54
May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat І Battery Cycler І Fuel Cell Test Station +82-2-578-6516 І [email protected] www.wonatech.com І www.zivelab.com І www.fctest.com

Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

  • Upload
    lydung

  • View
    234

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

May 2012

Electrochemical Impedance Spectroscopy

Designing the Solution for ElectrochemistryPotentiostat/Galvanostat І Battery Cycler І Fuel Cell Test Station+82-2-578-6516 І [email protected] І www.zivelab.com І www.fctest.com

Page 2: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• Electrochemical?– In electrochemistry, everything of interest takes place at the interface 

between electrode & electrolyte!– Controlling REDOX by Potentiostat/galvanostat

• Impedance?– AC circuit theory describes the response of a circuit to an alternating current 

or voltage as a function of frequency– Impedance is a totally complex resistance encountered when a current flows 

through a circuit made of resistors, capacitors, or inductors, or any combination of these

– Ohm’s Law, V = R  I  → V = Z  I (complex number Z)

• Spectroscopy?– No Quantum Process– Small Perturbation → Response

Nomenclature : EIS

Page 3: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Excitations used in E’chem Techniques

1. DC

2. Sweep

3. Pulse

4. Sine

Potentiostatic

CA, CC, CP

LSV, Tafel, PD, LPR CV Cyclic Polarization

PEIS, GEIS

DPV NPVRNPV SWV

Page 4: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Electrochemical Interfaceand Electrochemical Process

Page 5: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• Everything happens at the 

interface

• Charge Transfer  Rct

– Rct~ 1/ i0– Butler‐Volmer Equation

• Diffusion Layer W

• Bulk Electrolyte  Rser, RΩ• Double Layer  Cdl

– Non‐Faradaic Process

Electrochemical Interface

Page 6: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Randles’ Circuit

Page 7: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Process of Energy Storage in Electrochemical System

• Ionic charge conductionthrough electrolyte in pores of active layer

• Electronic charge conduction through conductive part of active layer

• Electrochemical reactionon the interface of active material particles including electron transfer

• Diffusion of ions or neutral species into or out of electrochemical reaction zone.

EISZ(SOC,SOH,T;ω)

Performance Simulation•Arbitrary Load•DC/AC/Transient•Power/Energy

•Discharge Process•Polarization Curve•CV 

Evaluation & Diagnosis•CO poisoning •Water flooding in FC

Study of Mechanism

Ex) Rs, Rct, Cdl, W …

Common Steps

)TSOH,SOC,(P

Page 8: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Impedance Spectra of a Li‐ion battery

Nyquist Plotvs. level of discharge

Effect of temperatureCF)Discharge curveupon cycling

Impedance Spectraupon cycling

Page 9: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

PEMFC

A. PEMFC Under Dead End

( H2O outlet in cathode closed)

B. PEMFC Under CO Poisoning

(H2 + 100ppm CO as fuel gas)

Ref. Zahner elektrik‐Kronach Impedance Day 2012

Page 10: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Circuit Elements (1)

Page 11: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Basic Circuit Elements

Resistor→

Inductor→

Capacitor→

RIE

IdtCC

QE 1

dtdILE

RZ

Cj

CjZ

11

LjZ

tjeItI 0)(

tjeItI 0)(

tjeItI 0)(

IZE

IZE

IZE

Page 12: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

AC Current, Voltage, and Impedance

"')sin(cos

/,)()()()(Impedance

)cos()(Current2 & 1where,

)cos()(Voltage

)(

)(

jZZjZ

IEZwhereeZIEZ

eI

tIIfjeE

tEE

o

oooj

o

tjo

o

tjo

o

→ Modulus & Phase(Bode Plot)

→ Real & Imaginary part (Nyquist Plot)

← Ohm’s Law

Page 13: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• Nyquist Plot– Vectors of length |Z|– Individual charge transfer 

processes are resolvable.– Frequency is not shown.– Small Z can be hidden by large Z.

• Bode Plot– C may be determined graphically.– Small Zs in presence of large Zs 

are usually easy to identify.

Presentation of Impedance SpectrumIm

aginary, ‐Zʺ

Real, Zʹ

|| Z 0

log

log

Page 14: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Basic Circuit Elements

Resistor→

Inductor→

Capacitor→

RZ

Cj

CjZ

11

LjZ

Page 15: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• Serial Combination • Parallel Combination

Combinations of Elements

21 ZZZ 21

111ZZZ

Page 16: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Combinations of Circuit Elements

R‐C→

R|C→

R‐R|C→

CjRZ

1

CjRZ

11

CjR

RZ S

1

1

Page 17: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Rs‐R|C

"'

1111

222222

jZZ

CRRCRj

CRRRs

CjR

RZ S

minmaxmax

222max

max

22

2

222222

phase,""1212

'4.

2")

2('

1",

1'3.

,2.,01.

ZZRC

RCR

RCRRRZ

RZRRZCR

RCRZCR

RRZ

RZRRZ

s

SS

s

s

Page 18: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Rs‐R|C

Rs RS+R

R

ωmax = 2fmax = 1 / RC

Z’

‐Z”

ωω 0

logω

Phase ϕ

Page 19: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• Ideal Coating • Imperfect Coating

Coating Capacitance

dACcoat

Page 20: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• There is not a unique equivalent circuit that describes a spectrum.

• Measuring Z is simple and easy, but analyzing it is difficult.

• Physically relevant model is important.– It can be tested by altering 

physical parameters.• Be cautious in handling empirical 

models even if you get a good looking fit.– Use the fewest elements– Test it by T‐test

Uniqueness of Models

Same Impedance Spectrum

Z’

‐Z”

Page 21: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• Ambiguities in interpretation

– All cells have intrinsically distributed properties

– Ideal circuit elements may be inadequate to describe real 

electrical response

– Use of distributed elements (e.g. CPE)

• There is not a unique equivalent circuit describes 

measured impedance spectrum

Disadvantages of EIS

Page 22: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• Relatively simple electrical measurement

• But analysis of complex material variables: mass transport, rates of chemical reactions, corrosion….

• Predictable aspects of the performance of chemical sensors and fuel cells

• Providing empirical quality control procedure

Advantages of EIS

Modified figure shown in page 10, IS(2nd ed.)

ElectrochemicalSystem

EIS ExperimentZe(ω)Theory

Physically Relevant Model

Mathematical Model

Ztheory(ω)

Empirical CircuitZem(ω)

Curve Fitting

SystemCharacterization

Page 23: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Circuit Elements and Electrochemical Meanings

Page 24: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• Electrolyte Resistance 

– 3 electrode: between WE and RE

– 2 electrode: all series R in the cell are measured incld. R of 

contacts, electrodes, solution, and battery separators

– Depends on ionic concentration, type of ions, 

temperature, and geometry

Physical Electrochemistry & Equivalent Circuit Elements

Page 25: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• Charge Transfer Resistance– Echem charge transfer reactions are generally  modeled as 

resistances.– When an EIS spectrum is measured on a corrosion cell at Ecorr, 

the resistance at low‐frequency is identical to the polarization resistance.

Physical Electrochemistry & Equivalent Circuit Elements

0

),0(),,0(

nFiRT

iER

tCtCct

RO

oR

R

O

O

ii

CtC

CtC

nFRT

**

),0(),0(

For a one step, multi‐electron process, O + ne  Rsmall overpotential is given by 

Page 26: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• Double Layer Capacitance– A electrical double layer forms as 

ions from the solution “stick on” the electrode. There is an Å‐wide separation between charge in the electrode and ionic charges in the solution.

– Charges separated by an insulator form a capacity. On a bare metal, estimate 20 to 40 μF of C for every cm2 of electrode area.

– Depends on electrode potential, temperature, ionic concentrations, types of ions, oxide layers, electrode roughness, impurity adsorption, etc

Physical Electrochemistry & Equivalent Circuit Elements

From A. J. Bard & L. R. Faulkner, “Electrochemical Methods”

Page 27: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• Constant Phase Element (CPE)

– The CPE is basically an imperfect capacitor. 

– It’s phase shift is less than 90.

– Unlike C, a CPE has 2 parameters• α is generally between 0.9 and 1.0

• A is similar to C

– Possible Explanations • Surface roughness  Fractal Dimension, D=1+1/α

• Distribution of reaction rates on a surface

• Varying thickness or composition of a coating

Physical Electrochemistry & Equivalent Circuit Elements

)(1jA

ZCPE

Page 28: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• Diffusion– Diffusion processes can create an impedance, which is 

small at high frequency and increases as frequency decreases.

– Warburg Impedance• Warburg looks like a special CPE with A=1/s and α=1/2.• However, remember that Warburg is derived from electrochemical kinetics. Parameters you obtain with Warburg have physical meanings. It is only partly true for CPE. 

• You can get a good fit, but how to interpret the resulting parameters?

Physical Electrochemistry & Equivalent Circuit Elements

2/14

)()1(

jejZ

j

W

*2/1*2/122

112 RROO CDCDAFn

RT

For a one‐step, multi‐electron process

Page 29: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• Diffusion– Nernstian & Finite Diffusion Impedance

– Homogeneous reaction(Gerischer)

– Spherical Diffusion

Physical Electrochemistry & Equivalent Circuit Elements

jBAZ

1

jBAZ

11

)tanh()1( DjjZ

)coth()1( DjjZ

Page 30: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• Diffusion  Transmission Line Model

Physical Electrochemistry & Equivalent Circuit Elements

)1( jZ

)tanh()1( DjjZ

)coth()1( DjjZ

Warburg

Nernstian Impedance: Diffusion by Constant Concentration

Finite Diffusion Impedance: Diffusion by Phase Boundary

T Element

O Element

W Element

Page 31: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Nernstian Impedance

R: 100ΩC: 0.001F

Page 32: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Nernstian Impedance

R: 100ΩC: 0.001F

Page 33: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Finite Diffusion Impedance

R: 100ΩC: 0.001F

Page 34: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Finite Diffusion Impedance

R: 100ΩC: 0.001F

Page 35: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Validation of Impedance DataKramers‐Kronig Relation

Page 36: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• Ideal impedance data must fulfill:– Causality: The output must be exclusively a result of the input– Linearity: The response must be a linear fn. of the perturbation– Stability: The system must not be changing during measurement

→ a serious problem for corroding systems– Finite‐Valued: Impedance must be finite value at any frequency

• Kramers‐Kronig Relation: – Validation Test– Low Frequency Extrapolation

– The integration range includesthe frequencies zero and infinity

– Note pure capacitor cannot be calculated

Validation of Impedance Data

dxx

ZxZZ

dxx

ZxxZZZ

022

022

)(')('2)("

Z" Z'b.

)(")("2)(')('

Z' Z"a.

Page 37: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• Circuit theory is simplified when the system is “linear”.

• Z in a linear system is independent of excitation amplitude. The response of a linear system is always at the excitation frequency (no harmonics are generated). 

• Look at a small enough region of a current versus voltage curve and it becomes linear.

• If the excitation is too big, harmonics are generated and EIS modeling does not work.

Electrochemistry: A Linear System?

Page 38: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• Measuring EIS spectrum takes time (often many hours).

• The sample can change during the time the spectrum is 

recorded.

• If this happens, modeling results may be wildly 

inaccurate.

• To shorten the measuring time of impedance spectrum, 

use FFT EIS method.

E’chem: A Stationary System?

Non‐Stationary  Conditions  result  in  non‐stationary  spectra !

Page 39: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

K‐K Relation

Ref. Scribner Associates Inc. – ZView K‐K Transform Tutorial

Page 40: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Validation of Impedance Data Z‐HIT

Page 41: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Limitation of K‐K Relation• The integration range includes the frequencies zero and infinity• |Z| and Phase are measured independently with different accuracy and 

sensitivity, but in theory, they are correlated with each other.

Page 42: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Heating NTC, PTC

1 2 3 4 53,4

3,5

3,6

3,7

3,8

3,9

4,0

0

15

30

45

60

75

90

KTY 10k (NTC)

LOG

Impe

danc

e /

LOG frequency / Hz

|Phase| / °

0 1 2 3 4 5

3,05

3,10

3,15

0

15

30

45

60

75

90Pt 1000 (PTC)

LOG

Impe

danc

e /

LOG frequency / Hz

|Phase| / °

Ref. Zahner elektrik‐Kronach Impedance Day 2012

Phase is more stable than |Z|!

Page 43: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Z‐HIT Approximation

Ref. Kronach Impedance Day 2012

ln)(

ln)( 2 + onst. )(ln0

0 dd

dcZ O

S

Local relationship between impedance and phase

=> Not affected by the limited bandwidth problem

=> Reliable detection of artifacts and instationarities (drift)

=> Reconstruction (!!) of causal spectra

=> Reliable interpretation of spectra 

Page 44: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Ex. Spectrum of a fuel cell under load

10m 100m 1 3 10 100 1K 10K 100K

10

20

15

30

25

|Z| / m

-30

0

30

60

phase / o

frequency / Hz

1. Z-HIT

2. FIT10m 100m 1 3 10 100 1K 10K 100K

10

20

15

30

25

|Z| / m

-30

0

30

60

phase / o

frequency / Hz

Ref. Kronach Impedance Day 2012

Page 45: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Ex. Fuel cell under CO poisoning

Ref. Zahner elektrik‐ Kronach Impedance Day 2012

0,0 0,1 0,2 0,3 0,4 0,5

-0,2

-0,1

0,0

0,10.1 Hz

2 Hz

3 Hz

10K

DATA FIT

imag

inar

y pa

rt /

real part / 0,0 0,1 0,2 0,3 0,4 0,5

-0,2

-0,1

0,0

0,1

0.1 Hz

2 Hz

3 Hz

10 KHz

DATA FIT

imag

inar

y pa

rt /

real part /

Raw data Refined data

Page 46: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Other Methods to Measure EIS

Page 47: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Multi‐Sine Wave Method

Single Sine Method

Multi‐Sine Method

In Galvanostatic EIS, Freq  |Z| |V|  : Linear Region?

“Pseudo‐Galvanostatic EIS”

Time

Page 48: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Time Resolved EIS

10m 50m

real part / Ohm

-10m

10m

0

imag

. par

t / O

hm

10m 50m

real part / Ohm

-10m

10m

0

imag

. par

t / O

hm

10m 50m

real part / Ohm

-10m

10m

0

imag

. par

t / O

hm

1. Real Time‐Drift Compensation

impe

danc

e

time

frequency

drift affected data

time course of theinterpolated data

impedance atsingle frequencies

3. Z‐HIT Refinement

2. Time‐Course Interpolation

An EIS recorded at the PEMFC with flooded cathode, after 4450s of “dead end” operation at 2A. After pp501‐505, IS (2nd ed.) & Schiller

Page 49: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Artifacts

Page 50: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• The effects of inductances are often seen at the high frequencies

• The value of inductor is very small, however, this can be important if the electrode impedance is low.

• Possible Causes– Actual physical inductance of loop or 

coil of wire between electrode and potentiostat

– Self inductance of the electrode itself: even a straight piece of rod has some self inductance ~ several nH

– Some cylinder‐type batteries also shows this effect ~ uH

– Instrumental artifacts, notably capacitance associated with the current measuring resistor, however.potentiostat manufacturers may 

have already made corrections for this effect

Inductive Loop at High Frequency

LjZL dtdILE

‐Zʺ

Page 51: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Mutual Induction ‐ Twisting Cables

Ref. Zahner elektrik‐Kronach Impedance Day 2012

A B C D

Arbitrary CE/RE & WE/WS CE/WS & WE/RE CE/WE & RE/WS

Cell: 20 mΩ planar resistor

Page 52: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

Others

Page 53: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• Potentiostatic Mode– Vac is 1 mV Minimum !– 1 mVrms = 1.414 Arms X Z– Zmin = 707 uΩ– These are Absolute Minimum Z Values !

• Limitation is APPLIED E• Measured E is still Accurate!

• Galvanostatic Mode– Can Measure Smaller E  Values ! ~Microvolts– CMR of electrometer may limit the absolute minimum Z 

Values! ‐> 5 uΩ– Refer to “Shorted Lead Test”

Galvanostatic EIS is Better for Low Z 

Page 54: Electrochemical Impedance Spectroscopy - ZIVELAB Started with EIS.pdf · May 2012 Electrochemical Impedance Spectroscopy Designing the Solution for Electrochemistry Potentiostat/Galvanostat

• Building equivalent circuit model– Physically relevant model

• Each component is postulated to come from a physical process in the EChem cell based on knowledge of the cell’s physical characteristics.

– Empirical model

• Complex Nonlinear Least Square (CNLS) Fitting Algorithm– is used to find the model parameters that cause the best agreement between 

a model’s impedance spectrum and a measured spectrum.– starts with initial estimates of model parameters. – Iterations continue until the goodness of fit exceeds an acceptance criterion, 

or until the number of iterations reaches a limit. – Please check the change of χ2after each iteration.– Sometimes, CNLS algorithm cannot converge on a useful fit because of 

• An incorrect model• Poor estimates for the initial values• Noise and etc.

– Don’t care if the fit looks poor over a small section of the spectrum.

How to Extract Model Parameters