9
Electronic Supplementary Information : Photo-sensitizing thin-film ferroelectric oxides using materials databases and high-throughput calculations Jose J. Plata, 1 Javier Amaya Su´arez, 1 Santiago Cuesta-L´ opez, 2 Antonio M. M´arquez, 1 and Javier Fdez Sanz 1 1 Departamento de Qu´ ımica F´ ısica, Universidad de Sevilla, Seville, Spain * 2 International Center in Advanced Materials and raw materials of Castilla y Leon, Le´ on, Spain (Dated: November 20, 2019) Abstract Conventional solar cell efficiency is usually limited by the Shockley-Queisser limit. This is not the case, however, for ferroelectric materials, which present a spontaneous electric polarization that is responsible for their bulk photovoltaic effect. Even so, most ferroelectric oxides exhibit large band gaps, reducing the amount of solar energy that can be harvested. In this work, a high-throughput approach to tune the electronic properties of thin-film ferroelectric oxides is presented. Materials databases were systematically used to find substrates for the epitaxial growth of KNbO 3 thin-films, using topological and stability filters. Interface models were built and their electronic and optical properties were predicted. Strain and substrate-thin-film band interaction effects were examined in detail, in order to understand the interaction between both materi- als. We found substrates that significantly reduce the KNbO 3 band gap, maintain KNbO 3 polarization, and potentially present the right band alignment, favoring the electron injection in the substrate/electrode. This methodology can be easily applied to other ferroelectric oxides, optimizing their band gaps and accelerating the development of new ferroelectric-based solar cells. * [email protected] S1 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information : Photo-sensitizing thin ...Electronic Supplementary Information : Photo-sensitizing thin- lm ferroelectric oxides using materials databases and

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Electronic Supplementary Information : Photo-sensitizing thin-film

    ferroelectric oxides using materials databases and high-throughput

    calculations

    Jose J. Plata,1 Javier Amaya Suárez,1 Santiago

    Cuesta-López,2 Antonio M. Márquez,1 and Javier Fdez Sanz1

    1Departamento de Qúımica F́ısica, Universidad de Sevilla, Seville, Spain∗2International Center in Advanced Materials and raw materials of Castilla y Leon, León, Spain

    (Dated: November 20, 2019)

    AbstractConventional solar cell efficiency is usually limited by the Shockley-Queisser limit. This is not the case,

    however, for ferroelectric materials, which present a spontaneous electric polarization that is responsible

    for their bulk photovoltaic effect. Even so, most ferroelectric oxides exhibit large band gaps, reducing the

    amount of solar energy that can be harvested. In this work, a high-throughput approach to tune the electronic

    properties of thin-film ferroelectric oxides is presented. Materials databases were systematically used to find

    substrates for the epitaxial growth of KNbO3 thin-films, using topological and stability filters. Interface

    models were built and their electronic and optical properties were predicted. Strain and substrate-thin-film

    band interaction effects were examined in detail, in order to understand the interaction between both materi-

    als. We found substrates that significantly reduce the KNbO3 band gap, maintain KNbO3 polarization, and

    potentially present the right band alignment, favoring the electron injection in the substrate/electrode. This

    methodology can be easily applied to other ferroelectric oxides, optimizing their band gaps and accelerating

    the development of new ferroelectric-based solar cells.

    [email protected]

    S1

    Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2019

    mailto:[email protected]

  • S1. SUPERLATTICE CONSTRUCTION

    In order to build all the surfaces with an area nA, the primitive surface vectors, a and b, aretransformed in the superlattice surface vectors, u and v, using transformation matrices [1],(

    u

    v

    )=

    (i j

    0 m

    )(a

    b

    ), (1)

    where i, j and m are integers, and

    i ·m = n, (2)

    i,m > 0, (3)

    0 ≤ j ≤ m− 1. (4)

    S2. KNBO3 BULK BENCHMARK

    TABLE S1. Lattice parameters a and c, ratio c/a, and indirect (M → Γ) band gap, Eg, for tetragonalKNbO3.

    LDA PBEsol PBE+U HSE06-30 HSE06 exp.

    a 3.945 [2] 3.969 [2] 3.998 - - 3.997 [3]

    c 3.989 [2] 4.058 [2] 4.022 - - 4.063 [3]

    c/a 1.011 [2] 1.022 [2] 1.006 - - 1.017 [3]

    Eg 1.40,1.50 [4, 5] - 1.75 3.23 [2] 2.66 [4] 3.08,3.30 [6, 7]

    S3. KNBO3 BAND STRUCTURE

    −4

    −2

    0

    2

    4

    y

    −4

    −2

    0

    2

    4

    G X M G Z R

    y

    G X M G Z R G X M G Z R G X M G Z R G X M G Z R

    FIG. S1. Band structure for KNbO3 bulk (top panels) and thin-film (bottom panels) applying compressive

    (negative) and tensile (positive) strain.

    S2

  • t2gAAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilFvaz2nDaL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7tlJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmr5OB0JyhnFhCmRb2VsJGVFOGNqCSDcFbfnmVtGpV76Jau7+s1G/yOIpwAqdwDh5cQR3uoAFNYPAIz/AKb07svDjvzseiteDkM8fwB87nD4/3jx4=

    egAAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpF262YTdjVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzfzfz2EyrNE/loJikGMR1KHnFGjZV87OfDab9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTZBTZTgTOC33Mo0pZWM6xK6lksaog3x+7JScW2VAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7YheMsvr5JWveZd1uoPV9XGbRFHCU7hDC7Ag2towD00wQcGHJ7hFd4c6bw4787HonXNKWZO4A+czx8GmY7T

    dxyAAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM1m067d7IbdjRhC/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXJJxp47rfzsrq2vrGZmmrvL2zu7dfOThsa5kqQltEcqm6AdaUM0FbhhlOu4miOA447QTjm6nfeaRKMynuTZZQP8ZDwSJGsLFSOxzkT9lkUKm6NXcGtEy8glShQHNQ+eqHkqQxFYZwrHXPcxPj51gZRjidlPuppgkmYzykPUsFjqn289m1E3RqlRBFUtkSBs3U3xM5jrXO4sB2xtiM9KI3Ff/zeqmJrvyciSQ1VJD5oijlyEg0fR2FTFFieGYJJorZWxEZYYWJsQGVbQje4svLpF2veee1+t1FtXFdxFGCYziBM/DgEhpwC01oAYEHeIZXeHOk8+K8Ox/z1hWnmDmCP3A+fwD9ZY9m

    dxzAAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mtgh6LXjxWsB/QLiWbzbax2WRJsmJd+h+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8IOFMG9f9dgorq2vrG8XN0tb2zu5eef+gpWWqCG0SyaXqBFhTzgRtGmY47SSK4jjgtB2Mrqd++4EqzaS4M+OE+jEeCBYxgo2VWmE/e3ya9MsVt+rOgJaJl5MK5Gj0y1+9UJI0psIQjrXuem5i/Awrwwink1Iv1TTBZIQHtGupwDHVfja7doJOrBKiSCpbwqCZ+nsiw7HW4ziwnTE2Q73oTcX/vG5qoks/YyJJDRVkvihKOTISTV9HIVOUGD62BBPF7K2IDLHCxNiASjYEb/HlZdKqVb2zau32vFK/yuMowhEcwyl4cAF1uIEGNIHAPTzDK7w50nlx3p2PeWvByWcO4Q+czx/+6o9n

    dyzAAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM1m067d7IbdjRBD/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXJJxp47rfzsrq2vrGZmmrvL2zu7dfOThsa5kqQltEcqm6AdaUM0FbhhlOu4miOA447QTjm6nfeaRKMynuTZZQP8ZDwSJGsLFSOxzk2dNkUKm6NXcGtEy8glShQHNQ+eqHkqQxFYZwrHXPcxPj51gZRjidlPuppgkmYzykPUsFjqn289m1E3RqlRBFUtkSBs3U3xM5jrXO4sB2xtiM9KI3Ff/zeqmJrvyciSQ1VJD5oijlyEg0fR2FTFFieGYJJorZWxEZYYWJsQGVbQje4svLpF2veee1+t1FtXFdxFGCYziBM/DgEhpwC01oAYEHeIZXeHOk8+K8Ox/z1hWnmDmCP3A+fwAAf49o

    dz2AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2ls1m2i7dbMLuRqihP8KLB0W8+nu8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LejBP0IzqQvM8ZNVZqhb3s6aE66ZXKbsWdgSwTLydlyFHvlb66YczSCKVhgmrd8dzE+BlVhjOBk2I31ZhQNqID7FgqaYTaz2bnTsipVULSj5UtachM/T2R0UjrcRTYzoiaoV70puJ/Xic1/Ss/4zJJDUo2X9RPBTExmf5OQq6QGTG2hDLF7a2EDamizNiEijYEb/HlZdKsVrzzSvXuoly7zuMowDGcwBl4cAk1uIU6NIDBCJ7hFd6cxHlx3p2PeeuKk88cwR84nz9Kd4+J

    dx2�y2AAAB8nicbVBNS8NAEN34WetX1aOXYBG8WJIo6LHoxWMF+wFpWjabTbt0sxt2J2IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZemHKmwXG+rZXVtfWNzdJWeXtnd2+/cnDY0jJThDaJ5FJ1QqwpZ4I2gQGnnVRRnISctsPR7dRvP1KlmRQPME5pkOCBYDEjGIzkR/38qeedj3vepF+pOjVnBnuZuAWpogKNfuWrG0mSJVQA4Vhr33VSCHKsgBFOJ+VupmmKyQgPqG+owAnVQT47eWKfGiWyY6lMCbBn6u+JHCdaj5PQdCYYhnrRm4r/eX4G8XWQM5FmQAWZL4ozboO0p//bEVOUAB8bgoli5labDLHCBExKZROCu/jyMml5Nfei5t1fVus3RRwldIxO0Bly0RWqozvUQE1EkETP6BW9WWC9WO/Wx7x1xSpmjtAfWJ8/vVCQ5Q==

    dx2�y2AAAB8nicbVBNS8NAEN34WetX1aOXYBG8WJIo6LHoxWMF+wFpWjabTbt0sxt2J2IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZemHKmwXG+rZXVtfWNzdJWeXtnd2+/cnDY0jJThDaJ5FJ1QqwpZ4I2gQGnnVRRnISctsPR7dRvP1KlmRQPME5pkOCBYDEjGIzkR/38qeedj3vepF+pOjVnBnuZuAWpogKNfuWrG0mSJVQA4Vhr33VSCHKsgBFOJ+VupmmKyQgPqG+owAnVQT47eWKfGiWyY6lMCbBn6u+JHCdaj5PQdCYYhnrRm4r/eX4G8XWQM5FmQAWZL4ozboO0p//bEVOUAB8bgoli5labDLHCBExKZROCu/jyMml5Nfei5t1fVus3RRwldIxO0Bly0RWqozvUQE1EkETP6BW9WWC9WO/Wx7x1xSpmjtAfWJ8/vVCQ5Q==

    dz2AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2ls1m2i7dbMLuRqihP8KLB0W8+nu8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LejBP0IzqQvM8ZNVZqhb3s6aE66ZXKbsWdgSwTLydlyFHvlb66YczSCKVhgmrd8dzE+BlVhjOBk2I31ZhQNqID7FgqaYTaz2bnTsipVULSj5UtachM/T2R0UjrcRTYzoiaoV70puJ/Xic1/Ss/4zJJDUo2X9RPBTExmf5OQq6QGTG2hDLF7a2EDamizNiEijYEb/HlZdKsVrzzSvXuoly7zuMowDGcwBl4cAk1uIU6NIDBCJ7hFd6cxHlx3p2PeeuKk88cwR84nz9Kd4+J

    dxzAAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mtgh6LXjxWsB/QLiWbzbax2WRJsmJd+h+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8IOFMG9f9dgorq2vrG8XN0tb2zu5eef+gpWWqCG0SyaXqBFhTzgRtGmY47SSK4jjgtB2Mrqd++4EqzaS4M+OE+jEeCBYxgo2VWmE/e3ya9MsVt+rOgJaJl5MK5Gj0y1+9UJI0psIQjrXuem5i/Awrwwink1Iv1TTBZIQHtGupwDHVfja7doJOrBKiSCpbwqCZ+nsiw7HW4ziwnTE2Q73oTcX/vG5qoks/YyJJDRVkvihKOTISTV9HIVOUGD62BBPF7K2IDLHCxNiASjYEb/HlZdKqVb2zau32vFK/yuMowhEcwyl4cAF1uIEGNIHAPTzDK7w50nlx3p2PeWvByWcO4Q+czx/+6o9n

    dyzAAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM1m067d7IbdjRBD/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXJJxp47rfzsrq2vrGZmmrvL2zu7dfOThsa5kqQltEcqm6AdaUM0FbhhlOu4miOA447QTjm6nfeaRKMynuTZZQP8ZDwSJGsLFSOxzk2dNkUKm6NXcGtEy8glShQHNQ+eqHkqQxFYZwrHXPcxPj51gZRjidlPuppgkmYzykPUsFjqn289m1E3RqlRBFUtkSBs3U3xM5jrXO4sB2xtiM9KI3Ff/zeqmJrvyciSQ1VJD5oijlyEg0fR2FTFFieGYJJorZWxEZYYWJsQGVbQje4svLpF2veee1+t1FtXFdxFGCYziBM/DgEhpwC01oAYEHeIZXeHOk8+K8Ox/z1hWnmDmCP3A+fwAAf49o

    dxyAAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM1m067d7IbdjRhC/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXJJxp47rfzsrq2vrGZmmrvL2zu7dfOThsa5kqQltEcqm6AdaUM0FbhhlOu4miOA447QTjm6nfeaRKMynuTZZQP8ZDwSJGsLFSOxzkT9lkUKm6NXcGtEy8glShQHNQ+eqHkqQxFYZwrHXPcxPj51gZRjidlPuppgkmYzykPUsFjqn289m1E3RqlRBFUtkSBs3U3xM5jrXO4sB2xtiM9KI3Ff/zeqmJrvyciSQ1VJD5oijlyEg0fR2FTFFieGYJJorZWxEZYYWJsQGVbQje4svLpF2veee1+t1FtXFdxFGCYziBM/DgEhpwC01oAYEHeIZXeHOk8+K8Ox/z1hWnmDmCP3A+fwD9ZY9m

    dxyAAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM1m067d7IbdjRhC/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXJJxp47rfzsrq2vrGZmmrvL2zu7dfOThsa5kqQltEcqm6AdaUM0FbhhlOu4miOA447QTjm6nfeaRKMynuTZZQP8ZDwSJGsLFSOxzkT9lkUKm6NXcGtEy8glShQHNQ+eqHkqQxFYZwrHXPcxPj51gZRjidlPuppgkmYzykPUsFjqn289m1E3RqlRBFUtkSBs3U3xM5jrXO4sB2xtiM9KI3Ff/zeqmJrvyciSQ1VJD5oijlyEg0fR2FTFFieGYJJorZWxEZYYWJsQGVbQje4svLpF2veee1+t1FtXFdxFGCYziBM/DgEhpwC01oAYEHeIZXeHOk8+K8Ox/z1hWnmDmCP3A+fwD9ZY9m

    dxzAAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mtgh6LXjxWsB/QLiWbzbax2WRJsmJd+h+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8IOFMG9f9dgorq2vrG8XN0tb2zu5eef+gpWWqCG0SyaXqBFhTzgRtGmY47SSK4jjgtB2Mrqd++4EqzaS4M+OE+jEeCBYxgo2VWmE/e3ya9MsVt+rOgJaJl5MK5Gj0y1+9UJI0psIQjrXuem5i/Awrwwink1Iv1TTBZIQHtGupwDHVfja7doJOrBKiSCpbwqCZ+nsiw7HW4ziwnTE2Q73oTcX/vG5qoks/YyJJDRVkvihKOTISTV9HIVOUGD62BBPF7K2IDLHCxNiASjYEb/HlZdKqVb2zau32vFK/yuMowhEcwyl4cAF1uIEGNIHAPTzDK7w50nlx3p2PeWvByWcO4Q+czx/+6o9n

    dyzAAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM1m067d7IbdjRBD/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXJJxp47rfzsrq2vrGZmmrvL2zu7dfOThsa5kqQltEcqm6AdaUM0FbhhlOu4miOA447QTjm6nfeaRKMynuTZZQP8ZDwSJGsLFSOxzk2dNkUKm6NXcGtEy8glShQHNQ+eqHkqQxFYZwrHXPcxPj51gZRjidlPuppgkmYzykPUsFjqn289m1E3RqlRBFUtkSBs3U3xM5jrXO4sB2xtiM9KI3Ff/zeqmJrvyciSQ1VJD5oijlyEg0fR2FTFFieGYJJorZWxEZYYWJsQGVbQje4svLpF2veee1+t1FtXFdxFGCYziBM/DgEhpwC01oAYEHeIZXeHOk8+K8Ox/z1hWnmDmCP3A+fwAAf49o

    dz2AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2ls1m2i7dbMLuRqihP8KLB0W8+nu8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LejBP0IzqQvM8ZNVZqhb3s6aE66ZXKbsWdgSwTLydlyFHvlb66YczSCKVhgmrd8dzE+BlVhjOBk2I31ZhQNqID7FgqaYTaz2bnTsipVULSj5UtachM/T2R0UjrcRTYzoiaoV70puJ/Xic1/Ss/4zJJDUo2X9RPBTExmf5OQq6QGTG2hDLF7a2EDamizNiEijYEb/HlZdKsVrzzSvXuoly7zuMowDGcwBl4cAk1uIU6NIDBCJ7hFd6cxHlx3p2PeeuKk88cwR84nz9Kd4+J

    dx2�y2AAAB8nicbVBNS8NAEN34WetX1aOXYBG8WJIo6LHoxWMF+wFpWjabTbt0sxt2J2IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZemHKmwXG+rZXVtfWNzdJWeXtnd2+/cnDY0jJThDaJ5FJ1QqwpZ4I2gQGnnVRRnISctsPR7dRvP1KlmRQPME5pkOCBYDEjGIzkR/38qeedj3vepF+pOjVnBnuZuAWpogKNfuWrG0mSJVQA4Vhr33VSCHKsgBFOJ+VupmmKyQgPqG+owAnVQT47eWKfGiWyY6lMCbBn6u+JHCdaj5PQdCYYhnrRm4r/eX4G8XWQM5FmQAWZL4ozboO0p//bEVOUAB8bgoli5labDLHCBExKZROCu/jyMml5Nfei5t1fVus3RRwldIxO0Bly0RWqozvUQE1EkETP6BW9WWC9WO/Wx7x1xSpmjtAfWJ8/vVCQ5Q==

    FIG. S2. Upper panel: schematic representation of Nb 4d orbitals splitting on a cubic (left), tetragonal

    (center) and tensile strained tetragonal perovskite. Bottom panel: partial electron density of the first 5

    unoccupied states at Γ.

    S4. SUBSTRATES LIST

    TABLE S2: Substrate list for KNbO3 including Pearson sym-

    bol, space group number, lattice misfits, supercell generator

    matrices, interface band gap (Eg) in eV and junction type.

    Formula Pearson S.G.# Plane �a �b �α Msubs MKNO Eg junction type

    SnO2 tI12 141 (0 0 1) 0.83 0.83 0.00

    1 00 1

    1 00 1

    0 IIINbO2 tI12 141 (0 0 1) 1.22 1.22 0.00

    1 00 1

    1 00 1

    0 IIIGe cF8 227 (1 1 0) 1.27 -4.52 0.00

    1 00 2

    1 00 3

    0 III

    S3

  • Formula Pearson S.G.# Plane �a �b �α Msubs MKNO Eg junction type

    CdF2 cF12 225 (1 0 0) -3.48 -3.48 0.00

    1 00 1

    1 00 1

    0 IIICaF2 cF12 225 (1 0 0) -3.07 -3.07 0.00

    1 00 1

    1 00 1

    1.85 ItfCu2S cF12 225 (1 0 0) -2.42 -2.42 0.00

    1 00 1

    1 00 1

    0 IIINa2O cF12 225 (1 0 0) -1.68 -1.68 0.00

    1 00 1

    1 00 1

    0 IIIHgF2 cF12 225 (1 0 0) -0.67 -0.67 0.00

    1 00 1

    1 00 1

    0 IIILi2S cF12 225 (1 0 0) 0.54 0.54 0.00

    1 00 1

    1 00 1

    0 IIISrF2 cF12 225 (1 0 0) 3.08 3.08 0.00

    1 00 1

    1 00 1

    2.50 ItfKF cF8 225 (0 0 1) -4.69 -4.69 0.00

    1 00 1

    1 00 1

    1.27 ItfMgSe cF8 225 (0 0 1) -3.16 -3.16 0.00

    1 00 1

    1 00 1

    1.67 IItfLiBr cF8 225 (0 0 1) -3.12 -3.12 0.00

    1 00 1

    1 00 1

    1.81 IItfBaO cF8 225 (0 0 1) -1.33 -1.33 0.00

    1 00 1

    1 00 1

    1.24 IItfAgCl cF8 225 (0 0 1) -1.20 -1.20 0.00

    1 00 1

    1 00 1

    1.61 ItfGeSe cF8 225 (0 0 1) -0.44 -0.44 0.00

    1 00 1

    1 00 1

    0.71 IsubTlF cF8 225 (0 0 1) -0.17 -0.17 0.00

    1 00 1

    1 00 1

    1.89 ItfNaCl cF8 225 (0 0 1) 0.02 0.02 0.00

    1 00 1

    1 00 1

    1.83 ItfKH cF8 225 (0 0 1) 0.10 0.10 0.00

    1 00 1

    1 00 1

    1.63 IItf

    S4

  • Formula Pearson S.G.# Plane �a �b �α Msubs MKNO Eg junction type

    CaS cF8 225 (0 0 1) 0.45 0.45 0.00

    1 00 1

    1 00 1

    0.60 IItfRbF cF8 225 (0 0 1) 0.85 0.85 0.00

    1 00 1

    1 00 1

    1.79 ItfYSe cF8 225 (0 0 1) 1.61 1.61 0.00

    1 00 1

    1 00 1

    0 IIISnAs cF8 225 (0 0 1) 2.08 2.08 0.00

    1 00 1

    1 00 1

    0 IIIYAs cF8 225 (0 0 1) 2.56 2.56 0.00

    1 00 1

    1 00 1

    0 IIIAgBr cF8 225 (0 0 1) 2.83 2.83 0.00

    1 00 1

    1 00 1

    1.68 IItfSnS cF8 225 (0 0 1) 2.83 2.83 0.00

    1 00 1

    1 00 1

    0.25 IItfLaS cF8 225 (0 0 1) 3.30 3.30 0.00

    1 00 1

    1 00 1

    0 IIICaSe cF8 225 (0 0 1) 4.81 4.81 0.00

    1 00 1

    1 00 1

    0.17 IItfTlF cF8 225 (1 1 0) -0.16 -0.16 0.00

    1 00 1

    1 00 1

    1.89 ItfRbF cF8 225 (1 1 0) 0.85 -4.92 0.00

    1 00 2

    1 00 3

    2.12 ItfRbF cF8 225 (1 1 0) 0.85 -4.92 0.00

    4 00 1

    3 00 1

    2.12 ItfLiF cF8 225 (1 1 0) 1.48 -4.33 0.00

    4 00 1

    1 00 3

    1.97 ItfYSe cF8 225 (1 1 0) 1.61 -4.20 0.00

    1 00 2

    1 00 3

    0 IIIYSe cF8 225 (1 1 0) 1.61 -4.20 0.00

    1 00 2

    3 00 1

    0 IIISnAs cF8 225 (1 1 0) 2.08 -3.75 0.00

    1 00 2

    3 00 1

    0 III

    S5

  • Formula Pearson S.G.# Plane �a �b �α Msubs MKNO Eg junction type

    YAs cF8 225 (1 1 0) 2.56 -3.31 0.00

    1 00 2

    1 00 3

    0 IIIAgBr cF8 225 (1 1 0) 2.83 -3.05 0.00

    1 00 2

    3 00 1

    1.65 IsubSnS cF8 225 (1 1 0) 2.83 -3.05 0.00

    1 00 2

    3 00 1

    1.07 IItfLaS cF8 225 (1 1 0) 3.30 -2.61 0.00

    1 00 2

    1 00 3

    0 IIIZnS hP4 186 (1 1 0) -4.37 4.66 0.00

    3 00 1

    1 00 2

    1.91 IIsubLaN hP4 186 (1 1 0) 2.71 -1.26 0.00

    1 00 3

    2 00 1

    0.41 IItfBeO hP4 186 (1 1 0) -4.97 0.80 0.00

    3 00 1

    2 00 1

    2.55 IItfZnSe hP4 186 (1 1 0) 0.91 -4.86 0.00

    1 00 2

    3 00 1

    1.65 ItfGaAs hP4 186 (1 1 0) 1.04 -4.73 0.00

    1 00 2

    1 00 3

    0.87 IsubCdS hP4 186 (1 1 0) 4.39 -1.57 0.00

    1 00 2

    3 00 1

    1.35 IIsub

    S6

  • a(null)(null)(null)(null)

    b(null)(null)(null)(null)

    cAAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5ioWXQxjIB8wHJEfY2c8mavb1jd08IR36BjYUitv4kO/+Nm+QKTXww8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu7nfeUKleSwfzDRBP6IjyUPOqLFSkw3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jpp16reVdVt1ir12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Axm+M5w==

    FIG. S3. Top, side and bottom view of interfaces models for the epitaxial growth of KNbO3 thin-films with

    different prototypes: a) anatase, b) diamond, c) zincblende, d) wurtzite and e) fluorite. Colors: K, purple;

    Nb, cyan; O, red; Sn, gray; Ge, tan ; Zn, silver; S, yellow; Ga, orange; As, light green; Ca, white; F, green.

    KNbO3AAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbD3osehEErWA/oF1KNs22oUl2TbJCWfonvHhQxKt/x5v/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKmjRBHaIBGPVDvAmnImacMww2k7VhSLgNNWMLqa+q0nqjSL5IMZx9QXeCBZyAg2Vmrf3AZ35d5ZuVcsuRV3BrRMvIyUIEO9V/zq9iOSCCoN4VjrjufGxk+xMoxwOil0E01jTEZ4QDuWSiyo9tPZvRN0YpU+CiNlSxo0U39PpFhoPRaB7RTYDPWiNxX/8zqJCS/8lMk4MVSS+aIw4chEaPo86jNFieFjSzBRzN6KyBArTIyNqGBD8BZfXibNasXzKt59tVS7zOLIwxEcwyl4cA41uIY6NIAAh2d4hTfn0Xlx3p2PeWvOyWYO4Q+czx95o47tAAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbD3osehEErWA/oF1KNs22oUl2TbJCWfonvHhQxKt/x5v/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKmjRBHaIBGPVDvAmnImacMww2k7VhSLgNNWMLqa+q0nqjSL5IMZx9QXeCBZyAg2Vmrf3AZ35d5ZuVcsuRV3BrRMvIyUIEO9V/zq9iOSCCoN4VjrjufGxk+xMoxwOil0E01jTEZ4QDuWSiyo9tPZvRN0YpU+CiNlSxo0U39PpFhoPRaB7RTYDPWiNxX/8zqJCS/8lMk4MVSS+aIw4chEaPo86jNFieFjSzBRzN6KyBArTIyNqGBD8BZfXibNasXzKt59tVS7zOLIwxEcwyl4cA41uIY6NIAAh2d4hTfn0Xlx3p2PeWvOyWYO4Q+czx95o47tAAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbD3osehEErWA/oF1KNs22oUl2TbJCWfonvHhQxKt/x5v/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKmjRBHaIBGPVDvAmnImacMww2k7VhSLgNNWMLqa+q0nqjSL5IMZx9QXeCBZyAg2Vmrf3AZ35d5ZuVcsuRV3BrRMvIyUIEO9V/zq9iOSCCoN4VjrjufGxk+xMoxwOil0E01jTEZ4QDuWSiyo9tPZvRN0YpU+CiNlSxo0U39PpFhoPRaB7RTYDPWiNxX/8zqJCS/8lMk4MVSS+aIw4chEaPo86jNFieFjSzBRzN6KyBArTIyNqGBD8BZfXibNasXzKt59tVS7zOLIwxEcwyl4cA41uIY6NIAAh2d4hTfn0Xlx3p2PeWvOyWYO4Q+czx95o47tAAAB73icbVBNSwMxEJ2tX7V+VT16CbaCp7JbD3osehEErWA/oF1KNs22oUl2TbJCWfonvHhQxKt/x5v/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKmjRBHaIBGPVDvAmnImacMww2k7VhSLgNNWMLqa+q0nqjSL5IMZx9QXeCBZyAg2Vmrf3AZ35d5ZuVcsuRV3BrRMvIyUIEO9V/zq9iOSCCoN4VjrjufGxk+xMoxwOil0E01jTEZ4QDuWSiyo9tPZvRN0YpU+CiNlSxo0U39PpFhoPRaB7RTYDPWiNxX/8zqJCS/8lMk4MVSS+aIw4chEaPo86jNFieFjSzBRzN6KyBArTIyNqGBD8BZfXibNasXzKt59tVS7zOLIwxEcwyl4cA41uIY6NIAAh2d4hTfn0Xlx3p2PeWvOyWYO4Q+czx95o47t

    Ener

    gy(null)(null)(null)(null)

    Substrate(null)(null)(null)(null)

    Eg(null)(null)(null)(null)

    EF(null)(null)(null)(null)

    0

    10

    20

    30

    40

    50

    −10 −5 0 5 10

    DOS

    (sta

    tes/

    eV)

    E−EF (eV)

    TotalKNbO3NaCl

    −10

    −8

    −6

    −4

    −2

    20 10 8 6 4 3

    Ener

    gy (e

    V)

    Distance (Å)

    KNbO3 NaCl

    a(null)(null)(null)(null)

    b(null)(null)(null)(null)

    cAAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5ioWXQxjIB8wHJEfY2c8mavb1jd08IR36BjYUitv4kO/+Nm+QKTXww8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu7nfeUKleSwfzDRBP6IjyUPOqLFSkw3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jpp16reVdVt1ir12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Axm+M5w==

    FIG. S4. Density of states, DOS, for the KNbO3/NaCl interface. Total DOS is shown with solid black line

    and KNbO3 and NaCl DOS projections are coloured on orange and blue areas respectively.

    S7

  • S5. Itf JUNCTIONS

    1

    2

    3

    2 3 4 5 6

    Eg

    inte

    rfase

    (eV)

    Eg sustrato (eV)

    FIG. S5. Correlation between KNbO3/substrate band gaps, EKNO/subsg , and substrate band gaps, Esubsg , for

    Itf heterojuntions.

    S6. KNBO3 RECONSTRUCTION

    DOS

    (u.a

    .)

    E-EF (eV)

    TotalKNOCdS

    -4 -2 0 2 4

    FIG. S6. a) Density of states, DOS, for the reconstructed KNbO3/CdS interface. b) Side and c) top view of

    interfaces models for epitaxial growth of reconstructed KNbO3 (001) thin-films on top of CdS.

    S8

  • S7. KNBO3 SPECTRA

    0 1 2 3 4 5

    e 2(w

    )

    hn (eV)

    PBE+UHSE

    h⌫ (eV)AAAB83icbVDLSgNBEJyNrxhfUY9eBhMhXsJuPOgx6MVjBPOA7BJmJ73JkNnZZR5CWPIbXjwo4tWf8ebfOEn2oIkFDUVVN91dYcqZ0q777RQ2Nre2d4q7pb39g8Oj8vFJRyVGUmjThCeyFxIFnAloa6Y59FIJJA45dMPJ3dzvPoFULBGPeppCEJORYBGjRFvJH1d9Yaq4Bp1LPChX3Lq7AF4nXk4qKEdrUP7yhwk1MQhNOVGq77mpDjIiNaMcZiXfKEgJnZAR9C0VJAYVZIubZ/jCKkMcJdKW0Hih/p7ISKzUNA5tZ0z0WK16c/E/r290dBNkTKRGg6DLRZHhWCd4HgAeMglU86klhEpmb8V0TCSh2sZUsiF4qy+vk06j7l3V3YdGpXmbx1FEZ+gc1ZCHrlET3aMWaiOKUvSMXtGbY5wX5935WLYWnHzmFP2B8/kDwD6QLQ==

    ✏ 2(!

    )AAACAHicbZC7TsMwFIadcivlFmBgYLFokMpSJWWAsYKFsUj0IjVR5binrVXHiWwHqYq68CosDCDEymOw8Ta4bQZo+SVLn/5zjo7PHyacKe2631ZhbX1jc6u4XdrZ3ds/sA+PWipOJYUmjXksOyFRwJmApmaaQyeRQKKQQzsc387q7UeQisXiQU8SCCIyFGzAKNHG6tknjg+JYtxwzcFOxY8jGJILp2eX3ao7F14FL4cyytXo2V9+P6ZpBEJTTpTqem6ig4xIzSiHaclPFSSEjskQugYFiUAF2fyAKT43Th8PYmme0Hju/p7ISKTUJApNZ0T0SC3XZuZ/tW6qB9dBxkSSahB0sWiQcqxjPEsD95kEqvnEAKGSmb9iOiKSUG0yK5kQvOWTV6FVq3qXVfe+Vq7f5HEU0Sk6QxXkoStUR3eogZqIoil6Rq/ozXqyXqx362PRWrDymWP0R9bnDzyllN4=

    HSEAAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKezGgx6DIuQYiXlAsoTZSScZMju7zMwKYcknePGgiFe/yJt/4yTZgyYWNBRV3XR3BbHg2rjut5Pb2Nza3snvFvb2Dw6PiscnLR0limGTRSJSnYBqFFxi03AjsBMrpGEgsB1M7uZ++wmV5pF8NNMY/ZCOJB9yRo2VGrXGfb9YcsvuAmSdeBkpQYZ6v/jVG0QsCVEaJqjWXc+NjZ9SZTgTOCv0Eo0xZRM6wq6lkoao/XRx6oxcWGVAhpGyJQ1ZqL8nUhpqPQ0D2xlSM9ar3lz8z+smZnjjp1zGiUHJlouGiSAmIvO/yYArZEZMLaFMcXsrYWOqKDM2nYINwVt9eZ20KmXvquw+VErV2yyOPJzBOVyCB9dQhRrUoQkMRvAMr/DmCOfFeXc+lq05J5s5hT9wPn8Azp+NeA==

    PBE+UAAAB7HicbVBNS8NAEJ34WetX1aOXxSIIQknqQY+lInisYNpCG8pmO2mXbjZhdyOU0t/gxYMiXv1B3vw3btsctPXBwOO9GWbmhang2rjut7O2vrG5tV3YKe7u7R8clo6OmzrJFEOfJSJR7ZBqFFyib7gR2E4V0jgU2ApHtzO/9YRK80Q+mnGKQUwHkkecUWMlv1G/u/R7pbJbcecgq8TLSRlyNHqlr24/YVmM0jBBte54bmqCCVWGM4HTYjfTmFI2ogPsWCppjDqYzI+dknOr9EmUKFvSkLn6e2JCY63HcWg7Y2qGetmbif95ncxEN8GEyzQzKNliUZQJYhIy+5z0uUJmxNgSyhS3txI2pIoyY/Mp2hC85ZdXSbNa8a4q7kO1XKvncRTgFM7gAjy4hhrcQwN8YMDhGV7hzZHOi/PufCxa15x85gT+wPn8Ac60jgM=

    FIG. S7. Imaginary part of the frequency-dependent dielectric function, �2 (ω), for the KNbO3/CdS using

    PBE+U (blue) and HSE (orange) functional.

    [1] J. W. S. Cassels, An introduction to the Geometry of Numbers (Springer, Berlin, 1959), 1 edn.

    [2] F. Schmidt, M. Landmann, E. Rauls, N. Argiolas, S. Sanna, W. G. Schmidt, and A. Schindlmayr, Con-

    sistent Atomic Geometries and Electronic Structure of Five Phases of Potassium Niobate from Density-

    Functional Theory, Adv. Mater. Sci. Eng. p. 3981317 (2017).

    [3] M. D. Fontana, G. Metra, J. L. Servoin, and F. Gervais, Infrared spectroscopy in KNbO3 through the

    successive ferroelectric phase transitions, J. Phys. C: Solid State Phys 17, 483–514 (1984).

    [4] F. Wang, I. Grinberg, and A. Rappe, Semiconducting ferroelectric photovoltaics through Zn2+ doping into

    KNbO3 and polarization rotation, Phys. Rev. B 89, 235105 (2014).

    [5] S. Cabuk, Electronic structure and optical properties of KNbO3: First principles study, J. Optoelectron.

    Adv. M. 3, 100–107 (2007).

    [6] T. Zhang, K. Zhao, J. Yu, J. Jin, Y. Qi, H. Li, X. Hou, and G. Liu, Photocatalytic water splitting for

    hydrogen generation on cubic, orthorhombic, and tetragonal KNbO3 microcubes, Nanoscale 5, 8375–8383

    (2013).

    [7] Y. Shiozaki, E. Nakamura, and T. Mitsui, Ferroelectrics and Related Substances: Oxides Part 1:

    Perovskite-Type Oxides and LiNbO3 Family (Springer, Landolt-Bornstein, 2001), 1 edn.

    S9

    Electronic Supplementary Information : Photo-sensitizing thin-film ferroelectric oxides using materials databases and high-throughput calculationsAbstractSuperlattice constructionKNbO3 bulk benchmarkKNbO3 band structureSubstrates listItf junctionsKNbO3 reconstructionKNbO3 spectraReferences