configuration control 4.3.11

Constant

Disintegration 2.2.10Effective multiplication 3.2.22Infinite multiplication 3.2.21

Constituent parts 4.2

Containment 4.2.21Contamination Radioactive 4.3.37Control

Absorption 4.3.15drive 4.3.26element 4.3.24

Page 36: Electrotechnical Vocabulary Nuclear Power Plants

31

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

fu;U=k.k (tkjh)

lw{e 4-3-28rjy fo"k 4-3-21b±èku 4-3-12vo;o 4-3-24eand 4-3-13fj,DVj 4-3-10ijkorZd 4-3-22NM+ 4-3-25LisDVªeh foLFkkiuk 4-3-14

:<+ ÝyDl ?kuRo 3-1-23

vfHklkjh fØ;k 3-2-2

:ikUrj.kvuqikr 3-2-34fj,DVj rduhdh ds lUnHkZ esa 3-2-33

ifjorZdU;wVªkWu 4-2-27fj,DVj 4-1-13

ØksM+ 4-2-12

lfØ; 4-2-11

xf.kr ijkl 4-3-5

ØkfUrd 3-2-5

foyfEcr 3-2-7lehdj.k 3-2-9ijh{k.k 3-2-8nzO;eku 3-2-10rRdky 3-2-6lkbt (eki) 3-2-11

ifj{ks=k 2-3-1

lfØ;.k 2-3-4izxzg.k 2-3-20dyk lEc¼ izdh.kZu 2-3-10foHksnh 2-3-5MkWYij&vkSlr 2-3-6izHkkoh rkih; 2-3-8izR;kLFk izdh.kZu 2-3-12fo[k.Mu 2-3-23lewg fu"dklu 2-3-18lewg vUrj.k izdh.kZu 2-3-17dykvlEc¼ izdh.kZu 2-3-11vizR;kLFk izdh.kZu 2-3-13LFkwy 2-3-3lw{e 2-3-1

Control (Contd)

Fine 4.3.28Fluid poison 4.3.21Fuel 4.3.12member 4.3.24Moderator 4.3.13Reactor 4.3.10Reflector 4.3.22rod 4.3.25spectral shift 4.3.14

Conventional flux density 3.1.23

Convergent reaction 3.2.2

Conversion

ratio 3.2.34irt reactor technology 3.2.33

Converter

Neutron 4.2.27reactor 4.1.13

Core 4.2.12

Active 4.2.11Counter range 4.3.5

Critical 3.2.5

Delayed 3.2.7equation 3.2.9experiment 3.2.8mass 3.2.10Prompt 3.2.6size 3.2.11

Cross-Section 2.3.1

Activation 2.3.4Capture 2.3.20Coherent scattering 2.3.10Differential 2.3.5Doppler-averaged 2.3.6Effective thermal 2.3.8Elastic scattering 2.3.12Fission 2.3.23Group removal 2.3.18Group transfer scattering 2.3.17Incoherent scattering 2.3.11Inelastic scattering 2.3.13Macroscopic 2.3.3Microscopic 2.3.1

Page 37: Electrotechnical Vocabulary Nuclear Power Plants

32

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

ifj{ks=k (tkjh)

U;wVªkWu vo'kks"k.k 2-3-22

vizR;kLFk (vU;ksU; fØ;k ds lUnHkZ esa) 2-3-19

fofdj.kkRed izxzg.k 2-3-21izdh.kZu 2-3-9

rkih; 2-3-7vizR;kLFk izdh.kZu 2-3-15lEiw.kZ 2-3-25vfHkxeu 2-3-16

lap;h fo[k.Mu yfCèk 2-2-60

D;wjh (ci) 2-2-19

lfØ;rk oØ 2-2-22

laLrCèk (dV&vkWiQ)

dSMfe;e 2-1-48izHkkoh dSMfe;e 2-1-49

U;wVªkWu pØ 3-1-15

Dfofdj.k gkfu 4-4-3

{k;

pj?kkrkadh 2-2-24mRikn 2-1-14jsfM;ks,sfDVo 2-2-16

vlanw"k.k xq.kd 4-3-38

vi{k;&vkSlr y?kqx.kdh; mQtkZ 3-1-10

nzO;eku {kfr 2-2-51

foyfEcr

ØkfUrd 3-2-7U;wVªkWu 2-1-43izHkkt 2-2-64izHkkoh 2-2-65

?kuRo

:<+ ÝyDl 3-1-23U;wVªkWu (la[;k) 3-1-19d.kh; èkkjk 3-1-18fofdj.k mQtkZ ÝyDl (I) 3-1-222 200 ehVj izfr lSd.M ÝyDl 3-1-23

vo{k;hr inkFkZ 4-2-3

vo{k; 3-2-31

fu{ksi lfØ; 2-1-19

foHksnh ifj{ksi 2-3-5

Cross-Section (Contd)

Neutron absorption 2.3.22Nonelastic irt interaction 2.3.19Radiative capture 2.3.21Scattering 2.3.9Thermal 2.3.7 inelastic scattering 2.3.15Total 2.3.25Transport 2.3.16

Cumulative fission yield 2.2.60

Curie (Ci) 2.2.19

Curve Activity 2.2.22

Cut-Off

Cadmium 2.1.48Effective cadmium 2.1.49

Cycle Neutron 3.1.15

D

Damage Radiation 4.4.3

Decay

Exponential of a quantity 2.2.24product 2.1.14Radioactive 2.2.16

Decontamination factor 4.3.38

Decrement Average logarithmic energy 3.1.10

Defect Mass 2.2.51

Delayed

critical 3.2.7neutrons 2.1.43 fraction 2.2.64 Effective 2.2.65

Density

conventional flux 3.1.23Neutron (number) 3.1.19Particle current 3.1.18Radiant energy flux (I) 3.1.222 200 metre per second flux 3.1.23

Depleted material 4.2.3

depletion 3.2.31

Deposit Active 2.1.19

Differential cross-section 2.3.5

Page 38: Electrotechnical Vocabulary Nuclear Power Plants

33

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

folj.k

{ks=k 3-1-5U;wVªkWu ÝyDl ?kuRo ds fy, xq.kkad 2-2-27nwjh 3-1-6u;wVªkWu 2-2-26

izR;{k fo[k.Mu yfCèk 2-2-59

vykHkdkjh ?kVd 3-1-25

fo?kVu

chVk 2-1-26fLFkjkad 2-2-10mQtkZ 2-2-12ukfHkdh; 2-2-9nj 2-2-11

Øe fopyu 2-2-1

vilj.k 3-2-3

MkWIyj&vkSlr ifj{ksi 2-3-6

fu;U=kd pkyd 4-3-26

E

ferO;;h U;wVªkWu 3-1-16

izHkko

izdk'k fn|qr 2-2-7foxuj 2-2-2

izHkkoh

dSMfe;e laLrCèk (dV&vkWiQ) 2-1-49foyfEcr U;wVªkWu izHkkt 2-2-65xq.ku fu;rkad 3-2-22rkih; ifj{ksi 2-3-8

izR;kLFk izdh.kZu 2-2-47

ifj{ks=k 2-3-12

fo|qr mRiknd fj,DVj 4-1-16

bysDVªkWu 2-1-23

ikWthVªkWu ;qXe 2-1-28

vo;o

LFkwy fu;U=kd 4-3-27fu;U=k.k 4-3-24lw{e fu;U=kd 4-3-29f'ke (iPpj) 4-3-31

vkikrdkyhu can 4-3-32

NM+ 4-3-33

Diffusion

area 3.1.5coefficient for neutron flux density 2.2.27length 3.1.6Neutron 2.2.26

Direct fission yield 2.2.59

Disadvantage factor 3.1.25

Disintegration

Beta 2.1.26constant 2.2.10energy 2.2.12nuclear 2.2.9rate 2.2.11

disordering 2.2.1

Divergence 3.2.3

Doppler-averaged cross-section 2.3.6

Drive Control 4.3.26

E

Economy neutron 3.1.16

Effect

Photoelectric 2.2.7Wigner 2.2.2

Effective

cadmium cut-off 2.1.49delayed neutron fraction 2.2.65multiplication constant 3.2.22thermal cross-section 2.3.8

Elastic scattering 2.2.47

cross-section 2.3.12Electricity production reactor 4.1.16

Electron 2.1.23

positron pair 2.1.28

Element

Coarse control 4.3.27Control 4.3.24Fine control; Regulating 4.3.29Shim 4.3.31

Emergency shut-down 4.3.32

rod 4.3.33

Page 39: Electrotechnical Vocabulary Nuclear Power Plants

34

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

mRltZd

,sYiQk] chVk] xkek 2-1-18

mQtkZ

cUèku 2-2-52fo?kVu 2-2-12ukfHkdh; 3-2-1

le`¼

inkFkZ 4-2-2fj,DVj 4-1-5

le`f¼ 3-2-32

,sfidSMfe;e U;wVªkWu 2-1-47

vYirkih;

U;wVªkWu 2-1-52,fjDVj 4-1-11

ØkfUrd lehdj.k 3-2-9

bZVk ?kVd 3-2-23

izR;k'kk&iqujko`Ùk fo[k.Mu 3-2-14

izk;ksfxd (ijh{k.k)

ØkfUrd 3-2-8pj?kkrkadh 3-2-16fj,DVj 4-1-18

pj?kkrkadh

vo'kks"k.k 2-2-42laxzg 3-2-17{k; (ek=kk dk) 2-2-24ijh{k.k 3-2-16

ls lacaèkh vfHkO;fDr;ka

U;wVªkWu lEcUèkh in 3-1

ijek.kq HkV~Vh (fj,DVj) lEcUèkh in 3-2

ckáxIifur lhek 4-2-25

F

xq.kd (?kVd)

{kh.ku 2-2-40fcYM&vi 2-2-28vlanw"k.k 4-3-38vykHkdkjh 3-1-25bZVk 3-2-23xq.ku 3-2-20

Emitter

Alpha, Beta, Gamma 2.1.18Energy

Binding 2.2.52Disintegration 2.2.12Nuclear 3.2.1

Enriched

material 4.2.2reactor 4.1.5

Enrichment 3.2.32

Epicadmium neutrons 2.1.47

Epithermal

neutrons 2.1.52reactor 4.1.11

Equation Critical 3.2.9

Eta factor 3.2.23

Expectation Iterated fission 3.2.14

Experimental

Critical 3.2.8Exponential 3.2.16reactor 4.1.18

Exponential

absorption 2.2.42Assembly 3.2.17decay (of a quantity) 2.2.24experiment 3.2.16

Expressions relating to

Neutrons 3.1Reactor 3.2

Extrapolated boundary 4.2.25

F

Factor

Attenuation 2.2.40Build-up 2.2.28Decontamination 4.3.38Disadvantage 3.1.25Eta 3.2.23Multiplication 3.2.20

Page 40: Electrotechnical Vocabulary Nuclear Power Plants

35

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

rhoz

fo[k.Mu ?kVd 3-2-24U;wVªkWu 2-1-44fj,DVj 4-1-9

moZj 2-2-53

fuLiand (fiQYVj) 4-4-15

lw{e fu;U=k.k 4-3-28

vO;o] vax 4-3-29

fonY; 2-2-66

inkFkZ mRiknd fj,DVj 4-1-19

fo[k.Mu

ifj{ks=k 2-3-23izR;k'kk] iqujko`Ùk 3-2-14rhoz 2-2-62[k.M 2-1-15U;wVªkWu 2-1-41ukfHkdh; 2-2-55mRikn 2-1-16LisdVªe 2-2-57rkih; 2-2-67yfCèk 2-2-58 Üka[kyk 2-2-61lap;h 2-2-60izR;{k] izkFkfed 2-2-59

fo[k.Muh; 2-2-54

èkkjkizokg 3-1-20

rjyfo"k fu;U=k.k 4-3-21

rjyhÑr fj,DVj 4-1-7

ÝyDl

:<+ 3-1-23?kuRo 3-1-20d.k 3-3-21fofdj.k mQtkZ 3-1-222 200 ehVj izfr lsd.M 3-1-23

izHkkt

cuZ&vi (ngu) 3-2-28foyfEc U;wVªkWu 2-2-64izHkkoh foyfEcr U;wVªkWu 2-2-65rkRdkfyd U;wVªkWu 2-2-63

b±èku

lap; 4-2-6

Fast

fission factor 3.2.24neutrons 2.1.44reactor 4.1.9

Fertile 2.2.53

Filter 4.4.15

Fine control 4.3.28

element, member 4.3.29

Fissile 2.2.66

material production reactor 4.1.19

Fission

Cross-section 2.3.23expectation; Iterated 3.2.14Fast 2.2.62Fragments 2.1.15Neutrons 2.1.41Nuclear 2.2.55products 2.1.16spectrum 2.2.57Thermal 2.2.67Yield 2.2.58 Chain 2.2.61 Cumulative 2.2.60Direct; Independent; Primary 2.2.59

Fissionable 2.2.54

Fluence 3.1.20

Fluid poison control 4.3.21

Fluidized reactor 4.1.7

Flux

Conventional 3.1.23density 3.1.20Particle 3.1.21Radiant energy 3.1.222 200 metre per second 3.1.23

Fraction

Burn-up 3.2.28delayed neutron 2.2.64Effective delayed neutron 2.2.65Prompt neutron 2.2.63

Fuel

assembly 4.2.6

Page 41: Electrotechnical Vocabulary Nuclear Power Plants

36

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

b±èku (tkjh)

ty tkuk (cuZ&vkmV) 4-4-7?kku Mkyus dh e'khu 4-4-10'khryu la;U=k 4-4-13foltZu dh e'khu 4-4-11fdj.ku Lrj 3-2-29iqulalkèku 4-4-14

egÙo iQyu 3-2-13

Ý;wt fj,DVj lqj{kk 4-3-35

G

xkek

mRltZd 2-1-18fofdj.k 2-1-31

lkekU; 2-1

mRiknu dky 3-1-14

T;kferh;

{kh.ku 2-2-38vkdqapu 3-2-19

lewg

U;wVªkWu mQtkZ 3-1-12fu"dklu ifj{ks=k 2-3-18vUrj.k izdh.kZu ifj{ks=k 2-3-17

H

v¼Z&vk;q jsfM;ks,sfDVfoVh 2-2-23

mQ"ek

mÙkj 4-4-5mRiknd fj,DVj 4-1-16

fo"kekax fj,DVj 4-1-3

mPp&ÝyDl vuqlaèkku fj,DVj 4-1-17

fdj.k iqat fNnz 4-2-17

lekax fj,DVj 4-1-2

xeZ (gkWV) 4-4-6

I

egRo

iQyu 3-2-13lkis{k 3-2-12

dyk vlEcn~èk izdh.kZu 2-2-46

ifj{ks=k 2-3-11

LorU=k fo[k.Mu yfCèk 2-2-59

Fuel (Contd)

burn-out (Reactor technology) 4.4.7charging machine 4.4.10cooling installation 4.4.13discharging machine 4.4.11irradiation level 3.2.29reprocessing 4.4.14

Function Importance 3.2.13

Fuse Reactor safety 4.3.35

G

Gamma

emitter 2.1.18radiation 2.1.31

General 2.1

Generation time 3.1.14

Geometric

attenuation 2.2.38buckling 3.2.19

Group

Neutron energy 3.1.12removal cross-section 2.3.18transfer scattering cross-section 2.3.17

H

Half-life Radioactivity 2.2.23

Heat

After 4.4.5production reactor 4.1.16

Heterogeneous reactor 4.1.3

High-flux research reactor 4.1.17

Hole Beam 4.2.17

Homogeneous reactor 4.1.3

Hot 4.4.6

I

Importance

function 3.2.13Relative 3.2.12

Incoherent scattering 2.2.46

Cross-section 2.3.11

Independent fission yield 2.2.59

Page 42: Electrotechnical Vocabulary Nuclear Power Plants

37

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

vizR;kLFk izdh.kZu 2-2-48

ifj{ks=k 2-3-13

vuUr xq.ku fu;rkad 3-2-21

la;U=k&b±èku 'khryd 4-4-13

vU;ksU; fØ;k,¡ 2-2

eè;orhZ

U;wVªkWu 2-1-45fj,DVj] LisDVªe fj,DVj 4-1-10

vk;u 2-1-2

vk;uu 2-2-3

jsf[k, ;k fof'k"V (,d fcUnq ij) 2-2-6izkFkfed 2-2-5lEiw.kZ 2-2-4

fdj.ku 4-4-1

okfguh 4-2-16

leLFkkfud mRiknd fj,DVj 4-1-19

leLFkkfud 2-1-8

leLFkkfud ckgqY; 2-1-9

iqjuko`Ùk izR;k'kk 3-2-14

L

{kj.k

fj,DVj fl¼kUr 2-2-30ifjj{k.k 4-3-36

nwjh (yEckbZ)

folj.k 2-1-6vfHkxeu 3-1-8eanu 3-1-4fu"ps"Vk 3-1-9

Lrj

b±èkj fdj.ku 3-2-29vuqukn 2-2-33

?kku Mkyuk (yksfMax) 4-4-9

U;wuÝyDl vuqlaèkku fj,DVj 4-1-17

M

e'khu

b±èku (?kku) Mkyus dh 4-4-10b±èku foltZu dh 4-4-11

LFkwy ifj{ks=k 2-3-3

j[k&j[kko 4-4

Inelastic scattering 2.2.48

cross-section 2.3.13Infinite multiplication constant 3.2.21

Installation Fuel cooling 4.4.13

Interactions 2.2

Intermediate

neutrons 2.1.45reactor; spectrum reactor 4.1.10

Ion 2.1.2

Ionization 2.2.3

Linear or specific (at a point) 2.2.6primary 2.2.5Total 2.2.4

Irradiation 4.4.1

Channel 4.2.16Isotope-production reactor 4.1.19

Isotopes 2.1.8

Isotopic abundance 2.1.9

Iterated fission expectation 3.2.14

L

Leakage

(reactor theory) 2.2.30(shielding) 4.3.36

Length

Diffusion 2.1.6Migration 3.1.8Slowing-down 3.1.4

Lethargy 3.1.9

Level

Fuel irradiation 3.2.29Resonance 2.2.33

Loading 4.4.9

Low-flux research reactor 4.1.17

M

Machine

Charging fuel 4.4.10Discharging fuel 4.4.11

macroscopic cross-section 2.3.3

Maintenance 4.4

Page 43: Electrotechnical Vocabulary Nuclear Power Plants

38

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

nzO;eku

ØkfUrd 3-2-10{kfr 2-2-51la[;k 2-1-5

inkFkZ

vkdqapu 3-2-18vo{k;fr 4-2-3le`¼ 4-2-2U;wVªkWu vo'kks"kd 4-3-16

ekè;

eqDr iFk 3-1-1vk;q 2-2-25

vax (lnL;)

LFkwy fu;U=kd 4-3-27fu;U=kd 4-3-24lw{e fu;U=kd] lek;kstd 4-3-29lqj{kk 4-3-34f'ke 4-3-31

2 200 ehVj izfr lsd.M ÝyDl ?kuRo 3-1-23

lw{e ifj{ks=k 2-3-1

vfHkxeu

{ks=k 3-1-7nwjh 3-1-8

eanu 2-2-49

eand 4-2-18

fu;U=k.k 4-3-13

cgq lewg izfr:i 3-1-13

xq.ku (miØkfUrd) 3-2-15

?kVd 3-2-20

N

izkÑfrd

jsfM;ks lfØ;rk 2-2-14;wjsfu;e fj,DVj 4-1-4

U;wVªkWu 2-1-39

'kks"kd (inkFkZ) 4-3-16(oLrq) 4-3-17

vo'kks"k.k 2-2-35ifj{ks=k 2-3-22,yCkhMks 2-3-29ifjorZd 4-2-27

Mass

critical 3.2.10defect 2.2.51number 2.1.5

Material

buckling 3.2.18depleted 4.2.3Enriched 4.2.2Neutron absorber 4.3.16

Mean

free path 3.1.1life 2.2.25

Member

Coarse control 4.3.27Control 4.3.24fine control; Regulating 4.3.29Safety 4.3.34Shim 4.3.31

2 200 metres per second flux density 3.1.23

Microscopic Cross-section 2.3.1

Migration

area 3.1.7length 3.1.8

Moderation 2.2.49

Moderator 4.2.18

control 4.3.13Multigroup model 3.1.13

Multiplication (subcritical) 3.2.15

factor 3.2.20

N

Natural

radioactivity 2.2.14

uranium reactor 4.1.4

Neutron 2.1.39

absorber (material) 4.3.16

(object) 4.3.17

absorption 2.2.35

cross-section 2.3.22

albedo 2.2.29

convertor 4.2.27

Page 44: Electrotechnical Vocabulary Nuclear Power Plants

39

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

U;wVªkWu (tkjh)

èkkjk ?kuRo 3-1-18pØ 3-1-15folj.k 2-2-26mQtkZ lewg 3-1-12vkfèkD; 2-1-40ÝyDl ?kuRo] folj.k xq.kkad 2-2-27izHkkt izHkkoh] foyfEcr 2-2-65xq.ku 2-2-56(la[;k) ?kuRo 3-1-19foyfEcr 2-1-43,fidSMfe;e 2-1-47vYirkih 2-1-52lEcfUèkr in 3-1rhozxkeh 2-1-44fo[k.Mu 2-1-41eè;orhZ 2-1-45rRdkfyd 2-1-42vuquknh 2-1-46eanxkeh 2-1-51lcdSMfe;e 2-1-50rkih; 2-1-53

vizR;kLFk ifj{ksi (vU;ksU; fØ;k ds lUnHkZ esa) 2-3-19

ukfHkdh;

Üka[kyk fØ;k 3-2-2fo?kVu 2-2-9mQtkZ 3-2-1fo[k.Vu 2-2-55b±èku 4-2-1lay;u fØ;k 2-2-50fj,DVj 4-1-1

U;wfDyvkWu 2-1-37

U;wfDy;l (ukfHkd) 2-1-3

la;qDr 2-1-4

U;wDykbM 2-1-7

la[;k

ijek.kq 2-1-6nzO;eku 2-1-5

O

oLrq U;wVªkWu 'kks"kd 4-3-17

izpkyu ijkl 4-3-6

izpkyu fj,DVj 4-3

Neutrons (Contd)

current density 3.1.18cycle 3.1.15diffusion 2.2.26economy 3.1.16energy group 3.1.12excess 2.1.40flux density, Diffusion coefficient 2.2.27fraction, Effective delayed 2.2.65multiplication 2.2.56(number) density 3.1.19Delayed 2.1.43epicadmium 2.1.47Epithermal 2.1.52Expressions relating to 3.1Fast 2.1.44Fission 2.1.41Intermediate 2.1.45Prompt 2.1.42Resonance 2.1.46slow 2.1.51Subcadmium 2.1.50Thermal 2.1.53

Nonelastic cross-section irt interaction 2.3.19

Nuclear

Chain reaction 3.2.2disintegration 2.2.9energy 3.2.1fission 2.2.55fuel 4.2.1fusion reaction 2.2.50reactor 4.1.1

Nucleon 2.1.37

Nucleus 2.1.3

Compound 2.1.4Nuclide 2.1.7

Number

Atomic 2.1.6Mass 2.1.5

O

Object Neutron absorber 4.3.17

Operating range 4.3.6

Operation Reactor 4.3

Page 45: Electrotechnical Vocabulary Nuclear Power Plants

40

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

P

;qXe&bysDVªkWu&ikWthVªkWu 2-1-28

tud] jsfM;ks,sfDVo iwoZxkeh (jsfM;ks U;wDykbM dk) 2-1-13

d.k

,sYiQk 2-1-21chVk 2-1-24èkkjk ?kuRo 3-1-18èkkjk izokg 3-1-20ÝyDl ?kuRo 3-1-21vo;oh Hkkx 4-2

iFk

ekè; ;qDr 3-1-1vfHkxeu ekè; ;qDr 3-1-2

izdk'k fo|qr izHkko 2-2-7

izdk'k ,ysDVªkWu 2-1-35

iQksVkWu 2-1-29

izdk'k U;wVªkWu 2-1-36

izdk'k ukfHkdh; vfHkfØ;k 2-2-8iwat 4-1-1Iyx 4-2-8IywVksfu;e fj,DVj 4-1-6

fo"k 4-3-18

ngu'khy 4-3-19

ikWthVªkWu 2-1-25

bysDVªkWu ;qXe 2-1-28

'kfDr

ijkl 4-3-7fj,DVj 4-1-16eanu 3-1-11fof'k"V 3-2-30

izkFkfed

fo[k.Mu yfCèk 2-2-59vk;uu 2-2-5

izfØ;k

fMCckcanh 4-4-17vkoj.k 4-4-16

mRikn

{k;t 2-1-14fo[k.Mfud 2-1-16

mRiknd fj,DVj 4-1-19

P

Pair Electron-position 2.1.28

Parent; radioactive precursor (of a radionuclide) 2.1.13

Particle

Alpha 2.1.21Beta 2.1.24Current density 3.1.18fluence 3.1.20flux density 3.1.21

Parts Constituent 4.2

Path

Mean free 3.1.1Transport mean free 3.1.2

Photoelectric effect 2.2.7

Photoelectron 2.1.35

Photon 2.1.29

Photoneutron 2.1.36

Photonuclear reaction 2.2.8Pile 4.1.1Plug 4.2.8Plutonium reactor 4.1.6

Poison 4.3.18

Burnable 4.3.19Positron 2.1.25

electron pair 2.1.28

Power

range 4.3.7reactor 4.1.16Slowing-down 3.1.11specific 3.2.30

Primary

fission yield 2.2.59ionization 2.2.5

Process

Canning 4.4.17Cladding 4.4.16

Product

Decay 2.1.14Fission 2.1.16

Production reactor 4.1.19

Page 46: Electrotechnical Vocabulary Nuclear Power Plants

41

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

rRdkfyd

ØkfUrd 3-2-6izHkkt 2-2-63xkek fofdj.k 2-1-33U;wVªkWu 2-1-42

uksnu fj,DVj 4-1-16

izksVkWu 2-1-38

vkfn iz:i fj,DVj 4-1-8

Liafnr fj,DVj 4-1-17

R

fofdj.k mQtkZ ÝyDl ?kURo (I) 3-1-22

fofdj.k 2-1-20

,sYiQk 2-1-22izxzg.k xkek 2-1-32gkfu 4-4-3rRdkfyd xkek 2-1-33lzksr 4-3-1X- 2-1-30

fofdj.kdkjh

izxzg.k 2-2-32ifj{ks=k 2-3-21vizR;kLFk izdh.kZu ifj{ks=k 2-3-14

jsfM;ks lfØ;

lanw"k.k 4-3-37{k; 2-2-16v¼Zvk;q 2-2-23inkFkZ 4-4-2lzksr 4-3-2vif'k"V 4-4-4

jsfM;ks lfØ;rk 2-2-13

izsfjr 2-2-15izkÑfrd 2-2-14

jsfM;k rRo 2-1-17

jsfM;k leLFkkfud 2-1-12

jsfM;k U;wDykbM 2-1-11

ijkl

xf.kr 4-3-5izpkyu 4-3-6le; fu;rkad 4-3-8'kfDr 4-3-7lzksr 4-3-4vkorZ dky 4-3-8

Prompt

critical 3.2.6fraction 2.2.63gamma radiation 2.1.33neutron 2.1.42

Propulsion reactor 4.1.16

Proton 2.1.38

Prototype reactor 4.1.18

Pulsed reactor 4.1.17

R

Radiant energy flux density (I) 3.1.22

Radiation 2.1.20

Alpha 2.1.22Capture gamma 2.1.32damage 4.4.3Prompt gamma 2.1.33source 4.3.1X - 2.1.30

Radiative

capture 2.2.32 cross-section 2.3.21inelastic scattering cross-section 2.3.14

Radioactive

contamination 4.3.37decay 2.2.16half life 2.2.23material 4.4.2source 4.3.2waste 4.4.4

Radioactivity 2.2.13Induced 2.2.15Natural 2.2.14

Radioelement 2.1.17Radioisotope 2.1.12Radionuclide 2.1.11Range

counter 4.3.5Operating 4.3.6Period 4.3.8Power 4.3.7Source 4.3.4Time constant 4.3.8

Page 47: Electrotechnical Vocabulary Nuclear Power Plants

42

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

fo?kVu nj 2-2-11

vuqikr

ckgqY; 2-1-10iztuu 3-2-36:ikUrj.k 3-2-34

fØ;k

vfHklkjh] ukfHkdh; Üka[kyk 3-2-2ufHkdh; lay;u 2-2-50izdk'k ukfHkdh; 2-2-8

lfØ;rk 3-2-25

rki xq.kkad 3-2-26

fj,DVj

iztud 4-1-14ifjladkjh 4-1-8fu;a=k.k 4-3-10ifjorZd 4-1-13fo|qr mRiknd 4-1-16le`¼ 4-1-5vYirkih 4-1-11izk;ksfxd] iz;ksx 4-1-18lEcUèkh in 3-2rhoz 4-1-9fonY; inkFkZ mRiknu 4-1-19rjyhÑr 4-1-7mQ"ek mRiknd 4-1-16fo"kekax 4-1-3mPp ÝyDl vuqlaèkku 4-1-17lekax 4-1-2eè;orhZ] eè;orhZ LisDVªe 4-1-10fdj.ku] leLFkkfud mRiknu 4-1-19tkyd 4-2-14U;wu&ÝyDl vuqlaèkku 4-1-17izkÑfrd ;wjsfu;e 4-1-4ukfHkdh; 4-1-1izpkyu 4-3vkorZdky 3-2-4iqat 4-1-1IywVksfu;e 4-1-6'kfDr 4-1-16mRiknu 4-1-19uksnu 4-1-16vkfnizk:i 4-1-18Liafnr 4-1-17fu;eu 4-3-9vuqlaèkku 4-1-17

Rate Disintegration 2.2.11

Ratio

Abundance 2.1.10Breeding 3.2.36conversion 3.2.34

Reaction

Convergent; Nuclear chain 3.2.2Nuclear fusion 2.2.50Photonuclear 2.2.8

Reactivity 3.2.25

temperature coefficient 3.2.26Reactor

Breeder 4.1.14circulating 4.1.8control 4.3.10Converter 4.1.13electricity production 4.1.16enriched 4.1.5Epithermal 4.1.11Experiment; Experimental 4.1.18expressions relating to 3.2Fast 4.1.9Fissile material production 4.1.19Fluidized 4.1.7Heat-production 4.1.16Heterogeneous 4.1.3High flux research 4.1.17Homogeneous 4.1.2Intermediate; intermediate spectrum 4.1.10Irradiation; Isotope production 4.1.19lattice 4.2.14Low-flux research 4.1.17Natural uranium 4.1.4Nuclear 4.1.1operation 4.3period 3.2.4pile 4.1.1Plutonium 4.1.6Power 4.1.16Production 4.1.19Propulsion 4.1.16Prototype 4.1.18Pulsed 4.1.17regulation 4.3.9Research 4.1.17

Page 48: Electrotechnical Vocabulary Nuclear Power Plants

43

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

fj,DVj (tkjh)

lqj{kk Ý;wt 4-3-35LisDVªeh foLFkkiu 4-1-15ijh{k.k 4-1-17rkih; 4-1-12le; fu;rkad 3-2-4izf'k{k.k 4-1-20ik=k 4-2-26'kwU; 'kfDr 4-1-17 vkSj 4-1-18

ijkorZd 4-2-19

fu;a=k.k 4-3-22

fu;a=kd

lw{e fu;a=kd vax 4-3-29

Lo;a fu;a=k.k 4-3-23

lkis{k egRo 3-2-12

vuqukn

vo'ys"k.k 2-2-36izxzg.k 2-2-34Lrj 2-2-33U;wVªkWu 2-1-46

NM+

fu;a=kd 4-3-25vkikrdky esa can djus dks 4-3-33

S

lqj{kk

vo;o 4-3-34fj,DVj

Ý;wt 4-3-35

izdh.kZu 2-2-44

dyk lac¼ 2-2-45ifj{ks=k 2-3-9izR;kLFk 2-2-47dyk vlac¼ 2-2-46vizR;kLFk_ fofdj.kkRed vçR;kLFk] m"eh; vçR;kLFk 2-2-48

LØSe 4-3-32

lhycan lzksr 4-3-3

f}rh;d 'khryu ifjiFk 4-2-20

Lo;a fu;a=k.k 4-3-23

ifjj{kd 4-2-22

tSfod 4-2-24

rkih; 4-2-23

Reactor (contd.)

safety fuse 4.3.35spectral shift 4.1.15Testing 4.1.17Thermal 4.1.12time constant 3.2.4Training 4.1.20vessel 4.2.26Zero power 4.1.17 and 4.1.18

Reflector 4.2.19

control 4.3.22Regulating

element; member 4.3.29Regulation, Self 4.3.23

Relative importance 3.2.12

Resonance

absorption 2.2.36capture 2.2.34level 2.2.33neutrons 2.1.46

Rod

Control 4.3.25Emergency shut-down 4.3.33

SSafety

member 4.3.34Reactorfuse 4.3.35

Scattering 2.2.44

Coherent 2.2.45Cross-section 2.3.9Elastic 2.2.47Incoherent 2.2.46Inelastic; In radiactive inelastic; In thermal inelastic2.2.48

Scram 4.3.32

Sealed source 4.3.3

Secondary coolant circuit 4.2.20

Self regulation 4.3.23

Shield 4.2.22

Biological 4.2.24Thermal 4.2.23

Page 49: Electrotechnical Vocabulary Nuclear Power Plants

44

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

f'ke

vo;o] vax 4-3-31

f'kfeax&LFkwy fu;a=k.k 4-3-30

can djuk

vkikr fLFkfr esa 4-3-32NM+ 4-3-33

ØkfUrd lkbt 3-2-11

eanxkeh U;wVªkWu 2-1-51

eanu

{ks=k 3-1-3nwjh 3-1-4'kfDr 3-1-11

Lyx 4-2-5

izLiQksV 4-4-8

lzksr

fofdj.k 4-3-1jsfM;ks lfØ; 4-3-2ijkl 4-3-4lhycan 4-3-3

fof'k"V

lfØ;rk 2-2-20cu&vi (ngu) 3-2-29vk;uu (,d fcUn ij) 2-2-6

LisDVªeh

fj,DVj 4-1-15foLFkkiu fu;a=k.k 4-3-14

LisDVªe

chVk fdj.k 2-1-27fo[k.Mu 2-2-57

lcdSMfe;e U;wVªkWu 2-1-50

T

ijh{k.k fj,DVj 4-1-17

rkih;

ifj{ks=k 2-3-7vizR;kLFk izdh.kZu ifj{ks=k 2-3-15U;wVªkWu 2-1-53

le; (dky)

fu;rkad ijkl 4-3-8mRiknu 3-1-14

Shim

element; member 4.3.31Shimming Coarse control 4.3.30

Shutdown

Emergency 4.3.32 rod 4.3.33

Size, Critical 3.2.11

Slow neutrons 2.1.51

Slowing-down

area 3.1.3length 3.1.4power 3.1.11

Slug 4.2.5

burst 4.4.8Source

Radiation 4.3.1Radioactive 4.3.2range 4.3.4Sealed 4.3.3

specific

active 2.2.20burn-up 3.2.29ionization (at a point) 2.2.6

Spectral

reactor 4.1.15shift control 4.3.14

Spectrum

Beta-ray 2.1.27Fission 2.2.57

Subcadmium neutrons 2.1.50

T

Testing reactor 4.1.17

Thermal

cross-section 2.3.7Inelastic scattering cross-section 2.3.15neutrons 2.1.58

Time

constant range 4.3.8Generation 3.1.14

Page 50: Electrotechnical Vocabulary Nuclear Power Plants

45

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

lEiw.kZ

ifj{ks=k 2-3-25vk;uhdj.k 2-2-4

vfHkxeu

ifj{ks=k 2-3-16ekè; eqDr iFk 3-1-2

U

bdkbZ vk;ru lfØ;rk 2-2-21

V

ik=k (fj,DVj dk) 4-2-26

W

oSLVdkWV ifj{ks=k 2-3-8

foxuj izHkko 2-2-2

X

ftukWu izHkko 4-3-20

X–fofdj.k 2-1-30

Y

yfCèk

Üka[kyk fo[k.Mu 2-2-61lap;h 2-2-60izR;{k] Lora=k ;k izkFkfed 2-2-59fo[k.Mu 2-2-58

Z

'kwU; 'kfDr fj,DVj 4-1-17 o 4-1-18

Total

cross-section 2.3.25ionization 2.2.4

Transport

cross-section 2.3.16mean free path 3.1.2

U

Unit-volume activity 2.2.21

V

Vessel reactor 4.2.26

W

Westcott cross-section 2.3.8

Wigner effect 2.2.2

X

Xenon effect 4.3.20

X-radiation 2.1.30

Y

Yield

Chain fission 2.2.61Cumulative 2.2.60Direct; Independent; Primary 2.2.59Fission 2.2.58

Z

Zero-power reactor 4.1.17 and 4.1.18

Page 51: Electrotechnical Vocabulary Nuclear Power Plants

46

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

vUrjkZ"Vªh; ek=kd iz.kkyh (vUrjkZ"Vªh; ek=kd iz.kkyh (vUrjkZ"Vªh; ek=kd iz.kkyh (vUrjkZ"Vªh; ek=kd iz.kkyh (vUrjkZ"Vªh; ek=kd iz.kkyh (SI ek=kd) ek=kd) ek=kd) ek=kd) ek=kd)

ewy ek=kdewy ek=kdewy ek=kdewy ek=kdewy ek=kd

jkf'kjkf'kjkf'kjkf'kjkf'k ek=kdek=kdek=kdek=kdek=kd ladsrladsrladsrladsrladsr

yEckbZ ehVj eh- (m)nzO;eku fdyksxzke fdxzk- (kg)le; lsd.M ls- (s)fo|qr èkkjk ,fEi;j ,fEi;j (A)mQ"ekxfrd rki dsyfou ds (K)izdkf'kr rhozrk dSUMsyk dS.Msyk (cd)inkFkZ dh ek=kk eksy eksy (mol)

International System of Units (SI Units)Base Units

Quantity Unit SymbolLength metre mMass kilogram kgTime second sElectric current ampere AThermodynamic temperature kelvin KLuminous intgensity candela cdAmount of substance mole mol

laiwjd ek=kdlaiwjd ek=kdlaiwjd ek=kdlaiwjd ek=kdlaiwjd ek=kd

jkf'kjkf'kjkf'kjkf'kjkf'k ek=kdek=kdek=kdek=kdek=kd ladsrladsrladsrladsrladsr

lery dks.k jsfM;u jsfM;u (rad)?ku dks.k LVsjsfM;u LVsjsfM;u (sr)

Supplementary Units

Quantity Unit Symbol

Plane angle radian radSolid angle steradian sr

O;qRiUu ek=kdO;qRiUu ek=kdO;qRiUu ek=kdO;qRiUu ek=kdO;qRiUu ek=kd

jkf'kjkf'kjkf'kjkf'kjkf'k ek=kdek=kdek=kdek=kdek=kd ladsrladsrladsrladsrladsr ifjHkk"kk,aifjHkk"kk,aifjHkk"kk,aifjHkk"kk,aifjHkk"kk,a

cy U;wVu N I N = 1 kg.m/s2

mQtkZ twy J I J = 1 N.m.'kfDr okV W I W = 1 J/sÝyDl oscj Wb I Wb = 1 V.s.ÝyDl ?kuRo Vslyk T I T = 1 Wb/m2

vko`fÙk gVZ~t Hz I Hz = 1c/sfo|qr pkydrk lhesUl S I S = 1 A/Vfo|qr okgu cy oksYV V I V = 1 W/Ankc] izfrcy ikLdy Pa I Pa = 1 N/m2

Page 52: Electrotechnical Vocabulary Nuclear Power Plants

47

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

Derived Units

Quantity Unit Symbol Definition

Force Newton N I N = 1 kg.m/s2

Energy joule J I J = 1 N.m.Power watt W I W = 1 J/sFlux weber Wb I Wb = 1 V.s.Flux density tesla T I T = 1 Wb/m2

Frequency hertz Hz I Hz = 1c/sElectric conductance siemens S I S = 1 A/VElectromotive force volt V I V = 1 W/APressure, stress pascal Pa I Pa = 1 N/m2

Page 53: Electrotechnical Vocabulary Nuclear Power Plants

48

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

APPENDIX B(Foreword)

Electrotechnical Standards Sectional Committee, ETDC 1

Representing Chairman

Heavy Electricals (India) Ltd, Bhopal SHRI T. V. BALAKRISHNAN

MembersSHRI S. K. BHATIA (Alternate to

Shri T. V. Balakrishnan)

Directorate General of Posts & Telegraphs (Department of ADDITIONAL CHIEF ENGINEER

Communications) DIRECTOR OF TELEGRAPHS (L) (Alternate)

Indian Electrical Manufacturers’ Association, Calcutta SHRI V. W. CHEMBURKAR

SHRI Y. P. KAUSHIK (Alternate)

Electronics and Radar Development Establishment (Ministry of DIRECTOR

Defence), Bangalore

Primary Cells and Batteries Sectional Committee, ETDC 10, ISI; and SHRI G. D. JOGLEKAR

Secondary Cells and Batteries Sectional Committee, ETDC 11, ISI

National Test House, Calcutta SHRI S. N. MUKERJI

General Nomenclature & Symbols Subcommittee, ETDC 1:3, ISI SHRI R. C. NARAYANAN

Institution of Engineers (India), Calcutta SHRI A. R. NARAYANA RAO

Cental Water & Power Commission (Power Wing) SHRI H. V. NARAYANA RAO

SHRI S. N. VINZE (Alternate)

Transformers Sectional Committee, ETDC 16, ISI SHRI U. K. PATWARDHAN

Central Electro-Chemical Research Institute (CSIR), Karaikudi SHRI R. RADHAKRISHNAN

SHRI H. N. VENKOBARAO (Alternate)

Department of Communications (Wireless Planning and Co-ordination SHRI V. V. RAO

Wing)

Inspection Wing, Directorate General of Supplies & Disposals (Department SHRI U. S. SAVAKOOR

of Supply, Technical Development & Materials Planning) SHRI A. S. NAGARKATTI (Alternate)

Switchgear and Controlgear Sectional Committee, ETDC 17, ISI; and SHRI A. P. SEETHAPATHY

Power Frequency and Voltages Subcommittee, ETDC 1 : 1, ISI

National Physical Laboratory (CSIR), New Delhi SHRI R. K. TANDAN

Electronic Equipment Sectional Committee, ETDC 24, ISI SHRI S. THIRUVENKATACHARI

Insulators and Accessories Sectional Committee, ETDC 3, ISI SHRI V. VENUGOPALAN

Rotating Machinery Sectional Committee, ETDC 15, ISI SHRI J. S. ZAVERI

Director General, ISI (Ex-officio Member) SHRI Y. S. VENKATESWARAN,Director (Elec Tech) (Secretary)

General Nomenclature and Symbols Subcommittee, ETDC 1 : 3

Convener

Delhi College of Engineering, Delhi PROF R. C. NARAYANAN

Members

Siemens Engineering & Manufacturing Co of India Ltd, Bombay SHRI V. S. BHATIA

SHRI S. K. JAIN (Alternate)

Central Water & Power Commission (Power Wing) SHRI H. R. KULKARNI

SHRI V. R. NARASIMHAN (Alternate)

Voltas Limited, Bombay SHRI P. H. NARIMAN

Indian Institute of Technology, New Delhi SHRI S. RAMABHADRAN

Department of Communications (Posts & Telegraphs Board) SHRI K. C. RAMADOSS

Central Electronics Engineering Research Institute, Pilani (Rajasthan) DR D. L. SUBRAHMANYAM

National Physical Laboratory (CSIR), New Delhi SHRI R. K. TANDAN

Page 54: Electrotechnical Vocabulary Nuclear Power Plants

49

vkbZ,l@IS 1885 (Hkkx@Part 14) : 1967

vuqcaèk [kvuqcaèk [kvuqcaèk [kvuqcaèk [kvuqcaèk [k(çkDdFku)

fo|qr rduhdh ekud fo"k; lfefr] bZVhMhlh 1

laxBu ps;jeSu

gSoh bysfDVªDyl (bafM;k) fyfeVsM] Hkksiky Jh Vh- oh- ckyÑ".ku

izfrfuèkku

Jh ,l- osQ- HkkfV;k(Vh- oh- ckyÑ".ku ds fodYih)

Mkd ,oa rkj egkfuns'kky; (nwj lapkj foHkkx) vij eq[; vfHk;arkfuns'kd VsfyxzkiQ (,y) (fodYih)

bafM;u bysfDVªdy eSU;wiSQDpjlZ ,lksfl,'ku] dydÙkk Jh oh- MCY;w- psjecqjdjJh okbZ- ih- dkSf'kd (fodYih)

bysDVªksfuDl ,oa jkMkj fodkl laLFkku (j{kk ea=kky;)] funs'kdcaxykSj

çkbejh lSYl ,oa cSVªh lsD'kuy dfeVh] bZVhMhlh 10] vkbZ,lvkbZ_ Jh th- Mh- tksxysdj,oa lsds.Mjh lSYl ,oa cSVªh lsD'kuy dfeVh] bZVhMhlh 11]vkbZ,lvkbZ

us'kuy VsLV gkml] dydÙkk Jh ,l- ,u eq[kthZ

tujy uksesuDyspj ,oa flEcy milfefr] bZVhMhlh 1% 3] vkbZ,lvkbZ Jh vkj- lh- ukjk;.ku

bUlVhV~;w'ku vkWiQ bathfu;lZ (bafM;k)] dydÙkk Jh ,- vkj- ukjk;.kuk jko

lsaVªy okVj ,oa ikoj deh'ku (ikoj foax) Jh ,p- oh- ukjk;.kuk jkoJh ,l- ,u- foat (fodYih)

VªkWliQkeZj lsD'kuy dfeVh] bZVhMhlh 16] vkbZ,lvkbZ Jh ;w- osQ- iVoèkZu

dsUæh; fo|qr&jlk;u vuqlaèkku laLFkku (lh,lvkbZvkj)] Jh vkj- jkèkkÑ".kudjkbZoqQMh Jh ,p- ,u- osudksckjko (fodYih)

fMikVZesaV vkWiQ dE;wfuosQ'kul (ok;jysl Iykfuax ,oa dks&vksfMus'ku foax) Jh oh- oh- jko

balisD'ku foax] Mk;jsDVjsV tujy vkWiQ lIykbt ,oa fMLiksty (fMikVZesaV Jh ;w- ,l- lkokoQwjvkWiQ lIykbZ] VsfDudy MsoyiesaV ,oa eVsfj;yl Iykfuax) Jh ,- ,l- ukxjdV~Vh (fodYih)

Lohpxs;j ,oa daVªksyxs;j lsD'kuy dfeVh] bZVhMhlh 17] vkbZ,lvkbZ_ Jh ,- ih- lhFkkisBh,oa ikoj fÚD;w,alh ,oa oksYVst midesVh] bZVhMhlh 1%1] vkbZ,lvkbZ

us'kuy fiQftdy ySoksjsVjh (lh,lvkbZvkj)] ubZ fnYyh Jh vkj- osQ- VaMu

bysDVªksfud miLdj fo"k; lfefr] bZVhMhlh 24] vkbZ,lvkbZ Jh ,l- fFk:osadVkpkjh

jks|u ,oa lgk;dakx fo"k; lfefr] bZVhMhlh 3] vkbZ,lvkbZ Jh oh- os.kqxksikyu

?kw.khZ e'khujh fo"k; lfefr] bZVhMhlh 15] vkbZ,lvkbZ Jh ts- ,l- tkosjh

egkfuns'kd] vkbZ,lvkbZ (insu lnL;) Jh okbZ- ,l- osadkVsloju]funs'kd (fo|qr rduhdh) (lfpo)

tujy uksesDyspj ,Oak flacYl milfefr] bZVhMhlh 1% 3

la;kstd

fnYyh dkWyst vkWiQ bathfu;fjax] fnYyh çks vkj- lh- ukjk;.ku

izfrfuèkku

lhesal bathfu;fjax ,oa eSU;wiSQDpfjax da- vkWiQ bafM;k fy-] eqEcbZ Jh oh- ,l- HkkfV;kJh ,l- osQ- tSu (fodYih)

dsUnzh; ty ,oa ikoj vk;ksx (ikoj foax) Jh ,p- vkj- dqyd.khZJh oh- vkj- flegu (fodYih)

oksTVkt fyfeVsM] eqEcbZ Jh ih- ,p- ukjhe.k

Hkkjrh; çkS|ksfxdh laLFkku] ubZ fnYyh Jh ,l- jkeHkknj.k

nwjlapkj foHkkx (Mkd ,oa rkj cksMZ) Jh osQ- lh- jkeknkSl

dsUæh; bysDVªksfuDl bathfu;fjax vuqlaèkku laLFkku] fiykuh (jktLFkku) MkW Mh- ,y- lqczkefu;e

jk"Vªh; HkkSfrd ç;ksx'kkyk (lh,lvkbZvkj)] ubZ fnYyh Jh vkj- osQ- VaMu

Page 55: Electrotechnical Vocabulary Nuclear Power Plants

Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promoteharmonious development of the activities of standardization, marking and quality certification of goodsand attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any formwithout the prior permission in writing of BIS. This does not preclude the free use, in the course ofimplementing the standard, of necessary details, such as symbols and sizes, type or grade designations.Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewedperiodically; a standard along with amendments is reaffirmed when such review indicates that no changes areneeded; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standardsshould ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of‘BIS Catalogue’ and ‘Standards : Monthly Additions’.

This Indian Standard has been developed from Doc No.: ETD 1.

Amendments Issued Since Publication

Amend No. Date of Issue Text Affected

BUREAU OF INDIAN STANDARDSHeadquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002Telephones : 2323 0131, 2323 3375, 2323 9402 Website: www.bis.org.in

Regional Offices: Telephones

Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg 2323 7617NEW DELHI 110002 2323 3841

Eastern : 1/14 C.I.T. Scheme VII M, V. I. P. Road, Kankurgachi 2337 8499, 2337 8561KOLKATA 700054 2337 8626, 2337 9120

Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160022 60 384360 9285

Southern : C.I.T. Campus, IV Cross Road, CHENNAI 600113 2254 1216, 2254 14422254 2519, 2254 2315

Western : Manakalaya, E9 MIDC, Marol, Andheri (East) 2832 9295, 2832 7858MUMBAI 400093 2832 7891, 2832 7892

Branches: AHMEDABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE. DEHRADUN.FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. LUCKNOW.NAGPUR. PARWANOO. PATNA. PUNE. RAJKOT. THIRUVANANTHAPURAM.VISAKHAPATNAM.

{

{{

{{

Published by BIS, New Delhi