1
Effervescent Energy Drink for Underseat Bicycle Hydration System School of Chemical, Biological, and Environmental Engineering Bryant Mandrawa ([email protected] ) Sponsor: Frank Bretl - VelEau, Corvallis, OR How it works? The cap of the bottle is designed with a valve that allows the air to go in but not out to prevent negative pressure inside the bottle. The cap is also designed to prevent water and air leakage. Putting the effervescent tablet inside the bottle will cause chemical reaction which creates pressure build-up inside the bottle which will generate a driving force to push the water out once the bite valve is opened. Acknowledgements Frank Bretl for sponsorship [email protected] Dr. Philip Harding for guidance philip.harding@oregonstat 0 50 100 150 200 250 300 100 105 110 115 120 125 130 135 1.0L - Experimental 1.0 L - Model 0.50L - Experimental 0.50L - Model Time (s) Pressure (kPa) Figure 1. Pressure vs. time graph for NuuN effervescent tablet using 2 different volumes (1.0 L and 0.50 L) at 19 °C. The results were similar to the model of pressure build-up for both cases. Sue Butlers, women’s pro winner of the Mud Slinger race on May 2 nd , 2010 in Oregon who relies on a VelEau system for race-day hydration. (http://photos.oregonvelo.com) Variable Description k = rate of disappearance of tablet [m 4 /s] γ = production rate of CO 2 per unit area [mol/m 2 -s] A 0 = initial surface area of tablet [m 2 ] t = time [s] n CO 2 = number of moles of CO 2 [mol] H w = height of water inside the bottle [m] Constants H = Henry’s constant for CO 2 [m 3 -Pa/mol] R = Ideal gas constant [J/mol-K] Method A mathematical model is to be developed and verified so the behavior of effervescent tablets, including the pressure build-up inside the bottle and output flow rate of water could be determined. Objective Performance of the VelEau hydration system is being studied with different types of effervescent tablets. Chemical Reaction: 3 NaHCO 3 (aq) + H 3 C 6 H 5 O 7 (aq) → 3 H 2 O (l) + CO 2 (g) + 3 Na 3 C 6 H 5 O 7 (aq) Area-dependent Kinetics: Generation of CO 2 : Time-dependent Pressure Prediction: Volumetric Flow Rate Prediction: Figure 3. Volumetric flow rate vs. volume prediction for NuuN effervescent tablet with 19 °C of water. 0 200 400 600 800 1000 1200 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 Volume (m3) Vol. Flow rate (m3/s) Issue Cyclists have demanding hydration requirements. The challenge of hydration is currently solved by cage mounted water bottles and hydration backpacks. But bottles can be hard to use, sometimes larger volumes are needed for longer rides, and many cyclists do not like to wear a pack. VelEau has developed a new system that solve these issues. Effervescing sport drink tablets are becoming a popular hydration additive, and VelEau wants to understand how these products will affect their hydration system performance. Figure 2. Height vs. volume graph for VelEau hydration bottle. It fits the sixth order of polynomial graph quite well. 0 200 400 600 800 1000 1200 0 20 40 60 80 100 120 140 160 f(x) = − 1.0227E-15 x⁶ + 4.17507E-12 x⁵ − 0.00000000668628 x⁴ + 0.0000052044 x³ − 0.00202895 x² + 0.502417 x + 0.965238 R² = 0.999448034765727 Volume (mL) Height (mm)

Effervescent Energy Drink for Underseat Bicycle Hydration System

  • Upload
    zytka

  • View
    54

  • Download
    0

Embed Size (px)

DESCRIPTION

Effervescent Energy Drink for Underseat Bicycle Hydration System School of Chemical, Biological, and Environmental Engineering Bryant Mandrawa ( [email protected] ) Sponsor: Frank Bretl - VelEau, Corvallis, OR. Issue - PowerPoint PPT Presentation

Citation preview

Page 1: Effervescent Energy Drink  for  Underseat  Bicycle Hydration System

Effervescent Energy Drink for Underseat Bicycle Hydration System

School of Chemical, Biological, and Environmental EngineeringBryant Mandrawa ([email protected])

Sponsor: Frank Bretl - VelEau, Corvallis, OR

How it works?The cap of the bottle is designed with a valve that allows the air to go in but not out to prevent negative pressure inside the bottle. The cap is also designed to prevent water and air leakage. Putting the effervescent tablet inside the bottle will cause chemical reaction which creates pressure build-up inside the bottle which will generate a driving force to push the water out once the bite valve is opened.

AcknowledgementsFrank Bretl for sponsorship [email protected]. Philip Harding for guidance [email protected] Brickman for hardware support

0 50 100 150 200 250 300100

105

110

115

120

125

130

135

1.0L - Experimental 1.0 L - Model

0.50L - Experimental 0.50L - Model

Time (s)Pr

essu

re (k

Pa)

Figure 1. Pressure vs. time graph for NuuN effervescent tablet using 2 different volumes (1.0 L and 0.50 L) at 19 °C. The results were similar to the model of pressure build-up for both cases.

Sue Butlers, women’s pro winner of the Mud Slinger race on May 2nd, 2010 in Oregon who

relies on a VelEau system for race-day hydration. (http://photos.oregonvelo.com)

Variable Description k = rate of disappearance of tablet [m4/s]γ = production rate of CO2 per unit area [mol/m2-s]A0 = initial surface area of tablet [m2]t = time [s]nCO2

= number of moles of CO2 [mol]Hw = height of water inside the bottle [m]

ConstantsH = Henry’s constant for CO2 [m3-Pa/mol] R = Ideal gas constant [J/mol-K]

MethodA mathematical model is to be developed and verified so the behavior of effervescent tablets, including the pressure build-up inside the bottle and output flow rate of water could be determined.

ObjectivePerformance of the VelEau hydration system is being studied with different types of effervescent tablets.

Chemical Reaction:3 NaHCO3 (aq) + H3C6H5O7 (aq) → 3 H2O(l) + CO2 (g) + 3 Na3C6H5O7 (aq)

Area-dependent Kinetics:

Generation of CO2:

Time-dependent Pressure Prediction:

Volumetric Flow Rate Prediction:

Figure 3. Volumetric flow rate vs. volume prediction for NuuN effervescent tablet with 19 °C of water.

0200400600800100012000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Volume (m3)

Vol.

Flow

rate

(m3/

s)

IssueCyclists have demanding hydration requirements. The challenge of hydration is currently solved by cage mounted water bottles and hydration backpacks. But bottles can be hard to use, sometimes larger volumes are needed for longer rides, and many cyclists do not like to wear a pack. VelEau has developed a new system that solve these issues. Effervescing sport drink tablets are becoming a popular hydration additive, and VelEau wants to understand how these products will affect their hydration system performance.

Figure 2. Height vs. volume graph for VelEau hydration bottle. It fits the sixth order of polynomial graph quite well.

0 200 400 600 800 1000 12000

20

40

60

80

100

120

140

160

f(x) = − 1.0227E-15 x⁶ + 4.17507E-12 x⁵ − 0.00000000668628 x⁴ + 0.0000052044 x³ − 0.00202895 x² + 0.502417 x + 0.965238R² = 0.999448034765727

Volume (mL)

Heig

ht (m

m)