Electric & Magnetic Particle Motion

Embed Size (px)

Citation preview

  • 7/27/2019 Electric & Magnetic Particle Motion

    1/21

    Chapter2ParticleMotion inElectricandMagneticFieldsConsideringEandBtobegiven,westudythetrajectoryofparticlesundertheinfluenceofLorentzforce

    F=q(E+vB) (2.1)2.1 ElectricFieldAlone

    dvm =qE (2.2)

    dtOrbitdependsonlyonratioq/m. UniformE uniformacceleration. Inone-dimensionz,Ez trivial. Inmultipledimensionsdirectlyanalogoustoparticlemovingunder influenceof

    qgravity. AccelerationgravitygmE. Orbitsareparabolas. Energy isconservedtaking

    z

    x

    __m

    qE

    Figure2.1: Inauniformelectricfield,orbitsareparabolic,analogoustogravity.intoaccountpotentialenergy

    P.E.=q electricpotential (2.3)

    34

  • 7/27/2019 Electric & Magnetic Particle Motion

    2/21

    [Proofifneeded,regardlessofEspatialvariation,dv d

    ddt

    mdt.v

    12

    mv2

    ==

    q.v=qd

    dt(q)

    dt (2.4)(2.5)

    i.e. 1mv2 +q2 =const.]

    Aparticlegainskineticenergyqwhenfallingthroughapotentialdrop-. Soconsidertheaccelerationandsubsequentanalysisofparticleselectrostatically: Howmuchdeflection

    =0 a+ /2

    E

    L

    Electrostatic AnalyserParticleSource

    DetectingScreen

    s

    d

    z

    x

    z0

    a /2

    Figure2.2: Schematicofelectrostaticaccelerationandanalysis.willtherebe? AfteraccelerationstageKE= 1mv2 =qs2 x

    vx = 2qs . (2.6)m

    SupposingEa,fieldofanalyser,tobepurelyz,thisvelocityissubsequentlyconstant. Withintheanalyser

    dvz q q xm =qEa vz = Eat= Ea . (2.7)

    dt m m vxSo

    q t2 q 1x2z= vzdt= Ea = Ea . (2.8)

    m 2 m 2v2xHenceheightatoutputofanalyseris

    q 1L2 q 1L2 mzo = Ea = Ea

    m 2v2 m 2 (2qs)x=

    4

    1Es

    aL2 =+

    4

    1

    a

    sL

    d2

    (2.9)

    35

  • 7/27/2019 Electric & Magnetic Particle Motion

    3/21

    using Ea = a/d. Notice this is independent of q and m! We could see this directly byeliminatingthetimefromourfundamentalequationsnoting

    dt

    d=v

    d

    d(=v.) with v= 2q(

    ms)

    or v=

    2m

    qs +E

    qs(2.10)

    ifthereisinitialenergyEs. Soequationofmotionis mq

    2q(s)m

    dd 2q(s)m ddx=2

    s d

    d

    sdxd =Ea = , (2.11)

    whichisindependentofqandm. Trajectoryofparticleinpurelyelectrostaticfielddependsonlyonthefield(andinitialparticlekineticenergy/q). Ifinitialenergyiszero,cantdeduceanythingaboutq, m.

    2.2 ElectrostaticAccelerationandFocussingAcceleratedchargedparticlebeamsarewidelyusedinscienceandineverydayapplications.Examples:X-raygenerationfrome-beams(Medical,Industrial)ElectronmicroscopesWelding. (e-beam)SurfaceionimplantationNuclearactivation(ion-beams)NeutrongenerationTelevisionand(CRT)MonitorsForapplicationsrequiring

  • 7/27/2019 Electric & Magnetic Particle Motion

    4/21

    Clearly getting the required energy is simple. Ensure the potential difference is right andparticles are singly charged: Energy (eV) Potential V. More interesting question: Howtofocusthebeam? Whatdowemeanbyfocussing?

    Object Image

    Focal Point

    (a) Optical Focussing

    Lens

    (b) Particle beam Focussing

    Parallel Rays

    Figure2.4: Analogybetweenopticalandparticle-beamfocussing.What is required of the Lens? To focus at a single spot we require the ray (particle

    path) deviation from a thin lens to be systematic. Specifically, all initially parallel raysconvergetoapointifthelensdeviatestheirdirectionbysuchthat

    r

    Deviation Angle

    Distance from axis

    Parallel Rays

    Figure2.5: Requirementforfocussingisthattheangulardeviationofthepathshouldbealinearfunctionofthedistancefromtheaxis.

    r=ftan (2.12)andforsmallangles,,r=f . Thislineardependence(=r/f))ofthedeviation,ondistancefromtheaxis,r,isthekeyproperty. ElectrostaticLenswouldliketohave(e.g.)

    EaEr = r (2.13)

    abutthelenscanthavechargedsolidsinitsmiddlebecausethebeamsmustpassthroughso(initially)= 0 .E=0. ConsequentlypureEr isimpossible(0=.E= 1(rEr)/r=r

    37

  • 7/27/2019 Electric & Magnetic Particle Motion

    5/21

    2Ea/a Ea =0). Foran axisymmetric lens (/ =0)we musthave bothEr and Ez.Perhaps the simplest way to arrange appropriate Er is to have an aperture between two

    E1

    E2

    Potential Contours

    Figure2.6: Potentialvariationnearanaperturebetweentworegionsofdifferentelectricfieldgivesrisetofocussing.regions of unequal electric field. The potential contours bow out toward the lower fieldregion: givingEr.Calculating focal lengthofapertureRadialacceleration.

    1 2

    r

    z

    Figure2.7: Coordinatesnearanaperture.dvr q

    = Er (2.14)dt m

    38

  • 7/27/2019 Electric & Magnetic Particle Motion

    6/21

    Sodvrdz =

    1vz

    dvrdt =

    qm

    Ervz (2.15)

    But.E=0 1

    r(rEr)

    r +

    Ezz

    =0 (2.16)Neartheaxis,onlythelinearpartofEr isimportanti.e.

    ErEr(r, z)r (2.17)

    rr=0

    r=0

    So1 Er

    rEr 2rr (2.18)r

    andthusEr Ez

    2 + =0 (2.19)r z

    r=0andwemaywriteEr 21rEz/z. Then

    dvr qr Ezdz =2mvz z , (2.20)

    whichcanbeintegratedapproximatelyassumingthatvariationsinrandvz canbeneglectedinlenstoget

    final qr 2vr = [vr]initial = [Ez]1 (2.21)2mvzTheangulardeviationistherefore

    = vr = +qr [Ez2 Ez1] (2.22)vz 2mvz

    2andthefocallengthisf =r/

    f = 2mvz2 = 4E (2.23)q(Ez2 Ez1) q(Ez2 Ez1)

    WhenE1 isanacceleratingregionandE2 iszeroorsmallthelensisdiverging. Thismeansthatjust depending on an extractor electrode to form an ion beam will give a divergingbeam. Needtodomorefocussingdownstream: moreelectrodes.2.2.1 ImmersionLensTwotubesatdifferentpotentialseparatedbygap InthiscasethegapregioncanbethoughtofasanaperturebutwiththeelectricfieldsE1, E2 thesame(zero)onbothsides. Previouseffectiszero. Howevertwoothereffects,neglectedpreviously,givefocussing:

    1. vz isnotconstant.2. r isnotconstant.

    Consideranacceleratinggap: q(2 1)

  • 7/27/2019 Electric & Magnetic Particle Motion

    7/21

    ExtractionElectrode

    DivergingSource

    Figure2.8: Theextractionelectrodealonealwaysgivesadivergingbeam.

    Region 1 Region 2

    Tube

    1 2

    Figure2.9: AnImmersionLensconsistsofadjacentsectionsoftubeatdifferentpotentials.Effect (1) ions are converged in region 1, diverged in region 2. However because of z-acceleration, vz is higher in region 2. The diverging action lasts a shorter time. Henceoverallconverging.Effect (2) TheelectricfieldEr isweakeratsmallerr. Becauseofdeviation,r issmallerindivergingregion. Henceoverallconverging.

    Foradeceleratinggapyoucaneasilyconvinceyourselfthatbotheffectsarestillconverging.[Timereversalsymmetryrequiresthis.] Onecanestimatethefocallengthas

    1 3f

    16

    2q2 E

    2z

    dz (forweakfocussing) (2.24)r=0

    but numerical calculations give the values in figure 2.10 where 1 = E/q. Here E is theenergy inregion1. Effect(2)above,thatthe focussingordefocussingdeviation isweakerat points closer to the axis, means that it is a general principle that alternating lenses ofequal converging and diverging power give a net converging effect. This principle can beconsideredtobethebasisfor

    40

  • 7/27/2019 Electric & Magnetic Particle Motion

    8/21

    Figure 2.10: Focal length of Electrostatic Immersion Lenses. Dependence on energy perunitcharge()inthetworegions,fromS.Humphries19862.2.2 AlternatingGradientFocussingIdeaistoabandonthecylindricallysymmetricgeometrysoastoobtainstrongerfocussing.ConsideranelectrostaticconfigurationwithEz =0and

    dEx dExEx = x with =const. (2.25)dx dxSince.E=0,wemusthave

    dEx dEy dEy dExdx + dx = 0 dy =const Ey = dx y (2.26)

    Thissituationarisesfromapotential 1dEx

    = x2 2 (2.27)y2 dx

    so equipotentials arehyperbolas x2 y2 =const. If qdEx/dx is negative, thenthisfield isconverginginthex-direction,butdEy/dy=dEx/dx,soitis,atthesametime,diverginginthey-direction. Byusingalternatingsectionsof+veand-vedEx/dxanetconvergingfocuscanbeobtained inboththexandy directions. Thisalternatinggradientapproach isveryimportant for high energy particle accelerators, but generally magnetic, not electrostatic,fieldsareused. Sowellgointoitmorelater.

    41

    Image removed due to copyright restrictions.

  • 7/27/2019 Electric & Magnetic Particle Motion

    9/21

    2.3 UniformMagneticfielddv

    m =q(vB) (2.28)dt

    TakeB in z-direction. Neveranyforcein z-dir. vz =constant. Perpendiculardynamicsareseparate.

    v B

    zy

    B

    v

    x

    Figure2.11: Orbitofaparticleinauniformmagneticfield.

    2.3.1 Brute forcesolution:vx = q vyB vy = qvxB (2.29)

    m m 2 2qB qBvx =

    m vx vy =

    m vy (2.30)

    SolutionqB qB

    vx =vsin t vy =vcos tmm qB m mqB , (2.31)x=v cos t+x0 y=v sin t+y0

    qB m qB mthe equation of a circle. Center (x0, y0) and radius (vm/qB) are determined by initialconditions.2.3.2 PhysicsSolution

    1. Magneticfield forcedoesnoworkonparticlebecauseFv. Consequentlytotal |v|isconstant.

    2. Forceisthusconstant,tov. Givesrisetoacircularorbit.v2 Force vB mv3. Centripetalaccelerationgivesr = mass =qm i.e. r= qB. Thisradius iscalledthe

    Larmor(orgyro)Radius.4. Frequency of rotation v = qB is called the Cyclotron frequency (angular fre

    r mquency,s1,notcycles/sec,Hz).

    42

  • 7/27/2019 Electric & Magnetic Particle Motion

    10/21

    Whenweaddtheconstantvz wegetahelicalorbit. Cyclotronfrequency=qB/mdependsonlyonparticlecharacterq, mandB-strengthnotv(nonrelativistically,seeaside). LarmorRadiusr=mv/qBdependsonparticlemomentummv. All(non-relativistic)particleswithsame q/m have same . Different energy particles have different r. This variation can beusedtomakemomentumspectrometers.2.3.3 RelativisticAsideRelativisticdynamicscanbewritten

    ddtp=q([E+]vB) (2.32)

    whererelativisticmomentumisp=mv= m0v

    1v2

    c2. (2.33)

    Massmisincreasedbyfactor 12v2

    = 1c2 (2.34)

    relative to restmass m0. Since forE=0the velocity |v| = const, isalso constant, andso ism. Thereforedynamicsofaparticle inapurelymagneticfieldcanbecalculatedasifitwere non-relativistic: m dv/dt=q(vB), exceptthattheparticle hasmass greater byfactor thanitsrestmass.2.3.4 MomentumSpectrometersParticlespassingverticallythroughslittakedifferentpathsdependingonmv/q. Bymea-

    x

    v

    Different

    Momenta

    Unform

    B

    Slit Detection Plane

    Figure2.12: Differentmomentumparticlesstrikethedetectionplaneatdifferentpositions.suringwhereaparticlehitsthedetectionplanewemeasureitsmomentum/q :

    mv mv Bx2

    qB =x : q = 2 . (2.35)43

  • 7/27/2019 Electric & Magnetic Particle Motion

    11/21

    Whymakethedetectionplaneadiameter? Becausedetectionpositionis leastsensitivetovelocitydirection. Thisisaformofmagneticfocussing. Ofcoursewedontneedtomakethefull360,soanalysercanbereducedinsize.

    UnformB

    v

    Different

    Momenta

    Unform

    B

    Slit Detection Plane

    (b)

    v

    Slit Focus

    Different Angles

    (a)

    Entrance

    Figure2.13: (a)Focussingisobtainedfordifferentinputanglesbyusing180degreesoforbit.(b)Theotherhalfoftheorbitisredundant.Even

    so,

    it

    may

    be

    inconvenient

    to

    produce

    uniform

    B

    of

    sufficient

    intensity

    over

    sufficiently

    largeareaifparticlemomentumislarge.2.3.5 HistoricalDayDream(J.J.Thomson1897)Cathoderays: howtotelltheirchargeandmass?ElectrostaticDeflectionTells only their energy/q = E/q and we have no independent way to measure E since thesamequantityE/qjustequalsacceleratingpotential,whichisthethingwemeasure.MagneticDeflectionTheradiusofcurvatureis

    mvr= (2.36)

    qBSocombinationofelectrostaticandelectromagneticgivesus

    1 2mv mv2 =M1 and =M2 (2.37)

    q qHence

    2M1 qM22 = m. (2.38)Wecanmeasurethecharge/massratio. Inordertocompletethejobanindependentmeasureofq(orm)wasneeded. Millikan(1911-13). [ActuallyTownsendinJ.J.Thomsonslabhadanexperimenttomeasureqwhichwaswithinfactor2correct.]

    44

  • 7/27/2019 Electric & Magnetic Particle Motion

    12/21

    2.3.6 PracticalSpectrometerIn fusion research fast ion spectrum is often obtained by simultaneous electrostatic andelectromagnetic analysis E

    1 parallel to B. This allows determination of E/q and q/m velocity of particle [E = mv2]. Thus e.g. deuterons and protons can be distinguished.2

    y

    x

    B

    E

    Particle y

    x

    Figure2.14: EparalleltoBanalyserproducesparabolicoutputlocusasafunctionofinputvelocity. Thelociaredifferentfordifferentq/m.

    qHowever,He4 andD2 havethesamem soonecantdistinguishtheirspectraonthebasis

    ofionorbits.2.4 DynamicAcceleratorsInadditiontotheelectrostaticaccelerators,thereareseveraldifferenttypesofacceleratorsbasedontime-varyingfields. WiththeexceptionoftheBetatron,theseareallbasedonthegeneralprincipleofarrangingforaresonancebetweentheparticleandtheoscillatingfieldssuchthatenergyiscontinuallygiventotheparticle. Simpleexample

    1+ 2+ 2- 3+1- 3-

    1 2 3

    Figure2.15: Sequenceofdynamicallyvaryingelectrodepotentialsproducescontinuousacceleration. Valuesat3timesareindicated.Particle isacceleratedthroughsequenceofelectrodes3attimes(1)(2)(3). Thepotentialofelectrodeisraisedfromnegativeto+vewhileparticleisinsideelectrode. SoateachgapitseesanacceleratingEz. Canbethoughtofasasuccessivemovingpotentialhill:Waveofpotentialpropagatesatsamespeedasparticleso it iscontinuouslyaccelerated.Historicallyearliestwidespreadacceleratorbasedonthisprinciplewasthecyclotron.

    45

  • 7/27/2019 Electric & Magnetic Particle Motion

    13/21

    z

    Figure2.16: Oscillatingpotentialsgiverisetoapropagatingwave.+ -

    Poles

    Electric

    MagneticPoles

    Orbit

    Plan

    Elevation

    B

    Figure2.17: SchematicofaCyclotronaccelerator.2.4.1 Cyclotron

    qBTake advantage of the orbit frequency in a uniform B-field =m . Apply oscillating

    potentialtoelectricpoles,atthisfrequency. Eachtimeparticlecrossesthegap(twice/turn)itseesanacceleratingelectricfield. Resonantfrequency

    f = = qB = 1.52107B Hz (2.39)2 m2

    15.2MHz/Tforprotons. Ifmagnetradius isRparticle leavesacceleratorwhen itsLarmorradiusisequaltoR

    mv=R 1mv2 =1q2B2R2 (2.40)

    qB 2 2mIf iron is used for magnetic pole pieces then B

  • 7/27/2019 Electric & Magnetic Particle Motion

    14/21

    2.4.2 LimitationsofCyclotronAcceleration:RelativityMass increase (1v2/c2)21 breaks resonance, restricting maximum energy to 25MeV(protons). Improvement: sweep oscillator frequency (downward). Synchrocyclotron allowed energy up to 500MeV but reduced flux. Alternatively: Increase B with radius.Leads to orbit divergence parallel to B. Compensate with azimuthally varying field forfocussingAVF-cyclotron. Advantagecontinuousbeam.2.4.3 SynchrotronVaryboth frequencyandfield intimetokeepbeam inresonanceatconstantradius. Highenergyphysics(to800GeV).2.4.4 LinearAcceleratorsAvoid limitations of electron synchrotron radiation. Come in 2 main types. (1) Induction(2) RF (linacs) with different pros and cons. (RF for highest energy electrons). Electronacceleration: v=cdifferentproblemsfromion.2.5 MagneticQuadrupoleFocussing(AlternatingGra-

    dient)Magneticfocussingispreferredathighparticleenergy. Why? Itsforceisstronger.MagneticforceonarelativisticparticleqcB.ElectricforceonarelativisticparticleqE.E.g. B = 2T cB = 6108 same force as an electric field of magnitude6108V /m =0.6MV/mm! Howevermagnetic force isperpendiculartoBsoanaxisymmetric lenswould

    liketohavepurelyazimuthalB field B=B. Howeverthiswouldrequireacurrentright

    vB

    v B^

    Figure2.18:

    Impossible

    ideal

    for

    magnetic

    focussing:

    purely

    azimuthal

    magnetic

    field.

    wherethebeamis:

    B.d=oI. (2.41)Axisymmetricmagneticlensisimpossible. Howeverwecanfocusinonecartesiandirection(x, y)atatime. Thenusethefactthatsuccessivecombinedfocus-defocushasanetfocus.

    47

  • 7/27/2019 Electric & Magnetic Particle Motion

    15/21

    2.5.1 PreliminaryMathematicsConsider

    z =0 purely transverse field (approx)Bx, By. This can berepresented byB= AwithA=zAso A= (zA) =z A(sincez=0).Inthevacuumregionj=0(nocurrent)so

    0 = B= (z A) =z2A+ ( (2.42)z.)A=0

    i.e. 2A = 0. A satisfies Laplaces equation. Notice then that solutions of electrostaticproblems, 2=0 are also solutions of (2-d) vacuum magnetostatic problems. The samesolutiontechniqueswork.2.5.2 MultipoleExpansionPotentialcanbeexpandedaboutsomepointinspaceinakindofTaylorexpansion. Chooseoriginatpointofexpansionandusecoordinates(r, ),x=rcos,y=rsin.

    1 A 1 2A2A=

    rrrr +r 2 =0 (2.43)2LookforsolutionsintheformA=u(r).w().Theserequire

    d2wd2 =const.w (2.44)

    andd du

    r r =const.u. (2.45)dr dr

    Hencewsolutionsaresinesandcosinesw=cosn or sinn (2.46)

    where n2 is the constant in the previous equation and n integral to satisfy periodicity.Correspondingly

    u=rn or lnr , rn (2.47)Thesesolutionsarecalledcylindricalharmonicsor(cylindrical)multipoles:

    1 lnrrncosn rncosn (2.48)r

    nsin

    n

    rn

    sinn

    Ifourpointofexpansionhasnosourceatit(nocurrent)thentheright-handcolumnisruledoutbecausenosingularityatr=0ispermitted. Theremainingmultipolesare

    1 constantirrelevanttoapotentialrcos(=x) uniformfield,Axr2cos2=r2(cos2sin2) =x2 y2 non-uniformfieldHigherorders neglected.

    48

  • 7/27/2019 Electric & Magnetic Particle Motion

    16/21

    Thesecondordersolution,x2y2 iscalledaquadrupolefield(althoughthisissomethingof a misnomer). [Similarly r3cos3 hexapole, r4cos octupole.] We already dealtwiththispotentialintheelectriccase.

    A= x2 y2 =2xx2yy . (2.49)So

    z A=2xy2yx (2.50)Forceonlongitudinallymovingcharge:

    F = qvB=qv( A) (2.51)= qv(z A) =q(v.z)A qvzA (2.52)

    Magneticquadrupoleforceisidenticaltoelectricquadrupoleforcereplacing Avz (2.53)

    Consequentlyfocussinginx-direction defocussinginy-directionbutalternatinggradientsgivenetfocussing. Thisisbasisofallstrongfocussing.2.6 ForceondistributedcurrentdensityWehaveregardedtheLorentzforcelaw

    F =q(E+vB) (2.54)as

    fundamental.

    However

    forces

    are

    generally

    measured

    in

    engineering

    systems

    via

    the

    interaction of wires or conducting bars with B-fields. Historically, of course, electricity and

    magnetismwerebasedonthesemeasurements. Acurrent(I)isaflowofcharge: Coulombs/sAmp. Acurrentdensityj isaflowofchargeperunitareaA/m2. Thecharge iscarriedbyparticles:

    j= niviqi (2.55)species i

    HencetotalforceoncurrentcarriersperunitvolumeisF= niqi(vi B) =jB (2.56)

    iAlso,forafinewirecarryingcurrentI, if itsarea is,thecurrentdensityaveragedacrossthesectionis

    Ij= (2.57)

    Volumeperunitlengthis. Andtheforce/unitlength=jB. =IBperpendiculartothewire.

    49

  • 7/27/2019 Electric & Magnetic Particle Motion

    17/21

    2.6.1 ForcesondipolesWe saw that the field of a localized current distribution, far from the currents, could beapproximatedasadipole. Similarlytheforcesonalocalizedcurrentbyanexternalmagneticfieldthatvariesslowlyintheregionofcurrentcanbeexpressedintermsofmagneticdipole.[Sameistrueinelectrostaticswithanelectricdipole].Total force

    F= jBd3x (2.58)whereBisanexternalfieldthatisslowlyvaryingandsocanbeapproximatedas

    B(x) =B0 + (x.)B (2.59)wherethetensorB(Bj/xi)issimplyaconstant(matrix). Hence

    F

    =j

    Bo +j(x.B)d3x

    = jd3x Bo + j(x.B)d3x (2.60)Thefirsttermintegraliszeroandthesecondistransformedbyourpreviousidentity,whichcanbewrittenas

    x (x j)d3x = 2x. jxd3x =2x. xjd3x (2.61)foranyx. UsethequantityBforx(i.e. xi Bj)givingxi

    12 (x

    j)d3x B=m B= j(x.)Bd3x (2.62)

    This tensor identity is then contracted by an internal cross-product [ijk Tjk ] to give thevectoridentity

    (m )B= j[(x.)B]d3x (2.63)Thus

    F= (m )B=(m.B)m(.B) (2.64)(remembertheoperatesonlyonBnotm). Thisistheforceonadipole:

    F=(m.B) . (2.65)TotalTorque(Momentof force)is

    M = x (jB)d3x (2.66)= j(x.B)B(x.j)d3x (2.67)

    50

  • 7/27/2019 Electric & Magnetic Particle Motion

    18/21

    Bhereis(tolowestorder)independentofx:B0 sosecondtermiszerosince 1 x.jd3x =

    2 . |x|2j |x|2.j d3x = 0. (2.68)Thefirsttermisofthestandardformofouridentity.

    1M=B. xjd3x =

    2B (x j)d3x (2.69)M=mB Momentonadipole. (2.70)

    y

    x

    zdx

    dy I

    Figure2.19: Elementarycircuitforcalculatingmagneticforce.

    2.6.2 ForceonanElementaryMagneticMomentCircuitConsideraplanerectangularcircuitcarryingcurrentI havingelementaryareadxdy=dA.Regardthisasavectorpointing inthez directiondA. Theforceonthiscurrent inafieldB(r)isFsuchthat

    BzFx = Idy[Bz(x+dx)Bz(x)]=Idydx (2.71)

    xBz

    Fy = Idx[Bz(y+dy)Bz(y)]=Idydx (2.72)y

    Fz = Idx[By(y+dy)By(y)]Idy[Bx(x+dx)Bx(x)]Bx By Bz

    = Idxdyx + y =Idydx z (2.73)

    (using .B = 0). Hence, summarizing: F = IdydxBz. Now definem = IdA = Idydxzandtakeitconstant. Thenclearlytheforcecanbewritten

    F=(B.m) (2.74)orstrictly(B).m.

    51

  • 7/27/2019 Electric & Magnetic Particle Motion

    19/21

    S

    N

    m

    M

    B

    Figure2.20: Momentonabarmagnetinauniformfield.

    S N

    N Sm

    m

    Net Force:

    B

    |B|

    Figure2.21: Amagneticmomentintheformofabarmagnetisattractedorrepelledtowardthestrongerfieldregion,dependingonitsorientation.2.6.3 ExampleSmallbarmagnet: archetypeofdipole. InuniformBfeelsjustatorquealigningitwithB.Inauniformfield,nonetforce.

    Non-uniformfield: Ifmagnettakesitsnaturalrestingdirection,mparalleltoB,forceisF=m|B| (2.75)

    Abarmagnetisattractedtohighfield. AlternativelyifmparalleltominusBthemagnetpointsotherway

    F=m|B| repelledfromhigh|B|. (2.76)Samewouldbetrueforanelementarycircuitdipole. It isattracted/repelledaccordingtowhether itactsto increaseordecreaseB locally. Achargedparticlemoving in itsLarmororbitisalwaysdiamagnetic: repelledfromhigh|B|.

    2.6.4 IntuitionThereissomethingslightlynon-intuitiveaboutthenaturalbehaviorofanelementarywirecircuitandaparticleorbitconsideredassimilartothiselementarycircuit. Theircurrentsflow in opposite directions when the wire is in its stable orientation. The reason is thatthestrengthofthewiresustainsitagainsttheoutwardmagneticexpansionforce,whiletheparticleneedsaninwardforcetocausethecentripetalacceleration.

    52

  • 7/27/2019 Electric & Magnetic Particle Motion

    20/21

    Paramagnetic Attracted

    Diamagnetic Repelled

    B

    |B|

    Net Force:

    Figure 2.22: Elementary circuit acting as a dipole experiences a force in a non-uniformmagneticfield.

    I

    Orbiting ParticleWire Loop

    j B j B^ outwards. ^ inwards.

    To balance accelerationStable Orientation

    qv

    Figure2.23: Differencebetweenawireloopandaparticleorbitintheirnaturalorientation.2.6.5 AngularMomentumIfthe localcurrent ismadeupofparticleshavingaconstantratioofchargetomass: q/Msay (Notational accidentm is magnetic moment). Then the angular momentum isL =

    iMixi vandmagneticmomentism= 1 qixi vi. So2qm= L. Classical (2.77)

    2MThiswouldalsobetrueforacontinuousbodywithconstant(chargedensity)/(massdensity)(/m). Elementaryparticles,e.g. electronsetc.,have spinwithmomentsm,L.Howevertheydonotobeytheaboveequation. Instead

    qm=g L (2.78)

    2MwiththeLandeg-factor(2 forelectrons). This isattributedtoquantumandrelativisticeffects. However the classical value might not occur if /m were not constant. So weshouldnotbesurprisedthatg isnotexactly1forparticlesspin.2.6.6 PrecessionofaMagneticDipole(formedfromchargedpar-

    ticle)The result of a torquemB is a change in angular momentum. Sincem=gLq/2M wehave

    dL q=mB=g (LB)) (2.79)

    dt 2M53

  • 7/27/2019 Electric & Magnetic Particle Motion

    21/21

    m B^

    m B^

    mL

    Figure2.24: PrecessionofanangularmomentumLandalignedmagneticmomentmaboutthemagneticfield.ThisistheequationofacirclearoundB. [Comparewithorbitequation dv = qvB]. The

    dt mdirectionofLprecesseslikeatiltedtoparounddirectionofB withafrequency

    qB=g (2.80)

    2MForan electron (g =2) this is equaltothe cyclotron frequency. Forprotonsg = 22.79[Writtenlikethisbecausespinis 1]. Forneutronsg= 2(1.93).

    2Precessionfrequencyisthus

    electronf = = (28GHz)(B/Tesla) (2.81)

    2proton

    = (43MHz)(B/Tesla) (2.82)2

    This isthe(classical)basisofNuclearMagneticResonancebutofcoursethatreallyneedsQM.

    54