24
W. Udo Schröder, 2018 Classical 2 Quantum 1 Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak Interactions, Gravitation) Sophisticated quantal theories exist for most, but not all, physical phenomena, expands ‘understanding’ to micro- cosmos not accessible to classical theory. Are cl & qu theories equivalent and incomplete model views of an existing physical reality? Does quantum theory negate all, most, some…concepts and analytical tools? Are there isomorphisms in basic structures of cl & qu theory? Can one utilize classical models to guide quantal simulations? Are there methods to translate (“quantize”) classical experience?

Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

1

→ Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak Interactions, Gravitation)

→ Sophisticated quantal theories exist for most, but not all, physical phenomena, expands ‘understanding’ to micro-cosmos not accessible to classical theory.

Are cl & qu theories equivalent and incomplete model views of an existing physical reality?

Does quantum theory negate all, most, some…concepts and analytical tools?

Are there isomorphisms in basic structures of cl & qu theory?→ Can one utilize classical models to guide quantal

simulations?→ Are there methods to translate (“quantize”) classical

experience?

Page 2: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

2

Page 3: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Classical Phase Space and Functions

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

3

Ole Steuernagel, University of Hertfordshire, UK

( )

( )1 2

1 2

2

( ). :1

( ) 3

, ,...., ;

and , ,....,

: :

:

n

n

pq q p

pq

Consider system with n degrees of

freedom dof Example free particle

mass m with dofs

Canonical coordinates q q q q

momenta p p p p

Phase space

dimension n

=

=

=

( ); ( ) .qpSystem trajectory q t p t is confined to at all times =

( , , )

: andi ii i

Dynamics is determined by Hamiltonian H q p t

d H d HEquations of motion q p

dt p dt q

= = −

, : ( , ; )Any dynamic function f can be described in terms of q p f q p t

Page 4: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Restricted Dynamics: Poisson Brackets

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

4 1 1

( , ; )

( .):

N N

i ii ii i i i i i

Arbitrary function f q p t representing aspects of a dynamic system

evolves according to Hamiltonian constrain chaits

df f f f f f H f Hq p

n rule diff

dt t q p t q p p q= =

= + + = + −

: ,df f

f Hdt t

= +

, :

Poisson Bracket of any two dynamic

functions f g coupled via H

1

, :N

i i i i i

f g f gf g

q p p q=

= −

, ,: ,;i j i j ij i jq q 0Specific PB B t qup pp = = =

Required !

,i j ijq p =

1: ,i j ijQuantum Mechanics p q

i =

Page 5: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Poisson Brackets Properties

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

5

, :

Poisson Bracket of any two dynamic

functions f g coupled via H

1

, :N

i i i i i

f g f gf g

q p p q=

= −

Properties of Poisson Brackets

▪ Linearity in both arguments: {af+bg,h}=a{f,h}+b {g,h}, etc.

▪ Anti-commutative: {f, g}=-{g,f}

▪ Product rule: {f·g,h}= f·{g,h}+ g·{f,h} (from rules of

differentiation)

▪ Jacobi identity: {f,{g,h}}+{g,{h,f}}+{h,{f,g}}=0

Page 6: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Hamiltonian Dynamics Enforced

Example of classical Equations of Motion using Poisson bracket formalism

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

6

: q , , ( )

:p , , ( )

dq qq H q H no explicit dependence on time

dt t

dp pp H p H no explicit dependence on time

dt t

= = + =

= = + =

( )

( )

( )

( ) 11

1 1

:

, ,, ,,

, , , ,

NNi j ij

N N

Canonica of phase space coordinates

Q Q Qq q qmust fulfill Q P

p p p

l transformation

P P P

== → =

= =

q

p

t

Liouville Theorem

( )

( )

( ): ( ), ( )

( ) and ( )

,

,

i j ij

System trajectory in

Multi dimensional R t q t p t

q t p t correlated via H q

phase s

p

Specifically q p

pace

=

− =

→ ( )R t

(0)R

Page 7: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Hamiltonian Dynamics: Liouville Theorem

Example of classical EoM using Poisson bracket formalism

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

7

( ) ( )( )

: , 0 ( !)

, ( ), 0q

i ii i qp qp

ii i

p q

i

p

i

q pAlso q p v incompressible

p q q p

dR t from continuity equatiR on

tt v

d

= = − → = + = →

=→ =

q

p

t

Liouville Theorem

( )R t

(0)R

( )

( ) ( )

( )

( ) ( ) ( )( )

2

( ), ( ) ,

( ): ( ), ( ) ; 1

: ( ), ( )

:

, , , 0

, 0N

qp

qp qp

Phase space distribut

Continuity Equation

no points created or

ion q t p t R t dR

R t q t p t dq dp

Generalized velocity v q t p t

dR t R t v R t

d

annihilated

R t

t t

=

= =

=

= +

=

=

0t

→ =

( ) ( ) ( )( ), , ,H ,qp qp

dR t R t R t v

dt → = =

( ),

0

qp

qp qp

qp

Flux density

R t v

div

=

=

Page 8: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Dynamic Correlations: Angular Momentum L

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

8

1 2 3

1 2 3

1 2 3

ˆ ˆ ˆx x x

Angular momentum L r p L x x x

p p p

= → =

1 2 3 3 2

2 3 1 1 3

3 1 2 2 1

L x p x p

L r p L x p x p

L x p x p

→ = = = − −

3

1

2q

f

r

1 1 2 3 1 2 3 2 3( , , ; , , ), (...), (...)Dynamic functions L x x x p p p L L

( )3

1 2 1 21 2 2

12 11 3: 0 0

cossin

tan

sin: cos

ta

,

n

i i i i i

L L L Lx p x p and cyclic

x p p x

p p

Also true in spherical coordinat

L L L

es L r p p

p

q f

q f

f

ff

q

ff

q

=

= − = + + − =

− −

= −

1 2 3

1: ,Quantum Mechanics L L L

i=

2

3 .

Simultaneous rotation about axes

affect motion about the rd

Page 9: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

QM Preserves Interdependence of Observables

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

9

1

ˆ ˆ,

.

.

.

, 0i j i j

Classical mechanics enforces correlations between canonical observables

Canonical observables are interrelated via differential equations of motion

Character of phase space trajectories is preserv d

qi

q q

e

q =

1 2 3 1 2 3

1 1ˆ ˆ, 0 ; ,

: ,

ˆ ˆ0; , 0 ,

1 ˆ ˆ ˆ, ,

ˆ ˆ 1 ˆ ˆ: ,

,

:

i j i j iji j i j ijp p q p

df ff H

d

q q q pi i

L L L L L Li

dA AA H

dt t i

For cons

Time e

istency with classical mechanics

viable operators have to com

volutit t

n

p

o

= = = = =

= =

= +

= +

.ly with above quantum commutation relations

Classical mechanics is the limit of quantum mechanics for large qu. #s

Page 10: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Ehrenfest Theorem

Relation of classical phase space trajectory to quantum expectation values . → SCl approx

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

10

ˆ ˆ,t t

q p

Ԧ𝑞 𝑡 , Ԧ𝑝 𝑡 𝑐𝑙

22ˆˆ ˆ, ( ), ,

2 2

1ˆ ˆ ˆ ˆ ˆ, ,

2

xx

x

x xx x x x

pi i iH x V x x p x

m m

pip

d

p

xdt

v classicax p x p pm m m

l

= + = =

+ = = =

=

2ˆˆ ˆ ˆ, ( ),2

ˆ( ), ,

xx xx

x

da

dp

dt

dV

pi i

lmo

H p V x pm

iV x st classical but V

dd xxp

= +

= −=

=

( )

2 2ˆˆ ˆ1 ( ) ( )2 2

0

x xp pConsider D single particle H V x H V x

m m

Assume wave function of system x known at t

− = + = +

=Paul Ehrenfest1880-1933

Page 11: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Ehrenfest Theorem Extended

Almost classical limit, but <dV/dx>≠d<V>/dx → quantum correction!

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

11

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2

2 2

D.J. Tannor(4.1): :

1 1:

2 2

:

1

2

Expand aboutFollowing x

x

At x x V x V x

dV

V x

x Vdx

V x V x x x V x x x V

x x V x V x

=

+

→ + = +

+ − + −

( ) ( ) ( )

( ) ( ) ( ) 4

2

x

x V x

V

x p m

p V x t

m x t

=

= − −

= −

( ) ( ), 0 (0), (0), ;x t get t from semi classical trajectory = → −

Approximate semi-cl trajectory: Solve set of ODEs from initial conditions

Semi-classical trajectory accounts for some quantum corrections.

( ) ( )

22

: .2 2

x xp pV x V x const

m m

= + − +

:

Assume energy

difference qu cl−

Page 12: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Alternative (Hydrodynamic) Formulation TDSE

TDSE is re-written as equations for real profile function A(x,t) and real phase function S(x,t). → probability density (x,t), velocity S/x

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

12

( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )

* 2,

( ) ( )

, : , , ,

ˆ,

,

,

,

iS x t

x t A

General trial wave function for single particle m

x t x t x t A x t

i x t H x t

e

t

x t → = =

= →

=

2 2 2

2

2

2

1

2 2

10

2

S S AV

t m x mA x

A A S A S

t m x x m x

+ + =

+ + =

2

2

( , )

( , ) 0

(

( , )!

1 ( , )0

( , )

" " ( ))

( , )

, :

x

x

S S x t

t m x x m t xx

x t

t x

Flux

S x t

m x

x

current dens

d x tconserved p

ity velocity

moment

robdt

S x tm

x

t

x

u

t

m

= + + = +

→→ = +

=

=

=

3d r

2A

From Im

From Re

Page 13: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Geometrical Optics Limit

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

13

( )( )

( )

2 2 2

2

2 2 2

2

2 22 2

2

1

2 2

2

: 1

S AV

m x mA x

S Am E V x

x A x

x r

t

AA

S

S

+ + =

→ = − +

→ =

+

( ) ( )( )

( )

( )

,, ,

,

: ,

i iS x t E t

E x t A x t e A xStationa t e

S x t E

ry stat

S

tE

es

t

= =

= →

= −

( )( )( )1

2deBroglie wave length m E V r−

= −

( ) ( )

2 2

2 22 2 2

22 2

22

: ( , ):

1 ; ( )

" " .

oo t o tp p pt

Classical limit small deBroglie large m high energy A A

S A n r index of refractionA

rays wave fronts S const

S n

Cl velocity S

= + →

⊥ =

S(0)=aS(0)=b

S(0)=c S(0)=d

D.J. Tannor

. " "Cl action

S E t=

Page 14: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Principle of Least Action

Classical trajectories of particle (mass m)can be defined by minimum “action” S along path → Lagrange EoM

Analogy: Fermat Principle for optical rays. Media of different index of refraction n.

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

14

( ) ( ) ( ) ( )( )

( )

( ) ( )2

2

2

1

2

0

1

(

, : ( ): ,

2

( )

0 ): 2 ( )T

t

t

x

particle m

x t x t acti

Action S T m x V

on S t t L x t x t dt

Lagrangian L T V m V for

Least action extremum Lagrange E

x dt

oM

→ = −

→ =

=

− = −

( ), 2

Phase difference D d

Constructive interference if n

= − →

=

c

c/n

d

D

Fermat Principle

x1

t

x

Least Action

0

V(x)

T

( )

( )211

1

: ; 1,...,N

(t 0 )2 2

n

Nn nn n

n

Discretize trajectory x x n t n

x xx xmS t T V t

t

++

=

= =

+− = → = −

Page 15: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Quantal Trajectories: Path

Consider particle (mass m) in 1D:

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

15

21ˆ ˆ ( )2

xH p V xm

= +

x1

t

x

t

V(x)

t’

x

x'

( )( )

( ) ( )

( ) ( )

ˆ

, ,,

,,, ,

iH t t

x t x e t x t x t

x t

dx t

x t

x x

x t

dx

d x

x

tx

+ +

+

= = =

=

, ,

,

Evaluate quantal transition amplitude x t x t in p representation

See Townsend Tannor

( )

( ) ( )

( )( )

( ) ( ) ( ) ( )

ˆ

:

, : , ,

ˆ

ˆ,

iH t t

For given end point x t x t dx x t

TDSE unitary time transformation

Position repr

U t t e

x t x t x

esen

U t t

tatio

dx

x

x x

x

t

n

− −

+

→ −

=

= = −

Page 16: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Free-Particle Propagator

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

16

( ) ( )

( )

( )

2ˆ ˆ

2

2

2

2

2

2

ˆ

1ˆ ˆ:

ˆ

2

ˆ1 1H px

x

i it t t t

m

it t

m

it

m

x

p

p

t

Simplest case free particle H pm

x e x e x

x e x

x x

x

dpdp p p p p

dp p ep

− − − −

− −

− −

=

=

=

x1

t

x

t

V(x)

t’

x

x'

, ,propagatorEvaluate tran x t xsition amplitude in p representationt −=

( ) ( ) ( )

( )

( )( )

2

ˆ22

2

1:

2

1...

2 2

ip x

m x xii i iH t t p x x t t t tp

m

Insert momentum wf in position representation x p e

mx e x edp e e

i t t

− − − − − − −

=

=

→ = = −

( )

( )

2

22

x xmAction gain S t E t

t t

− = −

,: , i SStructure of propagat x t x t eor Gaussian integral

Page 17: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Coherent State Propagator

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

17

( )

( )

2

2

ˆ2

: ( ) 0,

1

2

1ˆ ˆ: ( )2

(

:

ˆ ..

)

)

, 0

. (

0

1

pH t

m

H t

i i ip x x t

x

i

For free particle V x

x e x e e

Now add potential H p V xm

V x much more difficult except for t

iNon linear op

t t t

dp

H t O te

− − −

=

= −

=

+

→ − +−

( ) ( )ˆ ,

:

1

2

( ) , 0, 0

i i iH t p x x E p x t

approximation Evaluate evolution

x x x x e x e e

by coherent sum integrals over small intervals

Quan

t

dp

ta

x

l

− − −

= = + →

( ) ( )( ) ( )

( ),1

,0 ,0,2

,, 0

i ip x x E p x t

x tx t dx x d xx e exdp

− −+

= =

1i it t t+ = +

xi+

1=

xi+

x

Integration over all intermediate x-values and all p values. Extend to 3D.

Following Townsend, MAQM

Page 18: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Coherent State Propagator

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

18

1i it t t+ = +

xi+

1=

xi+

x

ˆ ˆ ˆ

0 0 0 0, , , ,

i i iH t H t H t

x t x t x t e e xe t− − −

=

N identical terms

1̂ i i idx x x+

= ,..,i 1 N=

:

0, 0

Small intervals

t x

ˆ

ˆ

1 1

1 1 2

0

2

0, , ,

,

,

,

N N

iH t

iH t

N N N N

x t x t x t

x x

e

t t

t

e

x −

− − −

→ =

2 2 3 3 1 1 0

ˆ

0

ˆ

, , , ,

i iH t H

N N

t

N Nx t x t te x xet− −

− − −

( )( )1

0 0 11

11

1 exp2

,2

, ,N

i ii

iN

Ni i

x xdp dp ip Edxx t p tx x

tdx t

−−

=−

− −

=

0 0 1 11

1

ˆ

1, ,, , ; , ,Ni i

N

Ni

H t

i N

i

ixx t x t dx dx wie tx xh x tt tt−

=−

− − = =

Gaussian momentum integralsSpace integrals

Page 19: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Coherent State Propagator

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

19

1i it t t+ = +

xi+

1=

xi+

x

( ) ( ) ( ) ( )0

0

0

00

, , exp , expx x

x

t

x t

i idD xx t t L x x S xt D tt tx x

=

=

( )

( )

( )( )

11

21

1

2

1

exp ,

exp2

exp

2

exp2 2

2

2

i

ii

i iii i ii

i ii ii i

i i

dp

x xdp ip E p x t

t

x xdp pip V x t

t m

x xm i m it t V x

i t t

+

+−

−−

+−

−−

− = −

− = − −

− = −

( )1i−

( )1

0 0

12

:

Nx

NN x

x

x

m

iSpace integrals D x t over all patLim dx dx h

ts

−→

=

( )2

, 00

exp exp2

t

N t t

i mLim dt x V x

→ →

→ = −

( ) ( )2

0

exp , ( , )2

t

t

dp wi m

dt L x x Lagrangian L x x x V x T Vith

= − = −

=

Page 20: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Around the Classical Path

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

2

0

( )

20

2

20 0 0

2

0 :

1...;with

V(x

02

2

) 0

:

.

2x x x

Consider quantal and classical paths x x

S S S and

Ins gradpect quantal pathways around c

Class Least S S

lass path at

x t const o

or const

t t

S

xm

Lr

0

= →

= + + +

=

= = = →

( ) ( )

( ) ( )0

0

0 0

2

exp

, ;

)

, ,

( 2 ?

:

t

t

x

x

N

D x t

Classical

Result of quantal calc

x t x

Lagrangian L T V

All pa

Phase Action

contr

iS x t

S x t dt L

ibute to proths

m i t no

pagator x

ne pre

integ

t

r

ferr

x x

with equal weight

als

ed

=

=

=

=

But classical particles follow specific path of minimum action=Proven experience!Is quantal treatment consistent with these observations? By what mechanism?

Page 21: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Around the Classical Path

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

2

1

0

2 2

20

2 (1)

(0)

2

2

1) Path following bottom of potential V(x) V(x )

.

2 2

2)

2

cl x x

t

cl

x x t x t const

m x m xdt Least action

tt

Path on PES side wall const for

x

S S

ce

mconst x L xx

tSt

= = → = =

= =

→ → →

=

=

→=

( )

22

2(2) 2

0

1 11 1

2 2 3 3

cl

t

cl

x x tVariations about x x t x t t t

t t t

m m xS dt x t S No term linear in

t

= = → = + −

= = + = +

2(1)

2 2 22 2

4 40

22 2

2

3

tm x t m xL x m d

xS mt t

t t t

= = → =

=

( )2

2 2

2(3) 2 (1)

0

...2 1 1

1 12

. ....3 2 2

cl

t

x x tVariations about x x t x t t t

tt t

m m xS dt x t S

t

= = → = + −

= + += + = +

Page 22: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Interference Off the Classical Path (min S)

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

2

2

(1) 2 22

2

15

10

2 2 210

3 3 3

2 0.51110

3 197 10

1.7 10 1.7

S mc x mc x mcx x

c t c t c

MeVx

MeV m

x x

m A

=

(3) (1) ....1

12

Use S S for qualitative estimates

++=

( )(3)1

( )

0.01 (scale )

iS

Calculate T eNorm

Vary path by Angstrom

=

=

( ): 0.01 26

?

xEx electron at speed c x t eV

Interference of phase factors around classical path

=

Page 23: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

Math Help

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

2

3

2

2 22 2

24 4

( )

( , ) :2 4 2

( , )

x

x x

x x

Gaussian integrals I dxe

I dxe x x x x x

I e dxe e

a

a b

b ba ba a

a

a

b b ba b a b a

a a a

a b

a

+−

+− +

++ +− +

= =

= → − = − − → = −

→ = =

Page 24: Elaborate & successful classical (non-quantal) theories ... Class2qu… · →Elaborate & successful classical (non-quantal) theories exist (Mechanics, Thermodynamics, Electro-weak

End

W. Udo Schröder, 2018

Cla

ssic

al 2

Qua

ntum

2

4

H2+F2→2HF