89
Effect of sulphur dioxide and fuel sulphur on nitrogen oxide emissions Item Type text; Thesis-Reproduction (electronic) Authors Ekmann, James M. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 05/06/2018 14:45:26 Link to Item http://hdl.handle.net/10150/554852

EFFECT OF SULFUR DIOXIDE AND FUEL SULFUR ON …arizona.openrepository.com/arizona/bitstream/10150/554852/1/AZU_TD... · EFFECT OF SULFUR DIOXIDE AND FUEL SULFUR ON NITROGEN OXIDE

  • Upload
    dokien

  • View
    239

  • Download
    3

Embed Size (px)

Citation preview

Effect of sulphur dioxide and fuelsulphur on nitrogen oxide emissions

Item Type text; Thesis-Reproduction (electronic)

Authors Ekmann, James M.

Publisher The University of Arizona.

Rights Copyright © is held by the author. Digital access to this materialis made possible by the University Libraries, University of Arizona.Further transmission, reproduction or presentation (such aspublic display or performance) of protected items is prohibitedexcept with permission of the author.

Download date 05/06/2018 14:45:26

Link to Item http://hdl.handle.net/10150/554852

EFFECT OF SULFUR DIOXIDE AND FUEL SULFUR

ON NITROGEN OXIDE EMISSIONS

by

James Ekmann

A Thesis Submitted to the Faculty of theDEPARTMENT OF CHEMICAL ENGINEERING

In Partial Fulfillment of the Requirements For the Degree of

MASTER OF SCIENCE

In the Graduate CollegeTHE UNIVERSITY OF ARIZONA

1 9 7 5

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfill­ment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library.

without special permission, provided that accurate acknowl­edgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department of the Dean of the Graduate College when in his judgment the proposed use of the material is in the inter­ests of scholarship. In all other instances, however, permission must be obtained from the author.

Brief quotations from this thesis are allowable

SIGNED: (/

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown b e l o w :

Chemical

ACKNOWLEDGMENTS

The author wishes to express his gratitude to his research advisor Dr. J. 0. L. Wendt for his guidance during

this project.This research was supported by the U. S.

Environmental Protection Agency under Grant R-802204. The help and advice of W. Steven Lanier, EPA Project Officer, is acknowledged.

Finally, the author wishes to thank Mr. Charles Long, College of Mines Machinist, and Mr. Sal Gonzales, College of Mines Electronic Technician, for their assistance in assembling the experimental equipment used in this

research.

iii

TABLE OF CONTENTS

PageLIST OF ILLUSTRATIONS ...................... . . . . . . . vLIST OF TABLES . . . . . . . . , . . . . . . . . . . . vi

ABSTRACT ................. vii

CHAPTER

I. INTRODUCTION . . . . . . . . . . . . . . ... . . 1II. EXPERIMENTAL APPARATUS AND PROCEDURE 7

Premixed. C o m b u s t o r ....................... ... . 7Sampling and Analysis Train . . . 12Experimental Procedure i . . . . . 16

III. RESULTS .......................... . 19Premixed Combustor Performance ........... . . 19Effect of S O 2 . . . ............ 26Effect of H 2S ................. 33Ammonia-EgS Effects . . . . . . . . . . ... . 42

IV. CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . 46

Conclusions . . . . . . . . . . . . . . . . . 46Recommendations for Future Work . . . . . . . 49

APPENDIX 1: LIST OF GASES UTILIZED . ............./. . , 51

APPENDIX 2: RAW DATA -- L I S T ............ . . . . . 52APPENDIX 3: CALCULATED RESULTS -- LIST - . . . . . . 66

REFERENCES CITED . . . . . . . . . . . ............. . . 79

° ■ . . . ... ' . ' .iv

LIST OF ILLUSTRATIONS

Figure Page1. Schematic of Gas Supply System . . . . . . . . . 82. Flat Flame Combustor ............... 93. Schematic of Analysis S y s t e m ............... 134. NO Exhaust Emissions -- Base Case . . . . . . . . 205. Exhaust Levels of NO Achieved R a p i d l y ............ 23

6. SO 2 Inhibits NO Formation at Zero Preheat . . . . 27

7. S02 Inhibits NO Formation at High Preheat . . . . 28

8. SO2 Decreases Rate of NO Formation nearthe Flame ............ 31

9. Early-Formed NO Inhibited by SO 2 . . . . . . . . 3210. H 2S Inhibits NO Formation at Zero Preheat . . . . 34

11. H 2S Inhibits NO Formation at High Preheat . . . . 35

12. Early-Formed NO Inhibited by H 2S 39

13. Conversion of H 2S to SO 2 Is More Rapid thanNO Formation - - Fuel-Rich Conditions . . . . . 40

14. Conversion of H 2S to SO 2 Is More Rapid thanNO F o rmation-- Fuel-Lean C o n d i t i o n s .......... 41

v

! ' ' ' -

LIST OF TABLES

Table Page1. Incomplete Temperature Profiles . . .' . . . . . 212. Flame Is One-Dimensional . . . . . . . ............ 243. Burner Cooling Decreases NO . . . . . . . . . . . 25

4. Significant Reduction in Exhaust NO Achievedwith S O £ . . . . . . . . . . . . . . . . . . . 29

5. H 2S Similarly Reduces Exhaust NO . . . . . . . . 376. Ammonia-Hydrogen Sulfide Results . ... . . . . . . 4 3

vi

ABSTRACT

The effect of fuel sulfur compounds on N0x emissions arising from thermal fixation was investigated. Laboratory experiments using a well-defined, flat, methane-air flame

Showed that fuel sulfur inhibits the formation of nitrogen oxides at all air-fuel ratios and especially at high air

preheats. The data indicates that fuel sulfur is rapidly

oxidized to SO 2 in a flame which then acts as a homogeneous

catalyst for oxygen atom recombination. The effect of the

sulfur is to decrease the oxygen atom concentration in the

flame and, in turn, to decrease the rate of NO formation.

The experimental results obtained are especially significant from a practical point of view since they indicate that fuel desulfurization may lead to increased NO emissions.

vii

CHAPTER IT

INTRODUCTION

The combustion of some fossil fuels gives rise to

sulfur oxides and nitrogen oxides pollution. Considerable

effort is currently being directed toward the control of these pollutants individually. Sulfur oxides emissions can

be reduced either through stack gas scrubbing or fuel de- sulfurization. Nitrogen oxide emissions can be reduced through combustion modification. Should these pollutants

interact, the nature and direction, synergistic or inhibi­

tory, of such an interaction is important. For example, if

it were shown that sulfur oxides had an inhibiting effect on NO formation, it might be more desirable to remove the

sulfur in the stack rather than in the fuel before combustion.

To explore the theoretical basis for postulating a

sulfur oxides-nitrogen oxides interaction, the fundamentals

of NO formation must be reviewed. The atmospheric fixation

of nitrogen to nitrogen oxides has been described histori­cally by the Zeldovich (1946) mechanism, reactions (1) and

(2).1

2

N 2 + 0 = NO + N (1)

N + 0 2 = NO + 0 . (2)

In conjunction with the above mechanism, reaction (3) was considered equilibrated throughout the reaction zone:

0 2 = 20 (3)

Reaction rate considerations gave rise to the

argument that NO was a post flame phenomenon since reaction

(1) has a high activation energy and is slow. Lange (19 7 2) , however, found that reactions (1) - (3), when used in a model, tended to underpredict measured levels of NO in

atmospheric, premixed, hydrocarbon flames. Thompson, Brown,

and Beer (1972) sought to reconcile this discrepancy between theory and experiment by removing the restriction on 0-atom

concentration imposed by assuming reaction (3) to be equili­

brated. The existence of super-equilibrium concentrations

of atomic species in flames has been demonstrated in numerous experiments by Bulewicz, James, Padley, and Sugden [Bulewicz,

James, and Sugden (1956); Padley and Sugden (1958) ; and

Bulewicz and Sugden (1958)].

Thompson et a l . were able to adequately predict over­all NO-formation through the Zeldovich mechanism assuming

the existence of super-equilibrium 0-atom concentrations in

3the flame. These concentrations persist due to the termo- lecularity of the recombination reactions. They were able to estimate O-atom concentrations as 0, H, and OH form a partially-equilibrated group within the overall reaction

scheme linked by the fast reactions (4) - (6).

H + 02 = OH + 0 , (4)

H 2 + 0 = OH + H , (5)

OH + H 2 = H + H 20 (6)

Thus, reactions enhancing the rate of recombination of one

specie (0, H, or OH) will similarly hasten recombination of

the other two species. Therefore, should a compound catalyze

these recombinations, resulting in lower 0 -atom concentra­

tions, NO formation could be reduced.

Durie, Johnson, and Smith (19 71) showed SO 2 to be an effective catalyst in the recombination of excess H-atoms in

hydrocarbon flames. Halstead and Jenkins (196 9) demonstrated

the catalysis of H and OH by SO 2 in hydrogen flames. Theyhypothesized catalytic reactions as (7) - (9).

H + SO 2 + M HSO 2 + M , (7)

HSO 2 + H H 2 + SO 2 , (8)

HS02 + OH -* H 20 + SO 2 . (9)

4A review article by Cull is and Mulcahy (1972) gives

a possible route for S02/0-atom interactions through reac­

tions (10) and (11) .

SO2 + 0 + M-* S O 3 , (10)

SOs + 0 -» SO 2 + o 2 . (11)

Hence, adequate evidence exists to postulate an inhibition

of NO formation, through super-equilibrium O-atom recombina­

tions , by SO 2 .However, the magnitude of the role of super-

equilibrium 0-atoms has been questioned by Fenimore (1971) .In discussing rapidly-formed NO, he deprecated the role of super-equilibrium atom concentrations due to the inverse

relationship between flame temperature and radical overshoot.

As the overshoot in hot flames, as we are dealing with in

this thesis, was felt to be relatively small, Fenimore p o s ­tulated that the super-equilibrium atom route was insuffi­cient to explain measured results. Instead he proposed a

mechanism through cyanide reactions as in (12), then (13) .

CH + N 2 = HCN + N (12)

N + OH = H + NO (13)

This mechanism has received some support with respect to its

validity in hot, fuel-rich flames (Iverach, Basden, and Kirov 1973; Waldman, Wilson, and Maloney 1974).

From this review of fundamentals, several questions arise which must be answered. First, what role do super­equilibrium oxygen atoms play in NO formation in premixed, hydrocarbon flames? Second, does S02 catalyze super- equilibrium atom recombinations with sufficient rapidity to

inhibit overall NO formation? Finally, as S02 is not

initially present in combustion, is the formation of S02

from fuel sulfur sufficiently rapid to be essentially com­

plete while super-equilibrium atom concentrations persist?

The importance of this last question can be seen from an article by Levy and Merryman (1965) . Discussing H 2S com­bustion, they found H 2S disappearance to be essentially complete about 15 mils above the visible flame zone.Sulfur dioxide reached its equilibrium value at the same height. If inhibition occurs only through S02 as the

catalyzing agent, do significant quantities of S02 exist in

the region in which super-equilibrium atoms may govern NO

formation?To answer these questions, experiments were con­

ducted. These experiments were designed to examine the

magnitude of and operating conditions for any inhibition

which might occur through the addition of either S02 or H 2S

6in the fuel. The series of experiments conducted were not designed to yield specific rate data nor to study specific mechanisms although insight into applicable mechanisms was obtained.

In summary, these experiments sought to determine

the existence of and define the operating conditions for an.

inhibition of NO by SO 2 and/or H 2S. The project was thus of both practical and scientific significance. From a practical point of view, the information obtained could serve as a guide in selecting a strategy for S02 control,

for should an inhibition occur, then the removal of sulfur from the fuel would result in higher NO emissions than would

otherwise occur. From a fundamental point of view, insight

can be gained into the role of super-equilibrium oxygen

atoms in NO formation mechanisms as opposed to cyanide-

initiated reactions, and into the role of S02 catalyzed free radical recombination.

CHAPTER II

EXPERIMENTAL APPARATUS AND PROCEDURE

Premixed Combustor A schematic of the premixed combustor and supporting

equipment is shown in F i g . 1. A diagram of the burner it­self is shown in F i g . 2. The burner was constructed from1 5/8 inch OD, 1 inch ID stainless steel pipe. The inside

of the pipe was machined to a diameter of 1 1/2 inch, leav­ing a lip of the original diameter, approximately 1 inch

below the grid. The grid from a Meeker burner was used.

The lip served as a platform for a porous metal disk used

to flatten the velocity profile. The metal disk, from Michigan Dynamics, size 1WP24 x 110, 316 stainless, was

1 1/2 inches in diameter. A layer of glass beads was placed

on the disk to aid in attaining the proper laminar, flat

flame profile.The burner was wrapped with a cooling coil of. 1/8

inch OD copper tubing. The burner was located in a stand

with the lower end of the burner set into a slot in the

metal base plate. A similar plate rested on a flange around

the base of the burner. Wing nuts through both metal plates

were used to firmly seal the burner assembly and hold it on

the stand. The upper plate was also slotted to permit

T O A N A L Y S I S T R A I N

B U R N E RA S S E M B L Y

mV O L T M E T E R

T E M P E R A ­T U R EC O N T R O L L E R

M I X I N G ' / l e n g t h I

V A R I A C

I N S U L A T I O N

V A R I A C - f i t H E A T I N G T A P E S

P R E H E A T A S S E M B L Y

T O E X T E R N A L

P O W E R S O U R C E

R O T A M E T E R / V A L V E “ A S S E M B L Y

R E G U L A T O R /

L I N E F I L T E R

M E T H A N ES O 2 / H 2 SA M M O N I A

L O W P R E S S U R E A I R

Fig. 1. Schematic of Gas Supply System.

9

QUARTZ GLASS CHIMNEY

GRID

GLASSBEADS

POROUSMETALPLATE

MIXTURE INLET

COOLINGWATERCOIL

THERMO­COUPLE

PREMIXEDBURNER

FUEL and SO2 H2 S +AIR

T V 1u.

SWAGELOKFITTING

COOLINGWATER

F i g . 2. F l a t Flame Combustor.

10placement of a 3 inch OD quartz glass chimney, enclosing the burner. A piece of fire brick was placed on top of the

chimney.All tubing sizes were standardized to 1/4 inch 316

stainless steel on the inlet side and 1/4 inch Penntube I, flexible teflon tubing in the sample and analysis train.

The gas mixture was introduced into the burner below the porous metal disk. The end of the inlet tubing was sealed

and numerous small holes drilled around the circumference

to aid in distributing the gas mixture.The mixture was composed of air and methane plus an

additive. Potential additives were sulfur dioxide, hydrogen

sulfide, and ammonia. House, low presure air served as the

air supply. The line to the air rotameter contained a line

filter and a regulator. The remaining gases were obtained

from Matheson Gas Products (see Appendix 1).Gas flow rates were measured using Fisher-Porter

Tri-Flat Tube rotameters, calibrated at 5 PSIG. Each rota­meter and associated pressure gauge was isolated by valves

so that calibration conditions would be maintained. The

rotameters were calibrated using either a wet test meter or

the soap-bubble technique, depending upon gas flow rate and

solubility of the gas in water. When operating at high p r e ­

heat and high flow rates, difficulties arose in maintaining the select flows at 5 PSIG. Higher pressures were therefore

11u s e d . The flow rates were corrected for these new

conditions.From the rotameters, the air flowed into a prelimi­

nary heating unit while the remaining gases joined the air at the outlet of this heater. The heating unit was composed

of four Lindberg, Model 50201, Type 82-SP, heating units.

These units were connected to a source of power through,a

STACO, Type 500B, 7.5 amp, Adjust-a-Volt. The air flowed

through a 10-foot long coil of stainless steel tubing. The

preheater was insulated with Thermobestas pipe covering. A one-way valve was located before the hot air joined the other gases. The Lindberg heaters were to have been the

only source of preheat; however, heat losses in the long mixing section necessitated the addition of heating tapes

on the mixing length.The gas mixture flowed to the burner through approxi­

mately 15 feet of tubing. This length, including another

10-foot coil, was used to promote adequate mixing of the

components. The length was wrapped with four Briskeat h e a t ­

ing tapes, insulated with Thermobestas" pipe covering. These

tapes were connected to a Honeywell 105C4-PS-22 temperature

controller through a Superior Electric, Model 3PF 116, 7.5

amp Powerstat. The temperature was measured using an iron-

constantan thermocouple. A Doric, DS 100, integrating

microvoltmeter was placed in parallel with the temperature controller to provide an exact temperature reading. The thermocouple was located immediately below the lower metal

plate of the burner assembly.

Sampling and Analysis TrainA schematic of the sampling and analysis train can

be seen in Fig. 3. All tubing in the analysis train was 1/4

inch OD, flexible teflon tubing. All fittings and valves were either 316 stainless steel or teflon. The sample was taken with a 6 mm OD, quartz-glass probe drawn to an orifice

of 1 mm at the tip. This orifice served to quench the sampled gas, preventing reaction in the sample lines. The

quench effect was confirmed in runs in which the sample rate

was varied fourfold without changing measured NO concentra­

tions. The probe was connected to the analysis train by 1/4

inch OD, Penntube I, flexible teflon tubing. A knockout pot

for water vapor was located between the sample point and the

first three-way valve. The knockout pot consisted of a sealed Erlenmeyer flask, immersed in an ice bath.

The probe was mounted on a height-adjustable plat­

form. The probe could be positioned accurately to 0.03 mm,

using the scales on the platform. Heights were measured

using a cathetometer. The platform also held a mount for a tejnperatUre probe.

13

AIR BYPASS

FROM BURNER 7 ASSEMBLYP U M PFROM CALIBRA­TION GAS SOURCE

NO/NOXYGENMONITOR CHEMILUMIN-

ESCENT ' DETECTOR

PUMpb---GAS CHROM ATOGRAPH

S02DETECTOR

TO EXHAUST HOOD

HELIUM OXYGEN

Fig* 3. Schematic of Analysis System.

14The temperature probe consisted of an uncoated 0.001

inch diameter platinum/platinum-10% rhodium thermocouple,

mounted between two 6 mm OD quartz glass arms. The arms were arranged in the shape of a bow so that they did not impinge on the flame. The temperature probe was designed

as outlined in Fristrom and Westenberg (1965). The thermo­couple was purchased, ready-made, from Omega Engineering.

The wire proved inadequate to withstand conditions inside the chimney; only partial temperature profiles could be measured.

A three-way valve was positioned downstream of the

knockout pot. This valve was used to select either the

sample or a calibration gas. Three Matheson calibration

gases were available: sulfur dioxide in,nitrogen; nitric

oxide in nitrogen; and carbon monoxide in nitrogen. A b o t ­

tle of nitrogen, obtained from University Stores, was used as a zero gas (see Appendix 1).

A second three-way valve served to send the sample

or calibration gas through either of the two trains. One

sample train consisted of a Thermoelectron Model IDA

Chemiluminescent NO-NO^ Gas Analyzer. This instrument can.

detect nitrogen oxides in concentrations from 0.5 ppm to

10,000 p p m . The sample was pulled through the instrument by

a Metal Bellows M B -41 pump. As the other instruments had to

be located on the discharge side of a pump and the

15Thermo electron diluted, the exhaust g a s , two separate trains were necessary. This line initially .contained a particulate filter which was found unnecessary. It was removed to

eliminate a potential source of leakage.

The second analysis train consisted of a Beckman 715

Process 0 Analyzer, a Perkin-Elmer 154D Vapor Fractometer equipped with a Perkin-Elmer 154-0068 Precision Gas Sampling

system and a Theta Sensors Model LS-800AS Sulfur Dioxide Monitor located downstream of another MB-41 pump. The

Theta Sensors Monitor was positioned on a side stream, isolated with valves so that the sample flow through it could be accurately maintained at the recommended 0.5 to

1.0 c f h .

The Theta Sensors Monitor proved to be a source of

concern. The instrument was extremely sensitive to changes

in flow rate past the transducer. Response time was ex­

tremely slow compared to the other instruments, being on the

order of five minutes. The instrument was ordered with an extended upper range (0 - 10,000 ppm). The behavior of the

instrument under high concentrations of SO (greater than

6500 ppm) indicated the transducer may have become saturated at about 7000 ppm.

The chromatograph was used to measure CO. A Porpak

Q column was available with the instrument. Using Porpak Q,

16the CO-peak appears as a side peak on the nitrogen peak, complicating analysis of the results. The chromatograph was located such that the exact flow settings on the rotameters could not be checked at the instant when a sample was taken. Apparent anomalies exist in the CO-concentration data for

these reasons.

Experimental ProcedureEach series of runs were begun by calibrating the 0%

monitor to room air then noting the reading under a zero gas.

The sulfur dioxide monitor was also calibrated before each series. The Thermoelectron instrument was calibrated peri­

odically as it was found to hold calibration for extended

lengths of time. The carbon monoxide in nitrogen gas m i x ­ture was used to establish the correction factors for use

with the chromatograph.

The methane flow rate was held at 2.27 1/min through­

out the series of experimental runs. Air flow rates, probe

heights, and additive concentrations were then used as possi­

ble variables with each run. Preheat temperature and cool­

ing water flow were held constant during each r u n . Minimum

cooling water flow rates were used as the flame was well- • ' • stabilized under those conditions.

The flow meter readings were checked, any adjustments

necessary being made before each set of readings were taken.

17.

Oxygen and sulfur dioxide levels would be read and a

chromatograph run (if taken) started. The sample would then be switched to the chemiluminescent detector. The flow

meter settings would again be checked and a nitrogen oxides

reading taken. Nitric oxide and combined nitrogen oxides (N0X ) readings were obtained in fuel-lean regions. In near- stoichiometric and fuel-rich regions, combustion debris tend

to nullify the action of the catalytic converter. No nitro­gen oxides (N0x ) readings were taken in these regions.

Data reduction was by means of a computer program,

run on the GDC 6400 computer. The program calculated parts

per million NO, corrected to stoichiometric air and the r a ­tio of actual air to stoichiometric air. Calculations of

total molar flow rates were made in two w a y s , using only

input parameters and using experimental results to correct the input parameters. The percent CO values used in the

program were obtained by a combined area calibration analy­sis and internal normalization technique.

The data presented as points 376 - 56 7 were taken after the ammonia runs. During the experiments using ammo­

nia, the combustor became clogged with the product of the

H 2S/NH3 reaction. The final points were taken after all

equipment had been disassembled and cleaned. The old cool­

ing coil was replaced and a slightly higher cooling water

18flow was required to stabilize the flame within the previous operating limits.

CHAPTER III

RESULTS

Premixed Combustor Performance Prior to experimental work using sulfur dioxide,

runs were taken to insure proper performance of the premixed combustor. Figure 4 presents parts per million NO, in the exhaust (adjusted to 100% stoichiometric air), plotted against percent stoichiometric air for inlet mixture pr e ­heats of zero and 240°C. The measurements, taken 7.0 cm

above the burner grid, show a maximum to occur slightly on the fuel-lean side of stoichiometric air. Without preheat,

this maximum value is 152 ppm NO, while at 240°C preheat,

the maximum value is 232 ppm NO. Exhaust NO levels appear

to drop off rapidly as the flame becomes either more fuel

lean or more fuel rich.These maximum NO levels are considerably higher than

those typically found in the literature (Sarofin and Pohl

1973). The high values for exhaust NO can be attributed to

the high temperatures of the flames in this study. Partial temperature profiles are shown in Table 1. More complete temperature data were not obtained as the uncoated platinum/

platinum-10% rhodium thermocouples melted under conditions ©

19

Q RUN I

RUN 2

O RUN 3 A R U N 4

O R U N 5

2 5 0 - -

200-7

OrS 9

%\

a

240 °PREHEAT

NO PREHEAT

8 0 9 0 100 110 120

% STOICHIOMETRIC AIR

Fig. 4. NO Exhaust Emissions - - Base Case

Table 1„ Incomplete Temperature Profiles

21

Percent Stoich. Air

Height (cm) (above grid)

Percent SO in Fuel

Temperature(°K)

118. 7.3 0.0 ■ 1878.

6.1 0.0 1913.

3.1 0.0 1968.

1.2 0.0 1993.

0.6 O o 2006.

7.3 2.5 1878.

6.1 . 2.5 1912.

3.1 2.5 1971.

1.2 2.5 1996.

0.6 2.5 2006.

7.3 4.9 1868.6.1 4.9 1903.

3.1 4.9 1963.1.2 4.9 19 86.0.6 4.9 1997.

103. 7.3 O o 1940.6.1 0.0 1983.5.0 oo 2013.

22in the combustor. Table 1 a lso i n d i c a t e s , i n c i d e n t a l l y ,

th a t the presence o f SO2 had l i t t l e e f f e c t on the tempera­

tu res measured.

Figure 5 represents the change in NO as a function

of distance for three air flow rates and the two previously mentioned preheat conditions. Essentially all nitric oxide

formation occurs within 6.0 cm of the grid. Thus the data

in F i g . 4 and all other data taken at 7.0 cm do represent

final exhaust NO levels. The data in F i g . 5 indicate that at very substoichiometrie conditions preheat has little effect on final NO values. In addition, essentially all NO formed under very fuel-rich conditions is formed near the flame front (less than 0.5 cm above the grid). Finally, more early-formed NO is produced under very fuel-rich con­

ditions than under very fuel-lean conditions. These results

are in. line with those of Fenimore (19 71).

Table 2 demonstrates the one-dimensional nature of

the flame. Locations across the burner surface are approxi­

mate, but the data show an essentially flat concentration profile. The effect of cooling water flow rate is shown in

Table 3 where a decrease in exhaust NO is caused by an in­

crease in cooling water flow. Cooling water flow rates are

given qualitatively rather than quantitatively.

PPM

NO

(STO

ICH.

)O 80.1% STOICH. AIR D 10! % STOICH. AIR

0 117.5% STOICH. AIR

- NO PREHEAT- 240* PREHEAT

200

150

100

50

2.0 4.0 1 0 15 20 25TIME (MILLISECONDS)

.Fig. 5. Exhaust Levels of NO Achieved Rapidly.

24Table 2. Flame Is One-Dimensional

Percent Stoich. Air

Height (cm) (above grid)

Location (across burner

' surface)NO

(ppm)

95. 1 . 0 Center Line (0.0) 59.1 .0 Left 0.3 inches 58.1 . 0 Right 0.3 inches 58.1 . 0 Left 0.45 inches 58.1 . 0 Right 0.45 inches 55.1 . 0 Left 0.6 inches 57.1 . 0 Right 0.6 inches 46.

2 . 2 0 . 0 inches 57.2 . 2 0.3 inches 57.2 . 2 0.45 inches 53.

- 2 . 2 0 . 6 inches .. . . .4.7.

1 2 2 . 0.15 0 . 0 inches 56.0.15 0.3 inches 57.0.15 0.45 inches 52. .0.15 0 . 6 inches 51.

0.7 0 . 0 inches 6 8 .0.7 0.3 inches 67.0.7 0.45 inches 61.0.7 0 . 6 inches 58.0.7 0.45 inches . . 6 4 .

1.5 0 . 0 inches 78.1.5 0.3 inches 73.1.5 0.45 inches 63.1.5 . . .0 . 6 i n c h e s ..... .....5.3..

Table 3. Burner Cooling Decreases NO

Percent Stoich. Air

Height (cm) (above grid)

Cooling Water Flow

NO(ppm)

97. 8.5 Intermediate 1 1 2 .8.5 Minimum 117.8.5 Maximum 1 0 2 .8.5 Maximum 97.8.5 Intermediate 107.8.5 Maximum 109.8.5 Intermediate 1 0 2 .8.5 Intermediate 1 1 2 .8.5 Minimum 114.8.5 Minimum 115.8.5 Minimum 117.8.5 Minimum 115.8.5 Maximum . . 1 0 2 .

87. 8.5 Maximum 63.8.5 Intermediate 69.8.5 Intermediate 6 8 .8.5 Minimum 71.8 . 5 Minimum 71.8.5 Intermediate 69.8.5 Intermediate 67.8.5 Maximum .... .....6.2 .

113. 8 .5 Intermediate 47.8.5 Minimum 52.8.5 Minimum 49‘.8.5 Minimum 50.8.5 Intermediate 51.8.5 Maximum 45.8.5 Maximum . . . . 51.

26Both NO and NO^ levels were measured under fuel-lean

conditions. No difference was found between NO and N0x near stoichiometric air flow rates. Several part per million

differences were noted under the most fuel-lean conditions. These differences were not considered significant. These

results show that the combustion rig was operating normally

and significant NO^ emissions were produced under conditions

utilized.in succeeding experiments.

Effect of SOgFigures 6 and 7 show the effect of 4.9% S0 2 in the

fuel on NO emissions at various air-fuel ratios with no preheat (Fig. 6 ) and with 240°C mixture preheat (Fig. 7).

These figures show that S0 2 inhibits NO formation. Without

preheat, reductions in NO emissions range from 6.0 ppm

(16%) at 80.1% stoichiometric air through 50.0 ppm (35.7%) at 101.3% stoichiometric air, to 16.0 ppm (13.9%) at 117.4%

stoichiometric air. With preheat, reductions are 13.0 ppm (23.2%), 60 ppm (30.0%), and 22.0 ppm (21.6%), respectively.

The inhibitory effect seems to be most pronounced in the

slightly fuel-lean region (1 0 0 -1 1 0 % stoichiometric air).

Preheat does not appear to affect the percentage

inhibition of NO by S 0 2 as shown in Table 4. The actual

reduction in ppm NO is, of course, greater in the high p r e ­heat case. Also shown in Table 4 are data from a different

O RUN I0 RUN 2

A RUN 6 Q RUN 7

NO PREHEAT

150

0%S0

--100

■■ 50

80 90 100 110 120

% STOICHIOMETRIC AIR

F i g . 6 . S0 2 Inhibits NO Formation at Zero Preheat.

0 RUN 3 0 RUN 4 O RUN 5 <C>RUN 8 □ RUN 9

240 C PREHEAT

2 5 0 - -

200--:

0% SO?

4 .9 % SO? \

80 90 100 110 120

% STOICHIOMETRIC AIR

Fig. 7. SO2 Inhibits NO Formation at High Preheat.

Table 4. Significant Reduction in Exhaust NO Achieved'with 80%

Percent Stoich,

Air

Reduction in NO^ Emissions

2.56% SO 2 in Fuel 5.2 % SO 2 in Fuel

Without Preheat 2 4 0 ° C Preheat Without Preheat 240 °C Preheat

ppm . % ppm % ppm . % ppm %

80.1 7.0 1 2 . 6 6 . 0 10.7 6 . 0 16.0 13.0 24.6

90.0 - - ---- 9.0 17.3 15.0 23.1

101.3 2 2 . 0 14.0 2 1 . 0 1 0 .1 50.0 35.7 60.0 30.0

103.0 ---- ---- - ---- 40.0 26.0 6 8 . 0 30.4

1 1 0 . 0 ---- ---- ---- - 27.0 24.5 60.0 26.4

117.4 1 2 . 0 11.7 37.0 27.4 16.0 13.9 2 2 . 0 2 1 . 6

tsJto

30flame, operated under lower burner cooling rates, resulting in a higher NO base-level. The data, corresponding to 2.5%

S0 2 in the fuel, indicate that decreasing the level of S0 2

in the fuel decreases the inhibition of NO, until for very

low sulfur levels of 0 .8 8 % the inhibition effect is within experimental error. Complete data, both raw and reduced, are presented for both flames in Appendices 2 and 3.

Figure 8 shows nitric oxide concentrations (adjusted to 1 0 0 % stoichiometric air) as functions of distance above

the burner grid. These runs were taken at 118.5% stoichio­metric air, without preheat, and then with 240°C mixture

preheat. The data show early-formed NO to be significantly

inhibited by S02 .

Figure 9 presents data on the effect of SO 2 on

early-formed NO at various air-fuel ratios. The measure­ments were taken 0.3 cm above the grid. The actual location

of the peak NO formations at this height cannot be stated

with certainty as only three fuel-air ratios were sampled^ Percent reductions in early formed NO are as high as 15%

(10 p p m ) . No substantive change in percent reduction with

preheat can be seen.

PPM

NO

(STO

ICH

.)

150 - O No Preheat

O No Preheat

O 240® C Preheat

O 2 4 0 ° C PreheatFLAME

FRONTS02

in fuel

0 .0% S02 4.9% SO 2

.5 1.0TIME (MILLISECONDS)

Fig. 8 . S O 2 Decreases Rate of NO Formation near the Flame.

240°C PREHEAT

50"

2 5 --

N0 PREHEAT

50

(Z)

80 90 100 110 120

% STOICHIOMETRIC AIR

Fig. 9. Early-Formed NO Inhibited by S02.

' Effect of H 2S

Having demonstrated an inhibitory effect with S02 , experiments were conducted using H 2S in place of S02 as a fuel additive. As fuel sulfur is found in a reduced rather than oxidized state in most fossil fuels, demonstration of an inhibition using such a reduced-sulfur compound is vital.

Figures 10 and 11 show that an inhibition of NO by H 2S does

occur. In F i g . 10, for experiments without mixture preheat,

the effect is shown for two levels of H 2S in the fuel 2.64% and 5.3%. These levels correspond, roughly, to those

used in the S0 2 experiments. The values of percent stoi­chiometric air reported do take account of the fact that

addition of H 2S changes the overall air -fuel ratio. The

inhibition is seen to. increase with increasing H 2S in the

fuel-lean region. Below 103% stoichiometric a i r , no differ­

ence between the curves can be distinguished. Reductions, with 5.0% H 2S in the fuel, range from 8.0 ppm (14.6%) at 90%

stoichiometric air to 28.0 ppm (18.9%) near the peak NO

level, and finally rising to 30.0 ppm (31.6%) under very

fuel-lean conditions. For the lesser amount of H 2S , the

reductions are 8 . 0 ppm (14.6%), 17.0 ppm (11.4%), and 15.0

ppm (15.8%) , respectively.

In F i g . 11, for 240°C preheat, the inhibition effect

of H 2S is seen to increase with increasing H 2S for all

O RUN I □ RUN 2

<0>RUN 14

RUN 15

NO PREHEAT

0 RUN 16

£3 RUN 17

■'/IOO

2.6% HoS

5 04 5.0% H2S

120no1009080

% STOICHIOMETRIC AIR

Fig. 10. H 2S Inhibits NO Formation at Zero Preheat.

o RUN 3 □ RUN 4

O R U N 5

Cl RUN 18 0 RUN 19

a RUN 20 0 RUN 21

240°C PREHEAT

0% HoS

2.6% HoS

5.0% HoS

90 100 110

% STOICHIOMETRIC AIR

^ig. 11. H 2S Inhibits NO Formation at High Preheat

fuel-air ratios examined. With 5.0% H 2S in the fuel, reductions increased to 20.0 ppm (30.8%) at 90% stoichio­metric air, 75.0 ppm (34.0%) at 103% stoichiometric air and 48.0 ppm (29.4%) under very fuel-rich conditions. This

increase over the no preheat data indicates that preheat does affect the inhibition for a high H 2S level. With the lesser amount of H 2 S. (2.64%), the corresponding reductions

were 10.0 ppm (15.4%), 50.0 ppm (2 2 .8 %), and 23.0 ppm

(14.1%), respectively. The increase in inhibition with preheat for 2.6% H 2S in the fuel is not as marked as with

5.0% H 2S in the fuel. This data can be seen, summarized, in

Table 5.Comparing the data from Tables 4 and 5 for high H 2S

and. h i g h ■SO ■levels, preheat can be seen to play a role with H 2S that it does not play with S02 . Without preheat, inhibi­

tions caused by high levels of S0 2 exceed those caused by high levels of H 2 S. With preheat this difference vanishes.In fact, a larger inhibition was seen at some points with

H 2 S. In general, the effect of highest level of both H 2S

and S0 2 is to produce reductions on the order of 28% with

high preheat.

The lower effectiveness with lower preheat of H 2S may be attributed to the time required for the H 2S to be

converted to S0 2 in the flame region. This explanation

Table 5. HzS Similarly Reduces Exhaust NO

PercentStoich.

Air

Reduction in NO Emissions

2.60% H 2S in Fuel 5.0% H 2S in Fuel

Without Preheat 240 °C Preheat Without Preheat 240°C Preheat

ppm % ppm % ppm % ppm %

80 5.0 11.4 7.0 13.2 5.0 11.4 13.0 24.6

90 8 . 0 14.6 1 0 . 0 15.4 8 . 0 14.6 2 0 . 0 30.8

1 0 0 28.0 23.3 26.0 17.1 28.0 23.3 42.0 27.7

103 17.0 11.4 50.0 2 2 . 8 28.0 18.9 75.0 34.0

1 1 0 15.0 1 1 . 1 44.0 19 .1 26.0 19.4 63.0 28.0

115 15.0 15.8 23.0 14.1 30.0 31.6 48.0 29.4

*<1

38would be in accord with the decrease in effectiveness shown

in the fuel-rich region at low preheat as H2 S generally does

not undergo complete conversion to S02 under fuel-rich

conditions.

Figure 12 shows the effect of H2 S on near flame NO. Again preheat appears to improve the reduction in early- formed NO under fuel-lean conditions. Under very fuel-rich conditions, H2 S has little or no effect on NO for either preheat. This lack of effectiveness under very fuel-rich conditions and high preheat disappears with height. Such a

tendency is in line with the argument that a significant

time is required for complete conversion of H 2S to S02 under

/these conditions.

Figures 13 and 14, taken without preheat, present profiles of NO, 0 2 and S0 2 against time. The time axis

presented reflects the fact that H 2S represents additional

fuel while S0 2 does not. The addition of H 2S increases the• - • /flame temperature, used in calculating exit velocities,

some 200°K (from 2200°K to 2400°K). Therefore times shown

for H 2S represent a greater distance above the grid than corresponding times for S02 . The visible flame zone was broader with H 2S than with S02 .

In Fig. 13, representing data at 98% stoichiometric

air, H aS conversion to S0 2 is essentially complete at the

39

240° PREHEAT

5 0

- 2 5

NO PREHEAT

O <>02 5 -

CL

1108 0 1209 0

% STOICHIOMETRIC AIR

Fig. 12. Early-Formed NO Inhibited by H 2S .

120 6 5 0 0 -

FLAME FRONTIOC

SO

MO80

NO 6 0 0 0

E 6 0CLC l

4 0

20 - 5 5 0 0 -

20.05.0 10.0TIME (MILLISECONDS)

2 .51.0

Fig. 13. Conversion of H2S to S02 Is More Rapid than NO Formation --Fuel-Rich Conditions. o

S02

(ppm

)

NO

x I0

°(p

pm

)/0

2x

10'

(%)

6 0 0 0120

100 FLAME FRONT NO

S O a80

5500

60

40

5 0 0 020

™ihr 10.0 20.02.51.0TIME (MILLISECONDS)

F i g . 14. Conversion of HzS to SO 2 Is More Rapid than NO Formation-- Fuel-Lean Conditions.

S02

(ppm

)

42end of the visible flame region while NO has attained 70% of its final value. In F i g . 10, it can be seen that this

fuel-air ratio falls in the region in which changes in addi­tive concentration do not affect percent reduction although a percent reduction is achieved.

In F i g . 14, representing data at 113.5% stoichio­

metric air, HgS conversion is again essentially complete at

the flame front while NO has only attained 34% of its finalevalue. It should be noted that, in both figures, even when NO levels are very low (less than 10.0 p p m ) , HgS conversion

is roughly 92% complete.H%S does reduce overall NO. Inhibitory effects

using HzS is more sensitive to preheat for high concentra­tions in the fuel. Strong evidence exists to suggest HgS

acts to reduce NO through the rapid conversion of HzS to S O a .

Ammonia-HzS Effects

In an attempt to gain some insight into the effect

of sulfur compounds on fuel nitrogen, methane-ammonia-air

mixtures were burned with and without hydrogen sulfide. The ammonia constituted roughly 1.1% of the fuel. The results

are presented in Table 6 . Without HgS, extremely high

levels of NO were formed (1,000 - 2,000 p p m ) . The amount

appears to depend strongly on fuel-air ratio, varying from

about 1,200 ppm at 84.0% stoichiometric air, to 1,500 ppm

43Table 6 . Ammonia-Hydrogen Sulfide

Results

Percent Stoich.

AirHeight n h 3

FlowSO 2 ppm

NOppm

NOxppm

118.5 0.05 0.0 25 0 . 0 162. 278113.2 0.05 0.0 25 4400. 159. 318118.5 0.25 0.02 5 0 . 0 1896 . 1955113.9 0.25 0.025 4800 . 1480 . 1500118.5 0 .6 0.025 0 . 0 1984. 2040113.9 0 . 6 0.025 4900. 1537. 1540118.5 3.1 0.025 0 . 0 2014. 2080113.9 3.1 0.0 25 4800 . 1594. 1640118.5 7.05 0 . 025 0 . 0 2014. 2080113.3 7.05 0.025 3700. 1500. 15901 0 2 . 2 0.05 0.025 0 . 0 : 889 .98.2 0.0 5 0.025 6200. 727.

1 0 2 . 2 0.25 0.025 . 0 . 0 1431.98.2 0.25 0.025 6500. 1154. N°x

1 0 2 . 2 0 . 6 0.025 0 . 0 1457. data98.2 0 . 6 0.025 6800 . 1179 . not

1 0 2 . 2 3.1 0.025 0 . 0 1533. take]98.2 3.1 0.025 6800. 1130 .

1 0 2 . 2 7.05 0.025 0 . 0 153398.2 7.05 0.025 6800 . 1081.

44Table 6 Continued

Percent Stoich.

AirHeight N H 3

Flow• SO 2

p p m

NOp p m

NOxp p m

84.3 0.05 0.025 0 . 0 126,080.5 0.05 0.025 6800 . 1 1 .0 *84.0 0.25 0.025 0 . 0 1197.80.4 0.25 0.025 6900. 650 . NO

x

84.0 0.60 0.025 0 . 0 119 7. data80.3 0.60 0.025 69 00. 650. . not84.0 3.1 0.025 0 . 0 1197. taken80.2 3.1 0.025 6900 . 626.84.0 7.05 0.025 0 . 0 1176.80.2 . 7.05 - . . 0.025 6900. 513.

118.5+ 0.25 0.025 0 . 0 1896.113.9 0.25 0.025 6100. 1594.118.5 0 . 6 0.025 0 . 0 1925.113.9 0 . 6 0.025 6000. 1594. -

118.5 3.1 0.025 0 . 0 2103. NOX

113.9 3.1 0.025 6200. 1566 . data .118.5 7.05 0.025 0 . 0 2044. . not113.9 7.05 0.025 5900 . 1423. taken1 0 2 . 2 0.25 0.025 0 . 0 1431.1 0 2 . 2 0 . 6 0.025 0 . 0 1508.1 0 2 . 2 3.1 0.025 0 . 0 1553.1 0 2 . 2 7.05 ■ 0.02 5 0 . 0 1533.

*Value measured below flame front. tData in this section taken at 240°C preheat.

at 102% stoichiometric ai r , to 2,000 ppm at 118.5% stoi­chiometric ai r . Conversion to NO appears to occur rapidly

as the value at 0.25 cm above the grid differs from the final value, at 7.05 cm above the grid, by no more than 6.5%. Under very fuel-rich conditions, conversion of NHg to NO ceases beyond the visible flame zone. Partial data are shown for high preheat which indicate conversion is not

dependent on preheat.With the addition of HgS, the reduction in NO

appears to be very large. However, near the end of these

runs under high preheat conditions, the combustor became plugged by a white powder. The plugging indicated a reac­

tion was occurring between H 2 S , NHg, and possibly air, yield­

ing an ammonium sulfide or sulfate. Therefore, the reduc­tions in NO are probably not due to any inhibitory effect within the flame. It should be noted, however, that S0 2

readings indicated S0 2 levels for stoichiometric and fuel-

rich operations consistent with those found in the previous experiments (without ammonia). Values of about 6,800 -

6,900 ppm SO 2 were measured with and without N H 3 . If appre­

ciable amounts of H 2S react with ammonia prior to combustion, the S0 2 reading should be lowered roughly the same amount as

the measured NO (200 - 300 p p m ) . No such reduction in S0 2

values were noted for stoichiometric and fuel-rich conditions.

CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

Conclusions Both SO 2 and H 2S inhibit NO formation from

atmospheric fixation, resulting in lower NO exhaust emis­

sions. The results indicate that desulfurization might

Increase NO^ emissions, from fixation, by up to 50%.The magnitude of the NO inhibition depends upon

flame conditions. Inhibition by S0 2 and H 2S occurred for all air/fuel ratios examined but the effect was most p r o ­nounced in the region of maximum NO formation. Percent inhibition of NO by S0 2 did not depend on preheat while

percent inhibition by HzS did. Without preheat, the effect

of H 2S was less pronounced than that of S0 2 but at high pre heat, reductions in NO by H 2S equalled or exceeded those

found at high preheat with S02 .

Increased concentrations of SO 2 in the fuel were found to be of increasing effectiveness in reducing NO.

Similar behavior occurred with increasing concentrations of

H 2S under high preheat. Without preheat, increasing concen

trations of H 2S did not improve the percent reduction of NO under fuel-rich conditions.

47The inhibition of NO occurs through SO 2 , and the

rate of conversion of fuel sulfur compounds to SO 2 deter­mines their effectiveness as inhibitors. In using H 2 S as

the sulfur compound, the data indicate that:H 2S approaches its final value in SO 2 rapidly

compared to the formation of NO in the flame;

H 2S approaches its final value in SO 2 more rapidly under fuel-lean than fuel-rich conditions, when compared with NO formation. These data support that of Johnson, Matthews, Smith, and

Williams (1970) ;Under fuel-rich conditions or with no preheat

when H 2S conversion to S0 2 would not be as rapid,

H 2S was less effective than S0 2 in inhibiting NO;

At high preheat, H 2S and SO 2 were equally effective in inhibiting NO. H 2S dissociates in

the pre-flame region by an endothermic reaction

above 600°K, leading to early S0 2 production

[Merryman and Levy (1967)] . Such a dissociation . under preheat conditions would explain the improved

inhibition by H 2 S.

The evidence indicates that inhibition of NO occurs

through the interaction of S0 2 and super-equilibrium oxygen atoms. Under all conditions examined, the presence of S0 2

48lowered the rate of NO formation near the reaction zone,

presumably by acting as a catalyst for oxygen atom recom­

bination. This is consistent with the data of Thompson, Brown, and Beer (19 72) who found that high NO formation rates near the flame front could be explained by super­

equilibrium oxygen atoms. Halstead and Jenkins' (196#) and Levy and Merryman (1965) showed S 0 2 catalyzed H and O-atom recombination reactions. Oxygen atom recombination catalysis

by S O 2 extends beyond the flame zone because super­equilibrium atom concentrations persist well into the burnt gas region, even at very high flame temperatures [Bulewicz

and Sugden (1958)].The magnitude of NO reduction indicates the

importance of super-equilibrium oxygen atoms in forming NO.

The reduction in early-formed NO under very fuel-rich condi­

tions indicates that super-equilibrium oxygen atoms may be

important there although the exact mechanism of prompt NO is not known.

Early-formed NO found in significant (50 ppm)

amounts behaved as the "prompt-NO” described by Fenimore.

Early-formed NO had the following characteristics:

In the fuel-rich region it constituted the

majority of measured NO (90% for very fuel-rich conditions) and exceeded that formed in the fuel-lean region; ,

49It appeared insensitive to preheat;

It was inhibited by S02 , through atom recombination catalysis, throughout the range

of operating conditions examined.No definitive conclusion can be drawn from the work

on NH3/H2S interaction. Neither a preflame reaction between

NH3 and H 2S nor a significant inhibition of NO from fuel nitrogen can, either possibility considered separately, explain the results in Table 6 .

Recommendations for Future Work(1) Further flat flame studies should be conducted

to define the effect of sulfur compounds on fuel nitrogen

compounds such as cyanogen. These studies would remove the

ambiguity from the results found in this study using ammonia.

(2) To gain more detailed insight into mechanisms of

NO formation from both atmospheric and fuel nitrogen, of NO

inhibition and of post-flame reduction, more detailed experi­

ments on additive effects in flat flames should be conducted.

These studies should include more complete concentration

profiles of stable species and detailed temperature profiles. The additive study could be extended to other fuels such as

CO/H 2 and hydrocarbons in place of methane.

(3) In an effort to establish a predictive tool for

nitrogen oxides formation under a wide variety of fuels.

additives, and combustion conditions, a modeling study is

necessary. Using the experimental work described in items and 2 above, a model for NO formation could be developed

using experimental results to calibrate that model with a

few simple experiments.(4) Work on inhibition, of NO by SO 2 should be

extended to include diffusion flames. As the inhibitory

effect of bound-sulfur compounds is dependent upon their rate of conversion to 80%, studies must be conducted in which fuel-air mixing is the controlling factor.

APPENDIX 1

LIST OF GASES UTILIZED

GasMethane

Sulfur Dioxide Hydrogen Sulfide Ammonia

9% CO in N 2

2250 ppm SOa in N 2

226 ppm NO in N 2

Nitrogen

Grade

C.P.

C.P. Anhydrous

Certified Standard

Certified Standard Certified Standard

Supplier

Matheson

Matheson

Matheson Matheson

Matheson

Matheson

Matheson

University Stores

51

APPENDIX 2

' RAW DATA -- LIST

The following tables list all data taken in thisw o r k . Appendix 2 contains the raw data and conditions for each experimental point. Appendix 3 presents the results of

the data reduction program: a list of point number; ppm NOcorrected to 100% stoichiometric ai r ; and the ratio of actual air flow over stoichiometric air flow.

The figures and tables presented in this thesis are

extracted from the data points as follows:

Figure Run Points

4, 6, 10 1 414 - 424

4, 6, 10 2 425 - 435

4, 7, 11 3 482 - 4904, 7, 11 4 491 - 499

4, 7, 11 5 240, 241, 312, 3

6 6 464 - 472

6 7 473 - 4817 8 500 - 5077 9 508 - 515

10 14 452 - 457

52

Figure Run Points10 15 458 - 463

10 16 436 - 44310 17 4 4 4 - 4 5 1

11 18 534 - 541

11 19 542 - 549

11 20 516 - 52411 21 525 - 533: 8 10 - 13 211 - 250

13 - 550 - 55814 - 559 - 567

5, 9, 12 - selected from 1 - 135 and.252 - 292

Table Point No.

1, 2, 3 568 - 624

4 (Flame 1) 1 - 413 (selected p t s .)

4 (Flame 2) 414 - 567 (selected pts.)5 436 - 463

6 345 - 386

Flame 1 was used to collect all data points between 1 and

413, 568 and 624. Flame 2 was used to collect all data

points between 414 and 567. Numbering of the data points

does not imply any chronological order.

54

POINT NC. c o M n r r i c m s FLOW OATESPREHEAT TEMP. PROSE HI. m e t h a n e air

1 0 • 0 .30 2. 27 17.40Z 0.0 3.0 0 2. 27 17.403 0.0 6.30 2.27 17.404 0.0 6.30 2.27 17.405 0.0 3. 0 0 2.27 17.406 0.0 . 3 0 2.27 17.407 0. 0 .33 2.27 17.408 0. G 3.00 2.27 17.409 0.0 6.30 2.27 17. 40

10 OdO 6, 30 2.27 17.4011 - 0. 0 3.0 0 2.27 17.4012 0. c .30 . 2.27 17.4 013 Q.G .30 2.27 17.4014 0.0 3.30 2.27 17.4015 0.0 6.3.0 2.27 17.4016 0.0 2.27 2 2.0017 O.C 2.27 22.0016 0.0 2.27 22. 0019 0.0 2.27 22.0020 0.0 2. 27 22.0021 0.0 2.27 22.0022 0.0 2.27 22.0023 O.C 2.27 22.0024 0.0 2.27 22. 0025 0.0 2.27 22.0026 0.0 2.27 22.0027 0.0 2.27 22.0026 O.C 2.27 22.0029 0.0 2.27 22.0030 0.0 2,27 22.0031 0.0 2.27 25. 5332 0.0 **** 2.27 25.5333 0.0 2. 27 25.5034 ■ 0.0 2,27 25,5035 0.0 2.27 25.5036 0.0 2.27 25.5037 0.0 2.27 25.5036 0.0 2.27 25.5039 0.0 2.27 25.5040 0.0 2.27 25.5041 0.0 2.27 25.5042 0. 0 2.27 25.5043 0.0 2.27 25.5044 0.0 2.27 25.5045 0.0 **** 2.27 25.5046 150.0 6,40 2.27 17.4047 150.0 3.10 2. 27 17. 4048 150.0 .30 2,27 17.4049 150. 0 6.40 2.27 17.4050 0.0 3.10 2.27 17.4051 150.0 .30 2.27 17.4052 150.0 .30 2.27 17.4053 150.0 3.10 . 2.27 17.4054 150. C 6.40 2.27 17.4055 150.0 6,40 2.27 17.40

CL/MI.N I E X P E R I M E N T A L UA 1 ASO 2 H2S NH3 *10 2 PPMSO2 PFMNO

3.0 0 - . 3 3 - • 0 C 0 0.00 1.44 0.3 65.30.00 -.00 - , OGC 0.#3C 1.44 0.0 69.0C.00 -.03 -.000 o Zoo 1.44 0.0 68. 0.02 03 -.000 0.00 1.44 1050.0 • 66. 0.02 - * 0 3 - . ogo 0. OG 1.44 1045.0 66.0.02 - . 30 -.0 00 0.00 1.44 1120.3 64.3.04 -.00 -. 000 0.00 1.44 2 2 3 C . 0 62.0.04 30 000 0.00 1,44 2310,0 64.C.04 -.0 0 -.000 0.00 1.44 2400.3 65,0.06 -.00 CCG 0 • V u 1.44 3530.C 60. 0.06 -.0 0 ono 0.03 1,44 3533.0 64.0,06 -. 00 -.000 0.00 1.44 ■3550.0 59.0.12 -. 30 -.000 0.03 1.44 6900.0 56.0,12 -.30 -.0 00 0.0 3 1.44 6900.0 56.0.12 -.30 -. cco 0.0 0 1.44 6900.0 56.0

0.0 0 -,0 0 -.000 0.00 0.00 0.0 155.00.00 -. 33 -.000 0.00 0.00 G.O 150.00.00 -. 00 -. oco 0. 00 0.00 0.0 65.0.02 -.GO -« 0 C 0 0.00 O.CO 1035.0 61, C.02 -. 00 -.0 00 0.00 0.0 0 1035.0 145.0,02 -.0 0 -.000 0. OG 0.00 1035.0 145.0.04 -. 0 0 -.000 0 . 00 0.00 2010.0 14 5.0.04 -.30 -.000 0.30 0.03 2040.0 140. 3.04 -.00 -.0 00 0.00 0.00 2070.0 63.0.06 -.00 -.000 0,00 0.00 2900.0 57.0• 0 6 -.00 -.0 00 0. 00 0.0 0 ****** 134.0.06 -.01 -.oco C.00 0.0 3 2900.0 144.0.12 -.00 -.oco 0.00 0.00 6900,3 135.0.12 -.00 -,0G0 0.00 0,00 6900.0 113.0.12 -.00 -.000 0.00 0.30 690 0.0 52.C

0.00 -.03 -.000 2.1.0 3,00 G.O .27.30. 00 -.03 -.000 1.90 0.00 0.0 68.00.00 -. 30 -.0 00 2.00 0.00 0.0 96.0.02 -.00 -.000 2.10 0.00 96 0.0 7 3.0.02 -.00 -.000 2.00 0.00 990.0 66.0.02 -.00 -.3 00 2.00 0,01 990.0 31.0,04 -.03 -.0 00 2.00 0.00 1710.0 26*0.04 -.00 -,GCC 2.GO 0.0 0 1710.0 64.0.04 -.0 0 -.000 2.00 . 0.0 0 1770.0 74.0.06 -. GO -.003 2.0C 0,00 2 53 0.0 72.3,06 -. 00 -.000 2.00 0.00 2500.0 57.3,06 -.0 0 -.000 2.00 0.00 2500.0 24.0.12 -.00 -.000 2.00 0.00 6100.3 23.0.12 -.0 0 -.000 2.10 0.0 0 610 C.0 55.0.12 -.30 -.000 2.00 O.CO 6230.0 58.0

0.00 -.00 -. 000 0.00 1.4 0 5.0 70.30.0 0 -. 00 000 0.00 1.40 G.O 70.00.00 -.00 -.0 00 C. CO 1.40 0.0 66.0.02 -.00 -.oco 0. CO 1.40 1050.0 69.0.02 -.00 -.000 0.00 1.40 1140.0 67.0.02 -.30 -.oco 0.00 1.40 1115.0 65.0.04 -.00 -.000 fl.CG 1.40 2340.G 62.0.04 -.00 -.oco G. 3 0 1.43 2325.0 67.0.04 -.00 -.000 0.00 1.40 2310.0 67.0.06 -.00 — .300 0. GO 1.40 3400.0 65.0

55

POINT NO- CONDITIONS FLOW RATES tL/MIN* EXPERIMENTAL DATAPREHEAT TEMP. PRODE HT. m e t h a n E AIR S02 H2S NH3 ^ 0 2 'ICO PPMSO2 PPM.NO

56 1 5 0 . 0 3 . 1 0 2 . 2 7 1 7 . 4 0 . 0 6 - . 00 - . 0 0 0 0 . 0 0 1 . 4 0 3 3 5 0 . 0 6 4 . 057 1 5 0 . C . 3 0 2 . 27 1 7 . 4 0 . 0 6 - . 0 0 - . 000 0 . 0 0 1 . 4 0 3 4 5 0 . 0 6 3 . 358 1 50 . C , 3 0 2 . 2 7 17 . 40 . 1 2 - . 0 0 - . 0 C 0 0 . 0 0 1 . 4 0 6 9 0 0 . 0 5 8 , 059 1 5 0 . 0 3 . 10 2 . 2 7 1 7 . 4 0 . 1 2 - . 0 0 - . 0 GO 0 . 0 0 1 . 4 0 690 0 . 0 5 8 . 060 1 5 0 . 0 6 . 4 0 2 . 2 7 1 7 . 4 0 . 1 2 - . 3 0 - . 0 0 0 0. 00 1 . 4 0 6 9 0 0 . 0 5 8 . 061 1 5 0 . 0 6 . 4 0 2 . 2 7 2 2 . 0 0 0 . 0 0 - . 3 0 - . 0 0 0 0 . 00 O.CO L.O 1 6 2 . 062 1 5 0 . 0 3 . 1 0 2 . 2 7 2 2 . 0 0 0 . 0 0 - . 0 0 - . 0 3 0 0 . GO 0 . 3 0 0 . 0 1 3 7 . 063 1 5 0 - 0 - 30 2 . 2 7 2 2 . 0 0 0 . 0 0 - . 0 0 - . 0 0 0 0 . 0 0 0 , 0 0 0 . 0 6 0 . 064 1 5 0 . 0 . 30 2 . 27 2 2 . 0 0 . 0 2 - . 00 - . 3 0 0 0. 03 0 . 0 0 9 7 5 . 0 5 9 . 065 1 5 0 . 0 3 . 1 0 2 . 2 7 2 2 . 00 . 0 2 - e 00 - . 0 0 0 o . o c 0 . 0 0 9 7 0 . 0 1 3 7 . 066 1 5 0 . 0 6 . 4 0 2 * 2 7 2 2 . 0 0 . 0 2 - . 0 3 - . 0 00 0 . 0 0 O.CO 9 7 5 . 0 1 5 7 . 067 1 5 0 . 0 6 . 4 0 2 . 2 7 2 2 . 9 3 . 0 4 - . 0 0 - . 0 00 . 0 . 0 0 0 , 0 0 2 1 3 0 . 0 1 5 5 . 068 1 5 0 . 0 3 . 1 0 2 . 2 7 2 2 . 0 0 . . 0 4 - . 0 3 - . GCO o . oc 0 . 0 0 2 0 7 0 . 0 1 3 7 . 069 1 5 0 . C . 3 0 2 . 2 7 2 2 . 0 0 . 0 4 - . 0 0 - . 0 0 0 o . o c 0 . 0 0 2 1 0 0 . 0 5 7 . 070 1 5 0 . 0 . 3 0 2 . 2 7 2 2 . 0C . 0 6 -. 00 - • 0 C G 0 . 0 0 0 . 0 3 3 00 0 . 0 5 7 . 071 1 5 0 . 0 3 . 1 0 2 . 2 7 2 2 . CO . 0 6 - . 0 0 - . 0 0 0 0 . 0 0 0 . 0 0 300 0 . 0 1 3 0 , 072 1 5 0 . C 6 . 4 0 2 . 2 7 2 2 . 0 0 . 0 6 - . 0 0 - . 0 CD 0 . 0 0 0 . 0 0 2 9 0 0 . 0 1 5 4 . 073 1 5 0 . C 6 . 4 0 2 . 2 7 2 2 . 0 0 . 1 2 - . 0 0 - . 0 0 0 0 . 00 0 . 0 0 6 9 0 0 . 0 1 2 5 . 074 1 5 0 . 0 3 . 1 0 2 . 2 7 2 2 . 0 0 . 1 2 - . 0 0 - . 0 0 0 0 . 0 0 O.CO 690 0 . 0 1 1 1 . 075 1 5 0 . 0 o 3 0 2 . 2 7 2 2 . 0 0 . 1 2 - . 0 3 - . 0 CO o . o c O.C'G 6 9 3 0 . 0 - 5 0 . 076 1 5 0 . 0 . 3 0 2 . 2 7 2 5 . 5 0 0 . 0 0 - . 0 0 - . oco 2 . 1 0 0 . 0 0 0 . 0 . 2 9 . 077 1 5 0 . 0 3 . 1 0 2 . 2 7 2 5 . 5 0 0 . 0 0 - . 0 0 - . 0 C 0 2 . 1 0 0 . 0 0 0 . 0 9 3 , 07ft 1 5 0 . 0 6 . 4 0 2 . 2 7 2 5 . 5 0 0 . 0 0 - . 0 0 - .POO 2 . 05 0 . 0 0 0 . 0 1 1 4 . 079 • 1 5 0 . 0 6 . 4 0 2 . 2 7 2 5 . 5 0 . 0 2 - . 0 3 - . o c o 2 . 1 0 0 . 0 0 8 8 5 . 0 1 1 2 . 080 1 5 0 . 0 3 . 1 0 2. 27 2 5 . 5C . 0 2 - . 0 0 - . 0 0 0 2 . 0 5 C.GO 9 0 0 . 0 9 0 . C61 1 5 0 . C . 3 0 2 . 2 7 2 5 . 5 0 . 0 2 03 - . 0 0 0 2 . 2 0 . 0 0 8 5 . 0 2 9 . 062 1 5 0 . 0 - 3 0 2 . 2 7 2 5 . 5 0 . 0 4 - . 00 - . 0 0 0 1 . 9 0 0 . 0 0 1 8 0 0 . 0 2 9 . 083 1 5 0 . 0 3 . 1 0 2 . 27 2 5 . 50 . 3 4 - . 0 0 - . 0 3 0 2 . 0 5 0 . 3 0 1 83 0 . 0 9 2 . 084 1 5 0 . 0 6 . 4 0 2 . 2 7 2 5 . 5 0 . 0 4 —. oc - . 0 0 0 2 . 0 5 0 . 0 0 1 7 8 5 . 0 10 5 . 065 1 5 0 . C • 6 . 4 0 2 . 2 7 2 5 . 5 0 . 0 6 - . 0 0 - . 0 0 0 2 . 0 0 0 . 0 0 2 6 0 0 . 0 1 0 5 . 086 1 5 0 . 0 3 . 1 0 2 . 2 7 2 5 . 5 0 . 0 6 - . 00 - . o c o 2 . GO 0 . 0 0 26CC. 0 8 7 . 087 1 5 0 . 0 . 3 0 2 . 2 7 2 5 . 5 0 . 0 6 - . 0 0 - . 0 0 0 2 . 0 0 O.CO 2 6 C 0 . 0 2 7 . 088 1 5 0 - 0 . 3 0 2 . 27 2 5 . 5 0 . 1 2 - . 0 0 - . o c o 2 . 1 5 0 . 0 0 6 5 3 0 . 0 - 2 3 . 089 1 5 0 . 0 3 - 1 0 2 . 27 2 5 . 5 0 . 1 2 - . 0 0 - . o c o 2 . 0 0 0 . 0 0 6 6 0 0 . 0 8 2 . 090 1 5 0 - 0 6 . 4 0 2 . 2 7 2 5 . 5 0 - 1 2 - . 0 0 - . o c o 1 . 9 0 0 . 0 0 6 6 0 0 . 0 9 0 . 091 2 0 0 . 0 6 . 4 0 2 . 27 1 7 . 4 0 0 . 0 0 - . 0 0 - . oco 0 . 0 0 4 . 1 2 0 . 0 7 0 . 092 200 . 0 3 . 1 0 2 . 2 7 1 7 . 4 0 0 . 0 0 - . 0 0 - . 0 0 0 . 0 . 0 0 4 . 1 2 0 . 0 7 0 . 093 2 0 0 . 0 . 3 0 2 . 2 7 1 7 . 4 0 0.CG - e 00 - . 0 0 0 . 0 . 0 0 4 . 1 2 0 . 0 6 6 . 094 2 0 4 . 0 . 3 0 2 . 2 7 1 7 . 4 0 . 0 2 - . 0 0 - . o c o 0 . 00 5 . 8 5 1 2 0 0 . 0 6 6 . 095 2 0 0 . 0 3 - 1 0 2 . 2 7 1 7 . 40 . 0 2 - . 0 0 0 00 0 . 0 0 5 . 8 5 1 2 0 0 . 0 7 0 . 096 2 0 0 . 0 6 , 4 0 2 . 2 7 1 7 . 4 0 . 0 2 - • uO oco C.OG 5 . 8 5 1 2 4 5 . 0 7 0 . 097 2 0 0 . 0 6 . 4 0 2 . 2 7 1 7 . 4 0 . 0 4 - . 0 0 - . o c o 0 . 0 0 3 . 7 8 2 4 7 5 . 0 6 6 . 098 2- 0 3 . 1 0 2 . 2 7 1 7 . 4 0 . 0 4 - . 0 0 - . 0 00 . 0 . 0 0 3 . 7 8 2 4 6 0 . 0 6 7 . 099 2 0 0 - 0 . 3.0 2 . 2 7 1 7 . 4 0 , 0 4 - . 0 0 - . 0 0 0 0 . 0 0 3 . 7 8 2 5 0 5 . 0 6 4 . 0.

100 200 . 0 . 3 0 • 2 . 2 7 1 7 . 4 0 . 0 6 - . 0 0 - . 0 0 0 c . c o 3 . 7 8 3 60 0 . 0 6 4 . 0101 2 0 0 . 0 , 3 , 1 0 2 . 2 7 17 . 40 . 0 6 - . 0 3 - . o c o C.OG 3 . 7 8 36 3 0 . 0 6 6 . 3102 2 0 0 . 0 6 . 4 0 2 . 2 7 1 7 . 4 0 . 06 - . 0 0 - . o c o 0 . 0 0 3 . 7 8 3 6 0 0 . 0 6 5 . 0103 2 0 0 . 0 6 . 4 0 2 . 2 7 17 • 40 - 1 2 - e U U - . o c o 0 , 0 0 3 . 7 8 6 9 0 0 . 0 5 6 , 0104 2 0 0 . C 3 . 1 0 2 . 2 7 1 7 . 4 0 . 1 2 - . 0 0 - . 0 0 0 0 . 0 0 3 . 7 8 6 90 0 . 0 5 6 . 0105 2 0 0 . 0 . 3 0 2 . 2 7 1 7 . 4 0 . 1 2 - . 3 0 - •OCO 0 . 0 0 3 . 7 8 6 9 0 0 . 0 5 6 . 0106 200 . G 6 . 4 0 2 . 2 7 . 2 2 . 0 0 0 . 0 0 - . 0 0 - • C C 0 G. 00 . 4 7 0 . 0 1 9 0 . 3107 2 0 0 . 0 3 . 1 0 2 . 2 7 2 2 . 0 0 0 . 0 0 - .no - .OCO 0 . 0 0 . 4 7 C. 0 1 5 3 . 0108 2 3 0 . 0 . 30 2 . 2 7 2 2 . 00 0 - 0 0 - . 0 3 - . 0 0 0 0 . 0 0 .47 0 . 0 6 1 . 0109 230 . C . 3 0 2 . 2 7 . 2 2 . 0 0 . 2 0 - . 0 0 - . o c o 0 . 0 0 . 4 7 9 7 5 . 0 6 1 . u110 2 0 0 - 0 3 . 1 0 2 - 2 7 2 2 - 0 0 . 0 2 - . 0 0 - . o c o 0 . 0 0 . 4 7 9 9 0 , 0 1 5 5 . 0

56

POINT NO. CONDITIONS FLOW PATES (L/MIN) EXPERIMENTAL DATAPREHEAT TEMP. PROBE H I . m e t h a n E A IE 302 H2S NH 3 "3,02 <%co OPMS02 . PPMNO

111 2 0 0 . 0 6 . 4 0 2 . 2 7 2 2 . 00 . 0 2 - , 03 - . 0 3 0 , 0 . 0 0 . 4 7 1 00 5 . 3 1 8 5 . 0112 2 3 0 . C 6 . 4 0 2 . 2 7 22 . 00 . 0 4 - . 0 0 - . 0 0 3 0 . 0 0 . 57 2 0 8 5 . 0 1 7 5 . 0113 2 0 0 . C 3 . 1 0 2 . 2 7 2 2 . GO . 0 4 - . 0 0 - . 0 0 0 0 . 0 0 . 5 7 2 1 3 0 . 0 1 5 5 . 0114 2 0 0 . 0 . 3 3 2 . 2 7 2 2 . 00 . 0 4 - «D0 - . 0 0 3 0 . 0 0 . 5 7 220 5 , 3 6 1 . 0115 2 00 . 0 . 3 0 2 . 2 7 2 2 . uO . 3 6 C3 - . 0 00 0 . 0 0 . 5 7 3 10 C. 0 6 1 . 0116 2 0 0 , C 3 . 1 0 2 . 2 7 2 2 , 0 0 . 0 6 - . 0 0 - . 0 0 0 0 . 0 0 . 5 7 3 1 5 0 . 0 1 5 0 . 0117 200 . 0 6 . 4 0 2 . 2 7 2 2 . or . 0 6 - « 0 G - . 0 0 0 0 . 0 0 . 5 7 3 05 0 . G 1 65 . 0116 20 0 . 0 6 . 4 0 2 . 2 7 2 2 . 0 0 . 1 2 33 - . 0 0 0 o . o c . 6 8 6 9 0 0 . 0 14 8 . 0119 200 , 0 3 . 1 0 2 . 2 7 2 2 . 0 0 . 1 2 - . 0 3 - « 0 0 0 u . 0 0 . 6 8 6 9 0 0 . 0 1 3 2 . 0120 ' 20 0 . 0 . 3 0 2 . 2 7 2 2 . 0 0 . 1 2 - . 0 0 - . o c o 0 . 0 0 . 6 8 6 9 0 0 . d 5 4 . 0121 230 . C . 3 3 2 . 2 7 2 5 . 5 0 0 . 0 0 - . 3 0 - . 0 0 0 2 . 3 0 0 . 0 3 0 . 0 ‘ 3 4 . 0122 2 0 0 . 0 6 . 4 0 2 . 2 7 2 5 . 5 0 0 . 0 0 - . 30 - •OCO 2 . 10 0 . 0 0 0 . 0 9 0 . 0123 200 . 0 6 . 4 0 2 . 2 7 2 5 . 5 0 0 . 0 0 - . O C - . o c o 2 . 1 0 0 . 0 0 3 . 0 1 1 0 . 0124 2 0 0 . 0 6 . 4 0 2 . 2 7 2 5 . 5 0 . 0 2 - . 0 0 - . o c o 2 . 1 0 0 . 0 0 8 4 0 . 0 9 2 . 0125 2 0 0 . 0 3 . 1 0 2 . 2 7 2 5 . 5 0 . 0 2 - . 0 0 - . 0 0 0 2 . 1 0 0 . 0 0 810 . G 8 3 . 0126 2 0 0 . 0 . 3 0 2 . 2 7 2 5 . 5 0 . 0 2 00 - . 0 0 0 2 . 1 0 0 . 0 0 34 0 . 0 3 0 . 0127 2 0 0 . 0 . 3 0 2 . 2 7 2 5 . 5G , 0 4 - . 0 3 - . 0 c c 2 . 2 0 3 . 0 0 1 7 7 0 . 0 2 7 . 0128 200 . G 3 . 1 0 2 . 2 7 2 5 . 5 0 . 0 4 - . 0 3 - . o c o 2 . 20 0 . 0 0 1 6 9 5 . 0 7 8 . 0129 2 0 0 . 0 6 . 4 3 2 . 2 7 2 5 . 5 0 . 0 4 - . 0 0 - . 0 00 2 . 1 5 0 . 0 0 1 71 0 . 0- 9 8 . 0130 2 00 . 0 6 * 4 0 2 . 2 7 2 5 . 5 0 . 3 6 - . o n -« 010 2 . 1 0 0 . 0 0 2 5 3 0 . 0 9 1 . 0131 2 0 0 . 0 3 . 1 0 2 . 27 2 5 . 5 0 . . 06 - . 0 0 . - . o c o 2 . 1 5 0 . 0 0 2 5 0 0 . 0 . 7 8 . 0132 200 . 0 . 3 0 2 . 2 7 2 5 . 5 0 , 0 6 - . 0 3 - . 0 0 0 2 . 3 0 o . c o 2 5 0 0 . 0 2 5 . 0133 200 . 0 . 3 0 2 . 2 7 2 5 . 5C . 1 2 - . C O - . oco 2 . 1 0 0 . 0 0 63C0 . 0 2 4 . 3134 2 0 0 . 3 3 . 1 0 2 . 2 7 2 5 . 5 0 . 1 2 - . 0 3 - . o c o 2 . 2 0 o . co 6 3 0 0 . 0 7 5 . 0135 200 . C 6 . 4 0 2 . 2 7 2 5 . 5 0 . 1 2 - . 00 - . 0 CO 2 . 1 5 0 . 0 0 6 5 0 0 . 0 7 6 . 0136 3 0 0 . 0 . 3 0 2 . 2 7 1 7 . 4 0 0 . 0 0 - • OG - . 0 0 0 C.OG 1 . 3 8 0 . 0 6 3 . 0137 3 0 0 . 0 3 . 1 0 2 . 2 7 1 7 . 4 0 0 . 0 0 - . 00 - . o c o 0 . 0 0 1 . 3 8 0 . 0 7 0 . 0138 3 0 0 . 0 6 . 4 0 2 . 2 7 1 7 . 4 0 0 . 0 0 - . 00 - . 0 0 0 0 . 0 0 1 , 3 8 0 . 0 7 0 . 0139 300 . C 6 . 4 0 2 . 2 7 1 7 . 4 0 . 0 2 - . 3 0 - . o c o 0 . 0 0 1 . 3 8 1 1 4 0 . Q 7 0 . 0140 3 0 0 . 0 3 . 1 0 2 . 2 7 1 7 . 4C . 3 2 - . 0 0 - . 0 . 0 0 0 , 0 0 1 . 3 8 1 1 1 0 . 0 6 7 . 0141 3 0 0 . 0 . 3 0 2 . 2 7 1 7 . 4 0 . 0 2 - . 0 3 - . 0 C G 0 . 0 0 1 . 3 8 1 1 4 0 . 2 6 6 . 3142 3 0 0 . 0 . 3 0 2 . 2 7 1 7 . 4 0 , 0 4 - . 0 0 - . 000 . 0 , 0 0 2 . 3 7 2 3 4 0 . 0 6 3 . 014 3 300 . 0 3 . 1 0 2 . 2 7 17 . 40 . 0 4 - . 0 0 - . 0 0 0 0 . 0 0 2 . 3 7 2 4 0 0 . 0 6 6 . 0144 3 0 0 . 0 6 . 4 0 2 . 27 1 7 . 4 0 . 0 4 - . 0 0 - . 0 00 0 . 0 0 • 2 . 3 7 2 4 1 5 . 0 ' 6 6 . 0145 3 0 0 , 0 . 6 . 4 0 2 . 2 7 1 7 . 4 0 . 0 6 - . 0 3 - . 0 c c 0 . 00 2 . 3 7 3 3 5 0 . 0 6 5 . 0146 300 . 0 3 . 1 0 2 . 2 7 1 7 . 4 0 . 0 6 - .GO - . 0 00 0 . 0 0 2 . 3 7 3 3 5 0 . 0 6 5 . G147 3 0 0 . 0 . 3 0 2 . 2 7 1 7 . 4 0 . 0 6 - ; o o - . 0 0 0 0 , 0 0 2 . 3 7 335 0 . 3 6 2 . 0148 3 0 0 . 0 . 30 2 . 2 7 1 7 . 4 0 . 1 2 - . 0 0 - . 0 00 0 . 0 0 1 . 5 0 6 9 0 0 . 0 5 7 . u149 300 . 0 3 . 1 0 2 . 2 7 1 7 . 4 0 . 1 2 - . 0 0 - . o c o 0 . CO 1 . 5 0 690 0 . 0 5 7 . 0150 330. .3 6 . 4 0 2 . 2 7 1 7 . 4 0 . 1 2 00 - . 0 0 0 0 . 0 0 1 . 5 0 6 9 0 3 . 0 5 7 . 0151 30 0 . 0 . 3 0 2 . 2 7 2 2 . 0 0 0 . 0 0 - . 0 0 - . ‘ oco 0 . 0 0 . 3 0 0 . 0 • 2 0 5 . 0152 300 . 0 3 . 1 0 2 . 2 7 2 2 . 00. 0 . 0 0 - . CO - . 000 0 . 0 0 . 3 0 0 . 0 1 7 0 . 0153 30 0 . 0 6 . 4 0 2 . 2 7 2 2 . 0 0 0 . 0 0 - . 0 0 - . 3 0 0 0 . 0 0 . 3 0 o . c 6 1 , 0154 3 0 0 . 0 6 . 4 0 2 . 2 7 2 2 . 0 0 . . 0 2 - . 0 0 - . 3 C 0 0 . 0 0 .48 1 0 2 0 . 0 5 9 . 0155 3 0 0 . 0 3 . 1 0 2 . 2 7 • 2 2 . 0 0 , 0 2 - . 0 0 - . 0 0 0 0 , 0 0 , 4 8 1 0 2 0 . G 1 6 3 . 0156 3 0 0 . C . 3 0 2 . 2 7 • 2 2 . 0 0 . 0 2 - . 0 0 - . oco o . oc . 4 8 1 0 3 5 . C 1 9 7 . 0157 3 0 0 . C . 30 2 . 2 7 2 2 . 0 0 , 0 4 - . 00 - . o c o 0 . 00 . 6 5 1 9 3 0 . 0 1 9 0 . 0158 3 0 0 . 0 3 . 1 0 2 . 2 7 2 2 . 0 0 . 0 4 - . 0 0 - . oco 0 . 0 0 . 6 5 2 0 4 0 . 0 160 . 0159 3 3 0 . 0 6 . 4 0 2 . 2 7 2 2 . 0 0 , 0 4 - . 0 3 - • oco 0 . 0 0 . 6 5 2 0 4 0 . 0 6 0 . 0160 3 0 0 . G 6 . 4 0 2 . 2 7 2 2 . 0 0 . 0 6 - . 0 0 - . o c o 0 . 0 0 . 3 1 3 1 0 0 . 0 5 7 . C161 3 3 0 . C 3 . 1 0 2 . 2 7 2 2 . 0 0 . 0 6 - . 0 0 - . 0 0 0 0 . 0 0 . 3 1 3 0 5 0 . 0 1 6 0 . 0162 3 0 0 . 0 . 3 0 2 . 2 7 2 2 . 0 0 . 0 6 - . 0 0 - . o c o 0 . 0 0 . 3 1 3 1 0 0 . 3 1 8 5 . 0163 3 0 0 . 0 . 3 0 2 , 2 7 2 2 . 0 0 . 1 2 - . 3 0 - • u GO 0 , 0 0 . 3 1 6 9 3 0 . 0 1 7 0 , 0164 3 0 0 . 0 3 . 1 0 2 . 2 7 2 2 . 00 , 1 2 - . 0 0 - . 0 0 0 0 . 0 0 . 31 690 0 . 0 1 4 5 . 0165 3 0 0 . C 6 . 4 0 ' 2 . 2 7 2 2 . 0 0 . 1 2 - . 0 0 - . 0 0 0 0 , 0 0 . 3 1 6 9 0 0 . 0 5 2 . 0

57

POINT NO. C O N D I T I O N S FLOW RATESPRE H F A T TEMP. PROBE HT. MET HAN E AIR

166 300.0 . TO 2.27 2 5 . 5G167 300.0 3.10 2.27 25.50160 300 .C 6 « 4 G 2. 27 25.5.3169 300 . C 6,40 2,27 25.50170 300 . 0 3.10 2.27 25. 50171 300 .0 .30 2. 27 25.50172 300.0 6,4 0 2.27 25.50173 300 . 0 3.10 2.27 25.50174 300. C .30 2. 27 25.50175 3 0 0.0 .30 2.27 25.50176 300. 0 3.10 2.27 25.50177 300.0 6.40 2. 27 25.50178 300.0 6.40 2. 27 25.50179 300.0 3.10 . 2. 27 25.50180 300.0 .30 2.27 25.50181 0.0 1.80 2.25 22. OG182 0.0 2.80 2.25 22.00163 0.0 4.10 2.25 22.00184 0. 0 4.10 2. 2 5 22. 00185 0.0 2.8 0 2.2 5 22.00166 0.0 1.80 2.25 22.00187 0. 0 1.8 0 2.25 22.00188 0. 0 2.60 2. 25 22.00189 0. c 4.10 2.25 22.00190 0.0 4.10 2.25 22.00191 0.0 2.80 2 .25 22.00192 0. c 1.80 2.25 22.00193 0.0 1.80 2 .25 22.00194 0.0 2.80 2.25 22.00195 0.0 4.10 2.25 22,00196 0.0 1.90 2.25 25.50197 0.0 2.80 2.25 25.50198 0,0 4.10 2.25 25.50199 0.0 4.10 2.25 25.50200 0.0 2.90 2.25 25.50201 0.0 1.80 2 .25 25.50202 0.0 1.9 0 2.-25 25.50203 0.0 2.8 0 2.25 25.50204 0.0 4.10 2.25 25.50205 0.0 4.10 2. 25 25,50206 0.0 2.60 2.25 25.50207 0.0 1.80 2.25 25.50208 0.0 1,60 2.25 25.50209 0.0 2.60 2.25 25.50210 0.0 4.10 2.25 25.50211 o . c 0.00 2.25 25.50212 0.0 .35 . 2.25 25.50213 0.0 .10 2 .25 25.50214 0.0 .20 2.25 25.50215 0.0 .40 2.25 25.50216 0.0 1.60 2.25 25.50217 C. 0 3.20 2.25 25.50216 0.0 4.10 2.25 25.50219 0.0 6.50 2.25 25.50220 0.0 2.25 25.50

(L/MINl e x p e r i m e n t a l d a t aS02 H2S NH3 «:o2 •7C0 POMS02 P P M N O

0.00 -.00 -.000 2.30 0.00 0.0 .3600.00.00 -.00 -.000 2.10 0.00 0.0 95.00.00 -.00 0 CO 2.10 O.CO 0.0 115. 3.02 -.0 0 -.300 2.40 0.00 825.9 107.0.32 -.00 — .000 2. 10 0.0 0 84 C. 0 90.0.02 -.00 -.000 2. 30 0.00 840 . 0 30.0-.04 -.30 -.000 2.20 C.G 3 180 0 . G 29.0.34 -.30 -« 0 CO 2.40 0.0 0 1800.0 84.0.04 -. 00 -. OGD 2.20 0.00 1800.0 36. 0. 0 6 -.00 -.0C0 2. 30 O.CO 2550.0 3 0.0.06 -.3 0 -.000 2.30 O.GO 2600.0 75.0.06 -. GO -.0 00 2.30 .0.03 260 0,0 26,0.12 -.0 0 -.000 2.30 0.00 6900.3 24.0.12 -. 00 - . o c o 2. 20 0.00 6700.0 70.0.12 -.00 -. 0 CO 2.10 O.Ou 6800.0 8 3 . C

0.0G 0. 00 - . o c o O.OC. 0,00 0. 0 69.00.00 0.00 - . o c o 0.00 0.00 0.0 134.00.00 0.0 3 -.000 0.00 0.00 0.0 154.0.02 0. 00 -.000 0. 00 0.00 1335.0 145.0.02 o . o c - . o c o 0.00 0.00 1035.0 123.0.02 0.30 - . o c o 0.00 0.00 1035.0 64.0.04 0 . 00 - . o c o 0. CO 0.00 2 07 0.0 64.0.04 0.00 -.900 0.00 0.00 2130.0 119.0.04 0.00 -.0 00 0.00 0.00 213 0.0 133.0. 06 0.00 - . o c o 0.00 0.00 3200.0 132.0.06 0.00 -.000 0.00 O.CO 3230.0 116.0.06 0. 00 - . o c o 0.0 0 0.00 320 0.0 60.0.12 0.0 0 - . o c o 0.00 0.0 0 6900.0 54.0.12 C . 00 - . o c o 0.0 0 0.00 6900.0 104.0.12 0.00 o c o 0.00 0.0 0 6900.0 117.0

0.00 C.DQ - . o c o 2.50 0,00 0.3 34.00.00 0.00 -.000 2.50 0.00 0.0 65.00.0G 0.00 - . o c o 2.50 0.00 0.0 72.0..0 2 0.00 - * 0 0 0 2.40 0.0 0 .840.0 69.0.02 0. 00 -. 000 2.50 0.00 870 .0 63.0.02 0.00 - . o c o 2.60 0.00 870.0 32.0.04 0.0 0 -.000 2.50 0.00 1770.0 30.0.04 0,0.0 -.000 2,50 O.CO 1830.0 62.0.04 0. 00 -.000 2.60 0.0 0 180 0.0 66.0,06 0. 00 -.000 2.50 0.00 2 50.0.0 63.0.06 0.32 - . o c o 2.50 O.CO 2600.0 56.0.06 0. 00 - . o c o 2.40 0.0 0 2600.0 28.0.12 0 . 0 0 -.000 2.50 p.00 6800.0 24.0.12 0.00 -.000 2.50 O.CO 6800.0 46.0.12 0,0 0 - . o c o 2.53 0.00 6800.0 54.0

0.00 0,00 -.000 2.60 0.00 C.O 9.00.00 0.0 0 - . o c o 2.60 O.CO 0.0 12.00.00 C.00 -. 000 2.6 0 0.00 0.0 13,50.00 0.0 0 -.030 2.60 0,00 0.0 16.50.00 0.00 -.000 2.60 0.00 0.0 22.00.0 0 G.OO - . o c o 2.60 0.00 0.0 47.00.0 0 0.00 -.000 2.60 0,00 0.0 62.00.30 0.00 -.000 2.6C 0.00 C.O 70.00.00 0.0 0 -.000 2.60 0.00 0,0 74.00.00 0.00 -.0 00 2.60 0.00 0.0 74.0

58

POINT NC, . CONDITIONS FLOW RATFSPREHEAT TEMP. PROOF HT. MFTHAN E AIR

221 0. G **** 2.25 25.50222 0.0 6.50 2.25 25. 5C223 0.0 4.30 2.25 25.50224 0.0 3.20 2.25 25.50225 /O.o 1.60 2.25 25.50226 0 «c .40 2 .25 25.50227 0.0 .20 2.25 25.50228 0. c ,10 2. 25 25. 50229 0.0 .05 2.25 25.50230 0.0 U.CO 2. 25 25.50231 303.0 Go 0 0 2.25 25,50232 300.0 .05 2.25 25.50233 300,0 .10 2.25 25.50234 300. 0 .20 2.25 25.50235 300. C .40 2. 25 25.50236 300. 0 1.60 2. 25 25.50237 ‘ 300.0 3. 20 2.25 25.50238 300. G 4.30 2.25 25.50239 300 .0 6.50 2,25 2 5 , 5C240 300.0 2.25 25.50241 30 0 . 0 2.25 25.50242 30 0.0 6,50 2.25 25. 50243 300.0 4. 3G 2.25 25.50244 300.0 3,20 2,25 25.50245 300 .0 1.60 2.25 25.50246 300. 0 .40 2 . 2 5 25. 50247 3 0 0.0 .20 2.25 25.50248 3 0 C * 0 .10 2.25 25.50249 300. 0 .05 2.25 25.53250 300.0 0.00 2,25 25.50251 0.0 .05 2.25 2 5 . 5C252 G. C .05 2.25 25.50253 0.0 .05 2.25 25.50254 0.0 .20 2 ,25 25.50255 0. c .20 2.25 25.50256 0.0 .20 2,25 25.50257 0. 0 .50 2.25 25.50258 0.0 .50 2.25 25.50259 0.0 .50 2.25 25.50260 0.0 3.23 2.25 25.50261 0.0 3.20 2.25 25.50262 0.0 3.2 0 2.25 25.50263 0.0 7.20 2.2 5 25. 50264 0.0 7.20 2.25 25.50265 0.0 7.20 2 .25 25.50266 0,0 .05 2.25 22.00267 0.0 .05 . 2.25 22.00268 0.0 .35 2.25 2 2 . DC269 0.0 .20 2.25 22. CC270 0.0 .20 2.25 22.00271 0.0 .20 2.25 2 2 . CG272 0.0 .50 2.25 22.00273 0.0 .50 2.25 22. CO274 0.0 .53 2.25 22.00275 0.0 3.20 2.25 22. 00

(L/MIN) EXPERIMENTAL OATAS0 2 H2S NH3 <%02 ' £cn PPMS02 op.MNO. 1 2 O. o o - . e c o 2 . 60 0 . 0 0 6 80 0 . 0 6 3 , 0. 1 2 0 . 0 0 - . 0 0 0 2 . 6 0 , o . c o 6 8 3 0 . 0 6 4 . 0. 1 2 C. OO - . 0 0 0 2 . 6 0 0 . 0 3 6 8 0 0 . 0 6 4 . G. 1 2 0 . 0 0 - . 0 0 0 2 . 60 0 . 0 0 6 8 0 0 . 0 5 5 . 0. 1 2 0 . 3 0 - . .0 0 0 2 . 6 0 O. CO 6 8 3 0 . 0 4 1 . 0, 1 2 0 . GC - . o c o 2 . 6 0 0 . 0 0 6 8 0 0 . 0 1 7 . 0. 1 2 0 . 0 0 - . 0 0 0 2.60 o . c o 6 8 0 3 . 0 1 0 . D. 1 2 0. 00 - . 0 0 0 2 . 6 0 0 . 3 0 68 3 0 . 0 7 . 0. 1 2 0 . 0 0 - . 0 0 0 2 . 6 0 0 , 0 0 6 8 0 0 . 0 6 . 5. 1 2 C . GO - . 0 C G 2 . 60 G. 0 0 6 8 9 0 . 0 6 . 5

0 . 0 0 0 . 3 0 - , occ 2 . 6 0 0.00 0. 0 1 2 , 50.0 0 C. 30 - . o c o 2 . 6 0 o . c o 0.0 1 7 . 00.00 0 . 3 0 -.000 2 . 6 0 o . c o ■ G. O 2 0 . 0Q • 0 0 O. CD -.3C0 2 . 6 0 u.OC 3 . C 26.50.00 0.00 -.000 2 . 6 0 0.00 0.0 3 1 . 03.0C 0.00 - . o c o 2 . 6 0 0.03 c . o . 6 7 . 00.00 0.00 - . o c o 2 . 6 0 ' O. CO 0.0 9 7 . 00.0 0 0 . 3 0 - . o c o 2 . 6 0 a . go C. O I C O . C0,00 0 . 3 0 - . o c o 2 , 6 0 o . c o 0.0 1 0 6 . 00.00 0.0 0 -. 000 2 . 6 0 ' o . c o 0.0 10 0 . 0.12 0.00 000 2 . 6 0 0.00 6 8 0 0 . 0 7 9 . 0. 1 2 0.00 -.330 2 . 6 G C. OO 6 8 0 0 .0 91.0. 1 2 0.00 -.000 2.60 o . c o 68 0 0.0 86. 0.12 0.00 - . O C O • 2 . 6 0 0.0 0 6 8 0 0 . 0 7 8 . 0, 1 2 C. 00 -.000 2.60 C. OO 6 8 3 0 . 0 5 9 . 0. 1 2 C.OO - . o c o 2.60 0.03 6 8 3 0 . 0 2 4 . 3. 1 2 0 . G 3 -.000 2 . 6 0 0.00 6 8 0 G . C 1 3 . 0. 1 2 0.00 -.300 2 , 6 0 0.00 6 8 0 0 . 0 1 0 . 0. 1 2 0. 00 -.000 2 . 6 0 o . c o 6 8 0 : . 0 8.0. 1 2 0 . 3 0 -.000 2 , 2 6 0.0 0 6 8 0 0 . 0 8 . 0

0.00 0.00 - . o c o 2 . 73 o . o c G.O 1 2 . GC.OO . 3 6 - . o c o 2.25 0.0 0 2 1 9 0 . G 1 4 . 00.00 . 1 2 -.0 00 1.75 0.00 5 0 0 0.0 14.00.30 0 . 00 - . oco 2 . 5 1 0.00 0.. 0 2 1 . 00.0 0 . 3 6 -« 3 0 0 2.2C o . c o 2 1 9 9 . 0 ■ 2 1 . 0O. GG • . 1 2 - . o c c 1 . 6 C 0.00 5 1 5 0 . 0 2 2 . 00.00 0. 00 - . 0 CO 2 . 5 1 0.00 G. O 3 1 . 00.00 . 0 6 -.000 2 . 1 5 0 . G 0 2 1 9 0 . 0 3 1 . 00.00 . 1 2 - . o c o 1 . 6 0 o . c o 5 1 5 0 . 0 3 3 . 00.00 C.OO -.43 0 0 2 . 5 1 0. GC C. O 7 1 . 00.00 . 0 6 -. 000 2 . 1 5 o . c o 2 1 9 0 . 0 7 3 . 00.00 . 1 2 - . o c o 1 . 4 5 G.GO 5 1 5 0 . 0 8 3 . C0.00 C.OO -.000 2 . 5 1 0.00 0.0 ******0.00 . 0 6 -.000 2 . 1 5 0.0 0 2 1 8 0 . 0 93.00.00 • .12 -.000 1.50 O. GG 5 1 3 0 . 0 9 6 . 00.0 0 0 . 0 3 - . o c o O. OC 0.3G 0.0 42.00.03 . 0 6 -.000 0 . 30 o . c o 2 5 5 0 . 0 4 0 . 00.0 0 .12 -.000 C. OO 3'. G q 6 1 3 0 . 0 3 9 . 0o . o c G. OG - . o c o 0.00 o . c o 0 . 9 5 2 . 00.00 .06 - . 3 0 0 0.00 0.00 2 7 0 0 . 0 5 0 . 0C. OO .1? - . o c o G. OG 3 . 7 5 6 O 5 G . 0 . 5 5 . 00,00 0.00 - . o c o 0.00 o . o c C.O 68.0G. OG . 3 6 - . o c o C. 03 1.19 2 7 5 3 . .0 6 3 . G0.00 . 1 2 - . o c o 0.00 3 . 7 5 6 1 0 C . 0 6 2 . 00.00 0. 00 - . a r c 0,0 0 u.GO 0.0 1 4 0 . 0

59

D OINT NO. C O N D I T I O N S FLOW RATESP R E HEAT TEMP. PROBE HT. MET HAM fr a t p

276 0.0 3.20. 2.25 22.00277 0. C 3.20 2.25 22. 00278 0.0 7.20 2.25 22. PC279 0.0 7.20 2,25 22.30280 0.0 7.20 2.25 22.00281 0, 0 0.00 2.25 17.40262 o.o 3.CO 2.25 17.40283 0. G .35 2.25 17.40284 0.0 .05 2.25 17.40285 0.0 .05 2.25 17.40286 0.0 .20 2.25 17.40267 0.0 .20 2.25 1 7 . 4C288 0. c .20 2 .25 17.40289 0.0 .20 2.25 17.40290 ' 0.0 .50 2.25 17.40291 0.0 .50 ' 2.25 17.40292 O.G .50 2.25 17.40293 0.0 .50 2.25 17.40294 0. c 3.20 2. 25 17.40295 0.0 3.20 2.25 17.40296 O.G 3.20 2.25 17.40297 0.0 7,20 2.25 17.40298 O.G 7.20 2.25 17.40299 0. 0 7.20 2. 25 17.4030 0 300.0 .05 2.25 25.50301 30 0. C .05 2.25 25.50302 3 0 0.0 .05 2.25 25.50303 3 0 0 . C .20 2 .25 25.50304 300. C .20 2.25 25.50305 300. C .20 2.25 25.50306 3 0 0 . C .50 2.25 25.50307 300.0 .50 2.25 2 5 . 5C303 300.0 .50 2 .25 25.50309 300.0 3.2D • 2.25 25.50310 300 . 0 3.20 2.25 25.50311 300. 0 3.20 2.25 25.50312 3 0 0 .0 7.20 2% 25 25.50313 300 .0 7.20 2.25 25.50314 300.0 7.20 2.25 25.50315 300. O' .05 2.25 22.00316 300. G .05 2.25 22. 00317 300 .0 .05 2.25 22.00318 300. G .26 2.25 22.00319 300. 0 .20 2.25 22.00320 300.0 .20 2. 25 22.00321 300.0 .50 2.25 22.00322 300 .0 .50 2.25 22.00323 303.0 .50 2.25 22. 0 0324 300. C 3.20 2.25 22.00325 300. 0 3.20 2.25 22.00326 3 0 0. C 3.20 2.25 22.00327 300.3 7.20 2.25 22.00328 300.0 7.20 2.25 22.00329 300.0 . 7.20 2.25 22.00330 300.0 .05 2.25 17.40

(L/MIN) e x p e r i m e n t a l d a t aS02 H2S NH3 *702 '£00 PPMS02 P F M N O

0.0 0 .06 - . G C 0 o . o c 1.19 2700.0 i i i . c0.00 . 12 -.0 00 0.00 3.7 5 6050 . 0 86.9C.00 0.05 -.000 0. 00 . 0.00 0 . G 147. Co . o c . 06 - . o c o o . o c 2.35 2700,0 120.00.0 0 .12 -.000 0. 30 4.4 2 6050.0 8 8.00.00 0.00 -.000 0.00 2.32 0.0 21.0o . o c .06 -.00 0 8.20 0.00 3700 .0 . 1-30.00 o . o c -.000 0.00 4,63 0 . 0 43.00.00 .06 -.000 7.20 0.00 3200.0 1.13.30 .12 -. 0 G 0 11.20 0.00 6900.0 ' 1.20.0 0 0. 00 -.3 CO 0.00 2.3 2 0.0 53.0C.G3 .36 -.000 0. 00 6.64 2 8 0 0 . Q 54.00.00 ,12 - • 0 C 0 9.30 0.00 6900.0 2.10.00 .12 - • 0 Cu 7.20 G.00 693C.C 7.50.0 0 0. 00 -.000 0. 00 2.32 0.0 52.00.00 .06 - . 0 c c O.OC 6.64 2300.0 65.00.00 . 06 - . G C G 0 . 3 0 6.64 3150.0 6 4 . C0. 00 .12 — • Q C 0 • .30 0.00 6900.3 57.00.00 0. 00 -.000 a . oo 2.32 0.0 51. 00.00 .06 -. CGO o . o c 6,64 290 0.0 63.00.00 .12 000 0.00 8.6ft 6900.0 53.00.00 0.00 - < 0 0 G 0. 00 0.00 0 . 0 64. 00.00 . 36 -.0 CO 0.00 6.64 2 850.0 62.00.00 .12 --.0 00 o . o c 6.73 6900.0 56.9o . o c C.0 0 -, CCQ 2.40 O.OC O.G 2 0 . G0.00 . 06 -. OCG 2.00 0.00 2 0 7 0.0 18.00.00 .12 -.GOO 1.55 O.GO •5000 .0 1 4 . C0.00 0.00 -.000 2.40 0.00 0.9 31. 00.00 .06 -.000 2.40 0.00 2055.0 27.:o . o c .12 — •CGO 1.45 o . c o 485C.G. 2 5 . u0.30 D. 00 -.000 2.55 0.00 0.0 4 6.9o . o c . 06 -. 0 C 0 2.00 0.0 0 2130.0 42.0o . o c .12 -.OCG 1.55 0.0 o' 4850. 0 ; 38.03.00 u. GO -.OCC 2.55 o . c o O.G 120.0o . c o .06 -.0 00 2.10 0.00 2115.8 110.0C.00 . 12 -.000 1.55 0.00 4850.0 114.00.00 0.00 -.000 2.50 o . o c 0.0 133.5o . o c ..06 - . c c o 2.05 c . o c 2115.0 117.0C.00 . 12 -.CGO 1.45 o . c o 4700 . 0 135.00.00 0 . 00 o c o C. GO .13 C.O 44.00.0 0 .06 -.010 0.0 0 . .13 2300.0 30.00.00 .12 - . o c o G.00 .13 6453 * 0 32.5C.00 G.3 0 -.000 O.CO .13 0.0 53.00.00 .06 -.000 0.00 .13 2800.0 ■ 46.00.00 .12 -.OCG 0.00 .13 6450.0 42.03. GO 0.00 - • G w 0 O.OC' .13 G.O 71.00.00 .06 -..OCO O.OC .13 2 35C.0 6 0 . CC.00 .12 - . o c o 0.00 .13 6400.0 51.20.00 0. 00 -.000 0.00 .13 0.0 1 3 8 . S0.00 .06 -.000 0.00 .13 2 3 0 0 . G 135.0G.30 .12 - . 0 C G 0 . 00 .13 6 4 5 0 . C 65.00.00 O.OC — e 0 0 0 o . o c .13 O.G 150.00.00 .06 -.0 00 0.00 .13 2 9 0 O.G 110.0o . o c .12 -.000 0.00 .13 6400.0 63. 00.00 O.CO - . o c o 7 .00 : 0.00 0.0 6.0

60

POI N T NO. C O N D I T I O N S FLOW RATES ( L / M I N ) E X PERI MENT AL DATAPREHEAT TEMP. PROSE HT . METHAN E AI R SO 2 H2 S NH3 ' 7, 02 »7CO PPMSO2 PPMNO

3 3 1 3 0 0 . 0 . 0 5 2 . 2 5 1 7 . 4 0 0 . 0 0 . 0 6 - . 3 00 8 . 5 0 0 . 0 0 3 0 3 3 . C 1 . 33 3 2 3 0 C . C . 0 5 2 . 2 5 1 7 . 4 0 0 . 0 0 . 1 2 - * 010 9 . 5 0 0 . 0 0 6 6 3 0 . 0 . 83 3 3 3 0 0 . 0 . 2 0 2 . 2 5 1 7 . 40 0 . 0 0 0 . 0 0 - . 000 0 . 00 4 . 1 2 C. O 3 2 , 03 3 4 3 0 0 . 0 . 2 0 2 . 2 5 1 7 . 4 0 ' 0 . 0 0 . 06 - • 0 C 0 0 . 0 0 2 . 8 4 3 1 0 0 . 0 4 3 . 03 3 5 3 0 0 . 0 ■ . 2 0 . 2 . 2 5 1 7 . 4 0 0 . 0 0 . 1 2 - . 0 0 0 3 . 6 0 0 . 0 0 6 9 5 C . 0 1 7 . 53 3 6 3 0 0 . C . 5 0 2 . 2 5 1 7 . 4 0 0 . 0 C G. 00 -.SCO 0 . 9 0 4 , 1 2 0 . 0 6 0 . 03 3 7 • 3 0 0 , 0 . 5 0 2 . 2 5 1 7 , 4 0 0 . 0 0 . 06 oco 0 . CO 4 . 5 4 3 2 0 0 . 0 5 6 . 03 3 8 3 0 0 . G . 5 0 2 . 2 5 1 7 . 4 0 0 . 0 0 . 12 - . 0 00 0 . 0 0 6 . 7 3 6 9 6 G . C 5 3 . 03 3 9 3 0 0 . 0 . 3 . 2 0 2 . 2 5 1 7 . 40 0 . 0 0 0 . 30 - . o c o G . 0 3 4 , 1 2 G . 0 6 1 . 03 40 3 0 0 . 0 3 . 2 0 2 . 2 5 1 7 . 40 0 . 0 0 . 3 6 - . o c o 0 . 0 0 4 . 5 4 3 2 0 0 . 0 ' 5 7 . 03 4 1 3 0 0 . 0 3 . 2 0 2 . 2 5 1 7 , 4 0 0 . 0 0 . 1 2 - . o c o 0 . 0 0 6 . 7 3 6 9 5 0 . C 5 3 , 03 4 2 3 0 0 . 0 7 . 2 0 2 . 2 5 1 7 . 4 0 0 . 0 0 0 . 00 - . 0 0 0 0 . 3 0 4 . 1 2 O. G 6 5 . 03 4 3 3 0 G . C 7 . 2 0 2 . 2 5 1 7 . 4 0 0 . 0 0 . 0 6 - . 0 0 0 0 . 0 0 6 . 2 4 3 2 5 0 . 0 5 6 . 03 4 4 3 0 0 . 0 7 . 2 0 2 . 2 5 1 7 . 4 0 0 . 0 0 . 12 - . c c o 0 . 3 0 6 . 7 3 6 9 5 0 . 3 5 3 . C3 4 5 0 . 0 . 0 5 2 . 25 2 5 . 5 0 0 . 0 0 0 . 0 0 . 025 1 3 . 7 0 0 . 0 0 O'. 0 1 3 7 . 33 4 6 0 . 0 . 0 5 . 2 . 2 5 2 5 . 5 0 0 . 0 0 . 1 2 . 0 25 1 0 , 7 0 0 . 0 0 4 4 3 0 . 0 1 4 0 . 03 4 7 0 . 0 . 2 5 2 . 2 5 2 5 . SC 0 . 0 0 O. OG . 0 2 5 2 . 8 0 0 . 0 0 0 . 0 1 6 0 0 . 03 4 8 0 . 0 . 2 5 2 . 25 2 5 . 5C C . 3 0 . 12 . 0 2 5 2 . 0 0 0 . 0 0 4 3 GO. 0 13 0 0 . 03 4 9 . 0 . 0 . 6 0 ■ 2 . 2 5 2 5 . 5C C . 0 0 0 . 2 0 . 0 2 5 2 . 70 0 . 0 0 . G. 0 1 6 7 5 . 0350 0 . 0 . 6 0 2 . 25 2 5 . 5 0 0 . 0 0 . 1 2 . 0 2 5 1 . 9 0 0 . 0 0 4 9 0 0 . 0 . 1 3 5 0 . 03 51 0 . 0 3 . 1 0 2 . 2 5 2 5 . 5 0 0 . 0 0 0 . 00 . 0 2 5 2 . 65 0 . 0 0 0 . 0 1 7 3 0 . 03 5 2 0 . 0 3 . 1 0 2 . 2 5 2 5 . 5 0 0 . 0 0 . 12 . 0 2 5 1 . 9 0 0 . 0 0 4 8 0 0 . 0 1 4 0 0 . 03 5 3 0 . 0 7 . 0 5 2 . 2 5 2 5 . 5 3 0 . 0 0 0 . 0 3 . 9 25 2 . 6 0 O. CO Q • 0 17 0 0 . 03 5 4 O. G 7 . 0 5 2 . 2 5 2 5 . 5 0 0 , 0 0 . 12 . 0 2 5 2 . 1 0 0 . 0 0 3 7 0 0 . 0 1 3 2 5 . 03 5 5 0 . 0 . 0 5 2 . 2 5 2 2 . 00 0 . 0 0 0 . CO . 0 25 7 . 4 5 0 . 0 0 C. C 8 7 0 . 03 5 6 O. C . 0 5 2 . 2 5 2 2 . 0C 0 . 0 0 . 1 2 . 0 2 5 4 . 2 0 0 . 0 0 6 2 0 0 . 0 7 4 0 . 03 5 7 0 . 0 . 2 5 2 . 25 2 2 . 00 G.GC 0 . 3 0 . 0 2 5 0 . 0 3 O. OG C. O 1 4 0 3 . 03 5 8 0 . 0 . 2 5 2 . 2 5 2 2 . 00 0 . 5 0 . 12 . 0 2 5 0 . 0 0 0 . 0 0 6 5 0 0 . 0 1 1 7 5 . G3 5 9 0 . 0 . 6 0 2 . 2 5 2 2 . 0 0 0 , 0 0 O. OG . 025 0 . 0 0 0 . 0 0 0 . 0 - 1 4 2 5 . 0360 0 . 0 . 6 0 2 * 2 5 2 2 . 00 0 . 0 0 . 1 2 . 0 25 0 . 0 0 0 . 0 0 6 8 0 0 . 0 1 2 3 0 . 0361 0 . 0 3 . 1 0 2 . 2 5 2 2 . 0 0 0 . 0 0 0 . 0 0 . 0 2 5 O. CO O. CO C. G 1 5 3 0 . 0362 0 . 0 3 . 1 0 2 . 2 5 2 2 . 0 0 3 . 0 0 . 1 2 . 5 2 5 0 . 0 3 0 . 0 0 6 80 G . 3 1 1 5 0 . 03 6 3 0 . 0 7 . 0 5 2 . 2 5 2 2 . 0 0 3 . 0 0 O. OG . 0 2 5 0 . 0 0 . 0 , 0 0 0 . 0 1 5 0 0 . 03 6 4 0 . 0 7 . 0 5 2 . 2 5 2 2 . 0 0 •3.0G . 12 . 0 25 0 . 0 3 0 . 0 0 6 8 5 C. 3 1 1 0 0 . 03 6 5 0 . 0 . 0 5 2 . 2 5 1 7 . 4 0 0 . 0*0 0 . 00 . 0 2 5 8 . 2 0 6 . 9 0 0 . 0 15 0 . 33 6 6 O. C . 0 5 2 . 2 5 1 7 . 4C 0 . 0 0 . 12 . 0 2 5 8 . 2 0 7 . 5 3 6 9 C 0 . 3 1 4 . 33 6 7 0 . 0 o 2 5 2 . 2 5 1 7 , 4 0 ' 0 . 0 0 0 . 0 0 . 0 2 5 O. OG 6 . 9 0 0 . 0 1 4 2 5 , 03 6 8 0 . 0 . 2 5 2 . 2 5 1 7 . 4 0 0 . 0 0 . 1 2 . 0 25 7 . 2 0 7 . 5 0 6 9 3 0 . 3 8 6 . 03 6 9 0 . 0 . 6 0 2 . 2 5 1 7 . 4 0 0 . 0 0 0 . 0 0 ' . 0 2 5 0 . 0 0 6 . 9 0 0 . 0 1 4 2 5 . 337 0 . 0 . 0 . 6 0 2 . 25 1 7 . 4 0 0 . 0 0 . 1 2 ; 0 25 . 5 5 7 . 5 0 6 9 J G . 3 8 1 3 . 03 7 1 0 . u 3 . 1 0 2 . 25 1 7 . 4 0 0 . 0 0 O. OG . 0 2 5 C . 0 0 6 . 9 0 0 . 0 1 4 2 5 . 0372 0 . 0 3 . 1 0 2 . 2 5 1 7 , 4 0 0 . 0 0 . 1 2 . 0 2 5 ■ 0 . 0 0 7 . 5 0 6 9 3 0 . 0 7 8 0 . 03 7 3 0 . 0 7 . 0 5 2 . 2 5 1 7 . 4 0 0 , 3 d 0 . 0 0 . 0 2 5 0 . 0 0 6 . 9 3 G. 0 1 4 0 3 . 03 7 4 0 . 0 7 . 0 5 2 . 2 5 1 7 . 4 0 0 . 0 0 . 12 . 0 2 5 0 . 0 0 7 . 5 0 6 9 0 0 . C 6 4 0 . 03 7 5 3 0 0 . G . 2 5 2 . 2 5 2 5 . 5C 0 . 0 0 0 . 00 . 0 2 5 2 . 1 0 G . 0 0 0 . 0 16 3 3 . 03 7 6 3 0 0 . 0 . 2 5 2 . 2 5 2 5 . 5 0 0 . 0 0 , 1 2 . 0 2 5 1 . 0 0 O. CO 6 1 0 3 . 0 14 0 0 . 03 7 7 3 0 0 . 0 . 6 0 . 2 . 2 5 2 5 . 5 0 0 . 0 0 . 0 . 0 9 . 0 25 2 . 4 0 0 . 0 0 O. G 1 6 2 5 , 03 7 8 3 3 0 . 0 . 6 0 2 . 25 2 5 . 5 0 0 . 0 0 • 12 . 0 2 5 1 . 0 5 0 . 0 0 6 0 0 3 . 0 1 4 0 0 . 03 7 9 3 0 0 . 3 3 . 1 0 2 , 2 5 2 5 , 5 0 0 . 3 0 0 . 33 . 0 2 5 2 . 4 0 0 . 0 0 0 . 0 1 7 7 5 . 3380 3 0 0 . 0 3 . 1 0 2 . 2 5 2 5 . 5 0 0 . CO . 1 2 . 0 2 5 . 90 0 . 0 0 6 2 0 0 . u 1 3 7 5 . 0381 3 0 0 . 0 7 . 0 5 2 . 2 5 2 5 . 5 0 0 . 0 0 0 . 0 0 ’ . 3 2 5 2 . 2 0 0 , 0 0 0 . 0 1 7 2 5 . 03 8 2 3 0 0 . 0 7 . 0 5 2 . 2 5 2 5 . 5 0 O. OG . 1 2 . 0 25 . 7 0 0 . 0 0 590 3 . 0 1 2 5 3 . 03 8 3 3 0 0 . 0 . 2 5 2 . 2 5 2 2 . 0 0 0 . 0 0 0 . 3 0 . 0 2 5 O. OG 0 . 0 0 0 . 0 1 4 0 0 . 038 4 3 0 0 . 3 . 6 0 2 . 2 5 2 2 . 00 O. OG 0 . 3 0 . 0 2 5 0 . 0 0 0 , 0 0 0 . 0 1 4 7 5 , 03 6 5 30 0 . 0 3 . 1 0 2 . 2 5 2 2 , 0 0 0 . 0 0 0 . 0 0 . 0 2 5 0 . 0 0 0 . 0 0 O.jJ 1 5 2 0 . 0

61

POINT NO. CONDITIONS FLOW RATES (L/MINl EXPERIMENTAL DATAPREHEAT TEMP. PPOBE HT. MET HAN E AI R S02 H2S NH3 'Z 0 2 ' 700 PPMS02 PPM.NO

396 3 0 0 . C 7 . 0 5 2 . 2 5 2 2 . 00 0 . 0 0 0 . 0 0 . 025 0 . 0 0 0 . 0 0 0 . 0 1 5 0 0 . 0387 0 . 0 4 . 3 0 2 . 2 5 2 5 . 10 0 . 0 0 0 . 3 3 - . 9 0 0 2 . 9 5 0 . 0 0 0 . 0 6 7 . 0388 0 . 0 4 . 3 0 2 . 2 5 2 3 . 5 0 0 . 0 0 G. 0 0 - . GCO 1 , 5 0 G. C3 G. 0 1 1 7 . 0389 0 . 0 . 4 . 3 0 2 . 2 5 2 2 . 5 3 ‘ 0 . 0 0 0 . 3 3 9Gii . 50 0 . 0 0 0 . 0 14 3. G390 0 . 0 4. 3 0 2 . 2 5 ? 2 . 00 0 . 0 0 0 . 0 0 " , 000 0 . 0 0 0 . 0 0 0 . 0 1 3 5 . 0391 0 . 0 4 . 3 0 2 . 2 5 2 1 . 3 0 0 . 0 0 C. 30 - . OCG 0. 00 0 . 0 0 0 . 0 12 7 . 3392 0. 0 4 . 3 0 2 . 2 5 2 0 . 7 0 0 . 0 0 0 . 0 0 - . 0 0 0 0. 00 , 0 0 0 . 0 8 3 . C393 0 . 0 4 . 3 0 2 . 2 5 1 9 . 4 0 0 . 0 0 0. GO - . OCG 0 . 0 0 . 0 1 0 . 0 6 0 , G394 0 . 0 - 4 . 3 0 2 . 2 5 . 1 8 . 0 0 0 . 0 0 0 . 0 0 - . 0 0 0 0 . 0 0 . 0 1 0 , 0 5 O.G395 0 . 0 4 . 3 0 2. 25 1 7 , 5 0 0 . 0 0 0 . 3 0 - . 0 0 0 0 . 0 9 . 0 4 0 . 0 • 50. 0396 0. 0 4 . 3 0 2 . 2 5 2 2 . 2 0 • 0 . 0 0 0 . 9 0 - . 0 0 0 0. 00 0 . 0 0 U . 0 1 4 5 . G397 0 . 0 4 . 3 0 2 . 2 5 2 3 . 8 0 3 . 0 0 0. 3C- - . CC3 1 . 4 0 c . c o G.G 1 1 5 . J398 0. 0- 4 . 3 0 2 . 2 5 2 3 . 8 0 0 . 0 0 . 60 - . 000 . 9 0 0 , 0 0 2 7 0 0 . 3 1 2 5 . 0399 0. G 4 . 3 0 • 2 . 2 5 23 . 80 0 . 0 0 ,1.20 - . 0 00 . 3 0 0 . 0 0 5 3 0 0 . 3 1 3 9 . G400 0 . 0 4 . 3 0 2 . 2 5 2 2 . 5 0 0 , 0 0 0. 00 - . 0 0 0 . 2 0 0 . 0 0 0 . 0 14 7 . 0401 0 . 0 4 . 3 0 2 . 2 5 2 2 . 5 0 0 . 0 0 . 60 - . 0 0 0 O.OC J.CO 2 8 5 0 . 3 1 2 8 . 0402 c . c 4 . 3 0 2 . 2 5 2 2 . 5 0 0 . 0 0 1 , 2 0 - . 2 0 0 0 . 0 0 O.CQ 5 8 0 0 . 0 9 9 . 0403 0 . 0 4 . 3 0 2 . 2 5 20 . 70 0 . 0 0 0 . 0 0 - . 000 0 . 0 0 0 . 0 0 0 . 0 7 8 . 0404 0 . 0 4. 30 2 . 2 5 2 0 . 7 0 0 . 0 0 . 6 0 - . 0 0 0 0 . 0 0 G.OO 32 3 0,. 0 6 8 . 0405 0 . 0 4 . 3 0 2 . 2 5 2 0 . 7 0 0 . 0 0 1 . 2 0 - . 0 0 0 0 . 0 0 0 , 0 0 6 5 5 0 . 0 5 8 . 04 06 0 . 0 4 . 3 0 2. 25 1 9 . 4 0 C. 0 0 0 . 0 0 - • 0 C 0 0 . 0 0 C. 03 0 . 3 6 0. G407 0 . 0 4 . 3 0 2. 25 1 9 . 4 0 0 . 0 0 . 60 - . 00 . 0 0 . 0 0 0 . 0 0 3 4 0 0 . 0 5 6 . 0408 0 . 0 4. 30 2 . 2 5 1 9 . 4 0 0 , 0 0 1 . 2 3 - • 0 C 0 G. 00 . 0 4 6 7 0 0 . 0 5 4 . 0409 3 0 0 . 0 4 . 3 0 2 . 2 5 2 3 . 8 0 0 . 0 0 0 . 9 0 - • 0 C 0 3 . 1 0 0 . 0 0 0 . 0 1 3 2 . C410 3 0 0 . 0 4 . 3 0 2 . 2 5 2 3 , 8 0 0. 0G C . 00 - . 0 0 0 1 . 5 C 0 . 0 0 0 . 0 1 7 5 . G411 3 0 0 , 0 4 . 3 0 2 . 2 5 2 2 . 5 0 0 . 0 0 G. 00 - . 0 0 0 . 20 o.c-o 0 . 0 1 5 5 . 0412 3 0 0 . 0 4 . 3 0 2 . 2 5 1 8 . 00 0 . 0 0 0 . 0 0 - . 0 0 0 0 . 0 0 0 . 0 0 0 . 0 4 3 . 0413 3 0 0 . 0 4. 30 2 . 2 5 1 9 . 4 0 0 . 0 0 0 . 0 0 - . oco 0 . 0 0 0 . 0 0 0 . 0 6 5 . 0414 0. 0 7 . 0 0 2 . 2 7 2 5 . 5 3 c . c o G. 03 - . GCO 3 . 4 0 o. oc 0 . 0 5 2 . C415 0 . 0 7. 00 2 . 2 7 2 5 . 2 0 0 . 0 0 0 . 0 0 - • GCu 2 . 7 0 0 . 0 0 0 . 0 7 0 . 0416 0 , 0 7 . 3 0 2 , 2 7 2 4 , 5 0 . o. bo 0 . 0 0 - . 0 0 0 1 . 90 0 . 0 0 0 . 0 1 0 5 . 0417 0 . 0 7 . 0 0 2 . 2 7 2 3 . 9 0 0 . 0 0 0 . 0 0 - . 0 0 0 4 1 . 0 0 0 . 0 0 0 . 0 1 2 6 . 04 1 8 0 . 0 7 . 0 0 2 . 2 7 2 2 . 60 0 . 0 0 0 . 0 0 - . 0 0 0 . 05 0 . 0 0 1 0 . 0 ■ 1 4 6 . 0419 0 . 0 7 . 0 0 2 . 2 7 2 2 . 00 0. 0 G G.3C - . GCO 0. CO 0 . 0 0 O.G 1 3 6 . u420 0 . c 7 . 0 0 2 . 2 7 2 1 . 3 0 0 . 0 0 0 . 0 0 - . o c o 0 . 0 0 • . 2 5 0 . 0 1 0 0 . 0421 0 . 0 7 . 0 0 2 . 2 7 2 0 . 6 5 0 . 0 0 G. 0 0 - • oco O.OC 2 . 5 0 0 . 0 8 9 . 0422 0 . 0 7 . 0 0 2 . 2 ? 1 9 . 4 0 0 . 0 0 0 . 0 0 - . 0 0 0 0. 00 2 . 4 2 0 . 0 5 9 . 0423 0 . 0 7 . 0 0 2 . 2 7 1 8 . 1 0 0 . 0 0 0 . 00 - . QGG 0 . 0 0 4 . 2 0 0 . 3 5 6 . 0424 0 . 0 7 . 0 0 2 . 2 7 1 7 . 4 0 0 . 0 0 O.OC - . 0 0 0 0 . 0 0 1 . 4 0 0 . 0 5 5 . 0425 0 . 0 7 . 0 0 2 . 2 7 1 7 . 4 0 0 . 0 0 0 . 0 0 - . 0 0 0 0 . 0 0 3 . 7 4 0 . 0 5 5 . 0426 0 . 0 7. 00 2 . 2 7 1 8 . 1 0 0 . 0 0 0 . 0 3 - . 3 0 0 0 . 0 0 2 . 5 5 0 . 3 5 4 . 0427 0 . 0 7 . 0 0 2 . 2 7 1 9 . 4 0 0 . 0 0 0 . 0 9 T-.JCO ■ C. 00 2 . 2 8 0 . 0 5 6 . 0428 0 . c 7 . 0 0 2 , 2 7 20 , 6 5 0 . 2 0 C. GO - . 3 0 3 0 . 3 0 2 . 5 4 0 , 0 7 5 . 0429 0 . 0 ' -7. 0 0 2 . 2 7 2 1 . 3 0 0. oc 0 . 0 0 - . 0 0 0 0 , 0 0 . 2 5 0 . 0 - 9 7 , G430 0 . c 7 . 0 0 2 . 2 7 2 2 . 0 0 o . oc 0 . 0 0 - . 0 00 0 . 0 0 3 , 0 0 0 . 0 1 3 3 . 0431 o. c 7 . 0 0 2 . 2 7 2 2 . 6 0 0 . 0 0 0. 00 - . GCO . 0 1 3 . CO 0 . 0 14 3 . 0432 0 . 0 7 . 0 0 2 . 2 7 2 3 . 9 0 G. 0 3 O.OC - . o c o . 9 0 0 . 0 3 0 . 0 1 2 5 . 0433 0 . 0 7 . 0 0 2 . 2 7 2 4 . 5 0 0 . 00 0 . 0 0 - . 0 0 0 1 . 7 5 0 . 0 0 0 . 0 10 5 . 0434 0 . 0 . 7 . 0 0 2 . 2 7 2 5 . 2 0 0 . 0 0 0 . 0 0 - . 0 0 0 2 . 7 0 0 . 0 0 0 . 0 6 8 . 3435 0 . 0 7 . 0 0 2 . 2 7 2 5 . 5 0 0 . 0 0 0 . 0 0 - . 0 0 0 3 . 3 0 0 . 0 0 0. 0 5 2 . 0436 0 . 0 7 . 0 0 2 . 2 7 2 5 . 2 0 - 0 . 0 0 . 12 - . 0 0 0 1 . 4 3 G.OO 49CC. 0 8 0 . 0437 0 . 0 7 . 0 3 2 . 2 7 2 3 , 9 0 - 3 . C 0 . 1 2 - . 0 0 0 . 30 9 . 0 0 5 3 3 0 . 0 1 1 5 . 0438 0 . 0 7 . 0 0 2 . 2 7 2 3 . 2 0 - 0 . 0 0 . 1 2 - . 0 0 0 0 . 0 0 0 . 0 0 5 6 0 0 . 0 1 1 7 . 04 39 0 . c 7 . 3 0 2 . 2 7 2 2 . 6 0 - 0 . 0 0 . 1 2 - . o c o 0. CQ 1 . 8 0 5 9 0 0 . 0 1 0 4 . 0440 - 0 . 0 7 . 0 0 2 . 2 7 2 2 . 0 0 - 0 . 0 0 , 1 2 - . 0 0 0 0 . 0 0 2 , 3 0 6 2 0 0 . 0 7 2 . 0

62

POINT NO. CO N D I T I O N S FLOW RATESP R E HEAT TEMP. PR09E HT. METHAN E AIR

441 0.0 7.00 2.27 21.30442 0.0 7.00 2.27 23.65443 0.0 7.00 2. 27 19.40444 0 . C • 7.00 2.27 1 9 . 4C445 0.0 7.0 0 2.2? 20 .65446 C . 0 7. 00 2.27 21.30447 C. 0 7.0 0 2.27 22.0044 ft 0. 0 7.00 2.27 22.60449 0.0 7. 0 0 2.27 23.20450 0.0 7.00 2. 27 23.90451 0.0 7.00 2. 27 25.20452 0, 0 7.00 2.27 25,20453 0.0 7.00 2.27 23.20454 0.0 7.00 2. 27 22.60455 0.0 7. 00 2.27 22.30456 0,0 7.0 0 . 2.27 20.65457 0. 0 7.00 2.27 19,40458 0.0 7.0 0 2.27 19.40459 0.0 7.00 2.27 20.65460 0. 0 7.0 0 2.27 22.00461 0. 0 7.00 2.27 22.60462 ' 0.0 7.00 2.27 23. 20463 0.0 7.00 2.27 25.20464 0.0 7.0 0 2.27 25.20465 0 . c 7.0 0 2.27 23.90466 0 . c 7.0 0 2.27 22.60467 0.0 7.00 2.27 22.00468 0 . c 7.00 2. 27 21.30469 0.0 7,0 0 2.27 20.65470 0.0 7.00, 2.27 1 9 . 4C471 0,0 7.00 2.27 18.10472 0.0 7.00 2.27 1 7 . 4C473 0.0 7,00 2.27 17,40474 0.0 7.0 0 2.27 18.10475 0.0 7,00 2.27 19.49476 0.0 7.00 2.27 20.65477 0.0 . 7.00 2.27 21.30478 0. 0 7.00 2.27 22.00479 0.0 7. 00 2.27 22.60480 0 . c 7.0 0 2. 27 23.9C481 0.0 7.00 2.27 25.20482 13.0 7.00 2.27 25.80483 13,0 7.00 2.27 25.40484 13.0 7.0 0 2.27 24.70485 13. 0 7.0 0 2.27 23.40486 13. 0 7.00 2.27 22.00487 13.0 .7,00 2.27 21,30488 ■ 13.0 7.00 2.27 20.65489 13. 0 7. 0 0 2.27 19.40490 13. C 7.00 2.27 18.1C491 13.0 7.00 2.27 18.10492 13,0 7.00 2.27 1 9 . 4G493 13. o r 7.00 2.27 20.65494 13.0 7.0 0 2.27 21.30495 . 13.0 7.00 2.27 22.00

(L/MTN) E X P E R IMENTAL DATAS02 H2 S NH3 <7.02 *100 PPMS0 2 P P M N O

-0.00 . 12 -. CCO 0.00 3.72 6 3 5G . 0 59.0-3.00 . 1 2 -. OCO 0.00 2.82 6 4 0 G . 0 52.0-0. JO .12 -.000 0. 00 4.25 650 0.0 51.0-0.00 . 12 -.000 0 . CO 4.25 6500.0 50.0- 0. oc .12 -.390 0.00 2,44 6400.0 52.0-0.00 .12 -.3 00 0.00 3.72 6 3 3 C.C 53. C-0.00 .12 -.000 o . o c 1.05 6230.0 69.0-3.00 .12 -.000 0. 90 1.89 6100.0 97.0-0.00 . 12 -.000 0. 00 0.00 5800.0 115.0-3 . CG .12 -. OCO .15 0.0 0 570:.0 • 123.0-0.00 . 12 -.000 1.50 0.03 5 2 9 C . 3 83.0-3.00 . 06 -.000 2.15 0.00 219 0.3 76.0-0.00 . 06 -.000 .01 0.00 2 55 0.0 130.0-0.0 0 .36 -.000 0. oc 0.C9 2733.3 110.0-0.00 .36 -.OCO 0 . 0 0 .57 2 8 3 0 . 0 88.0-0.30 . 3 6 -.000 0,00 2.93 2900.0 55.0-0.0 0 .06 -.000 o . o c 3.60 2950.0 55.0- 0 . 0 0 .06 -.0 00 0.00 3.60 2950.0 54.0- G . 0 0 .06 -.003 0 . CO 3.12 2853.0 5 4 . G-0.00 .36 -.000 0.00 1.00 270 0.0 88.0-0.00 . 06 -.GOO 0.99 0.0 0 2550.0 109.0-0.00 .06 - . p o o 0.00 0.0 0 2450.0 1 3 0 . C-0.00 . 06 -.000 2.05 0.00 2150.9 79.0

.12 -.30 -. 000 2.60 0.90 650C.0 52.0

.12 -.00 -.000 1.00 0.00 69-3 0. 0 96. 0

.12 -.00 - . 9 0 0 0.00 0.0 0 6900.0 108.0

.12 -.00 -.000 0.00 0.00 6900.0 94.3

.12 -.03 -.OCO O.OC 1.60 6900.0 78.0

.12 -.30 -.OCO C M C 2.50 6900.0 5 8.0,12 -.00 -.930 C. 00 1,40 6900.0 49.0.12 -.0 0 -.000 0.00 3.65 699 0.0 47.0.12 -.3 3 -•OCO 0.00 3. 66 69CG.C 4 6 . u.12 -.00 -.CCO 0.00 3.66 •6900 .0 45.0.12 -. 3 0 -.OCO 0 . CO 3,65 ****** 46.0M 2 -.0 0 -.000 0 . 00 • 1,4 0 6930.0 47.0.12 -.00 -.000 0.00 2.5 3 69-3 0. 0 53.3.12 -.30 -.OCO 0.00 1.63 69CD.C 77.0.12 -.00 -.000 C. 00 0,0 0 6990.0 92.0.12 -.0*0 -.000 0.09 0.03 6900.0 105.0.12 -•CO ■-.0 CO .95 G.OO 6900.0 95.0.12 - . C- 9 -.OCO 2.50 c . c o 6933.0 54.0

-0.00 -.30 -.000 3.95 0.00 9.0 8 0.0-0 , 0 G -.03 -.OCO 3.15 0.00 0.0- 92.0-0.00 -.00 -.000 2.10 - 0.00 . 0.0 154,0-3.00 -.00 - . o c a . 55 0.00 G • C 2 1 5 . C-0.00 -.09 -.GOO 0.90 0.9 0 0.0 195,0-3.00 - .90 - • 0 G G O. OC 2.18 0 . 0 140.0-3.00 -. 30 -.000 0.00 2.0 7 0.0 110.0- o . o c — .30 -•OCO 0.90 3.75 C.C 75.0-0.00 -.0 0 -.000 0.00 4.95 .0.0 70.0-0.00 -.00 -.000 0.00 4.95 0.0 70.0- G . 9 0 -.00 -.000 0.00 3.75 0.0 75.0-0.30 - .09 - . o c c C. GO 2.07 0,3 110.0-0.90 -.0 0 -.0 00 0.00 2.18 C.9 135.0-0.00 -.03 - . 0 0 0 0 . 00 0,00 . 0 . 9 195.0

63

POINT NO. C O N D I T I O N S FLOW RATESP R EHCAT TEMP. PP03E HT. MET HAN F AIR

A96 13. C 7.00 2. 27 23.497 13. 0 7.00 2. 27 2 4 . 7G498 13. 0 7. 00 2.27 25.40499 13.0 7.00 2.27 25,. 4C900 13.0 ‘ 7.0 0 2.27 25.80501 .13.0 7. 00 2.27 2 4 . 7C502 13.5 .7.00 2. 27 23.40503 1 3 . C 7.00 2.27 22.00504 13.0 7 . CO 2.27 21.30505 13.0 7.0 0 2.27 20.65506 13.0 7,00 2. 27 19.40507 13.0 7. 0 0 2.27 18, IP508 13. G 7. 3 3 2.27 18. 10509 13. C 7.00 2.27 19. 4 C510 15.0 7.00. 2.27 20.65511 13.0 7.00 . 2.27 21.30512 13. 0 7.00 2.27 22.00513 13. G 7.0 0 2.27 23.40514 ' 13.0 7.00 2.27 24,70515 13.0 7. 09 2.2 7 25. 90516 13. C 7.00 2.27 26. 3G517 13. G 7.0G 2. 27 25.60518 . 13.0 7.00 2.27 2 5 . 2C519 13. 0 7.00 2.27 23. 90520 13.0 7.00 2.27 23.40521 13.0 7.00 2.27 2 2 . OC522 13.0 7. GO 2. 27 2 1 . 3C523 13. 0 7. 3 0 2. 27 20 . 65524 13.0 7. 0 0 2.27 19. 40525 13. 0 7.3 0 2.27 19.40526 13.0 7.0 0 2.27 20.65527 13.0 7.00 2.27 21.30523 13.0 7.30 2.27 22.00529 13.0 7.00 2.27 23.4C530 13.0 7.0 0 2.27 23.60531 13. 0- 7. 00 2.27 24.30532 13, 0 7.00 2.27 25.50533 13. 0 7. 0 0 2.27 25.90534 13.0 7.00 2.27 25.80535 13,0 7.0 0 2.27 25.40536 13.0 7.00 2.27 24.30537 13. C 7. GO 2.27 23.10538 13.0 7,00 2.27 •22.00539 1 3 . C 7.00 2.27 19.40540 13. C 7.0 0 2.27 18.10541 13. C 7. 3 0 2 .27 18.10542 • 13.0 7.03 . 2.27 19.40543 13. C 7.0 0 2.27 22. 30544 13.0 7. G O 2.27 22.60545 13.0 7.00 2.27 24.20546 13. 0 7.00 2.27 25.40547 1 3 . C 7.3 9 2.27 25.70548 0.0 7.0 3 2.27 24.50549 0.0 7.0 0 2.27 24.50550 . 0.0 7.3 0 2.27 24.50

CL/MIN) EXPERIMENTAL OAT AS02 H2S NH3 <7,02 7,C0 PPMS02 P PM NO

- 0 . 0 0 - . 0 0 - . 0 0 0 . 4 5 O. OC 0. 0 2 1 5 . 0- G . 9 0 - . 00 9 CO 2 . 0 5 0 . 0 0 0 . 0 1 5 4 . 0- 0 . 0 0 - . 0 0 - . O C O 3 . 3 5 0 . 0 0 0 . 0 9 2 . 0- 0 . 0 0 - . G O - . 0 00 4 . 3 5 o . e o 0 . 0 8 0 . G

. 1 2 - . 0 0 - . goo ' 2 . 9 5 0 . 0 0 6 9 0 0 . 3 7 3 . 0

. 1 2 - . n o - . 0 C G 1 . 6 5 0 . 0 0 8 9 3 0 . C 1 3 0 . G

. 1 2 - . 0 0 - . c o o . 2 5 0 . 0 3 F90 0 . 0 1 5 5 . 0

. 1 2 - . 0 0 - . 0 0 0 0 . 0 0 O. CG 6 9 0 0 . 0 1 4 3 . C

. 1 2 - . 0 0 - . c c c O. OC 2 . 1 8 690 0 . 0 10 8 . 0. 1 2 - . n o - . O C O 0 . 00 2 . 0 7 6 9 0 0 . 0 67 . 0. 1 2 - . 00 - . O C O 0 . 0 0 3 . 7 5 6 9 0 0 . 0 5 7 . 0. 1 2 - . 0 0 - . o c c C. CO 4 . 9 5 6 9 0 0 . 0 5 4 . 0. 1 2 - . 0 0 - . 0 0 0 0 . 0 0 4 . 9 5 6 9 0 0 . 0 5 4 . 0. 1 2 - . 0 0 - . O C O 0 . 0 0 3 . 7 5 6 9 0 0 . 0 . 5 7 . 0. 1 2 - . 0 0 - . 0 0 0 0 . 0 0 2 . 0 7 6 9 0 0 . 0 7 4 . 0. 1 2 - . 0 0 - . 0 0 0 0 . 0 0 2 . 1 8 6 9 G 3 . 0 1 1 2 . u. 1 2 - . 3 0 - . O C O C. 00 C. G3 6 9 C C. Q 1 4 4 . 0. 1 2 - . 0 0 - . 0 0 0 . 2 5 Q. CO 6 9 0 C. O 1 6 3 . 0. 1 2 - . 3 0 - . 0 0 0 . 1 . 5 0 0 . 0 9 6 9 3 0 . 0 1 3 2 . 3. 1 2 - . 0 3 - . O C O 3 . 05 0 . 0 3 6 9 0 0 . 0 7 1 . 0

- o . o c . 1 2 - . O C O 2 . 3 5 0 . 0 3 5 2 3 3 . 0 l i C . O- Q . O C . 1 2 - . C O G 1 . 6 5 0 . 0 0 5 3 0 0 . 0 1 4 2 . 0- O . O C . 1 2 - . O C O . 85 o . o n 5 8 0 0 . 0 1 4 8 . 0- 0 . 0 0 , 1 2 - . C C 0 . 1 5 ■ 0 . 0 0 6 1 3 0 . 0 1 5 3 . 0- 0 . 0 0 . 1 2 - . O C O G. CG . 5 5 6 3 0 C . 3 1 3 0 . 0- G . 0 0 . 1 2 - . o c c 0 . 0 3 1 . 4 9 6 4 C0 . 0 1 0 0 . 0- 0 . 0 0 . 1 2 - . 000 0 . 0 0 2 . 2 2 6 4 0 0 . 0 7 2 . 0- G • 0 G . 1 2 - . 9 00 0 . 0 0 3 . 6 2 6 4 3 C . 0 5 9 . 0- 0 . 0 0 . 12 - - . 0 0 0 0 . 0 0 1 . 8 2 6 40 0 . 0 5 3 . 0- 0 . 0 0 . 1 2 - • CCD 0 . OS 1 . 8 2 6 4 3 0 . 0 5 3 . 3- o . a o . 1 2 - • O C O 0 . 0 0 3 . 6 2 6 4 0 0 . 0 5 7 . 0- 0 . 0 0 . . 1 2 - . 0 0 0 0 . 03 2 . 2 2 6 4 G C . 0 7 2 . 0- 0 . 0 0 . 1 2 - • OCO 0 . 0 0 1 . 4 9 6 4 0 0 . 0 1 0 1 . 0- u . O G . 1 2 - . O C C 0 . 0 0 . 5 5 6 30 3 • C 1 2 6 . 0- G «0 C . 1 2 - . 0 0 0 . 10 G. CO 6 1 0 0 . 0 1 4 9 . 0- 0 . 0 0 . 1 2 - . 0 0 0 .65 0 . 0 0 5 7 5 0 . 0 1 5 0 , 0- Q . O C . 1 2 - . O C O 1 . 5 5 0 . 0 0 5 2 0 0 . 0 1 3 5 . 0- 0.0 c . 1 2 - . 0 0 0 2 . 1 5 O. QG 520 0 . 0 9 5 . 3- 3 . 0 0 . 06. - . 0 0 0 2 . 5 5 0 . 0 0 2 00 0 . 0 1 1 0 . 0- 0 . 0 0 . 0 6 - . 0 0 0 1 . 9 5 0 . 0 0 2 3 0 0 . 0 1 4 2 . 0- 0 . 3 C . 06 - . P O O . 5 5 0 . G 3 25 GG. G 1 7 0 . 0- O . O C . 0 6 - . 0 0 0 . 0 5 0 . 0 0 2 7 0 3 . 3 1 6 2 . G- 0 . 0 0 . 0 6 - . o c c O. OC v. 6 6 2 7 5 0 . C 1 3 5 . C- o . o c . 0 6 - . 0 00 0 . 0 0 3 . G 4 2 80 0 . 0 • 6 2 . 0- 3 . 0 0 . 0 6 - . 0 0 0 0 . 0 0 3 . 5 2 2 9 3 0 . 3 5 9 . 0- 0 . 0 0 . 0 6 - . 0 0 0 o. g o ; 3 . 5 2 2 9 0 0 . 0 6 3 . 0- 0 , 0 9 . 0 6 - . CCG 0 . 0 0 ' 3 . 0 4 2 8 0 0 . 0 6 3 . C- O . O C . 0 6 - . C C 0 G. 0 0 . 6 6 2 8 0 0 . 0 1 3 5 . 0- 0 . 0 0 . 0 6 - . 0 0 0 o . oo; 0 . 0 9 2 6 0 0 . 0 1 6 6 . 0- 0 . 0 9 . 0 6 - . o c c . 4 5 0 . 0 0 2 6 0 0 . 0 1 6 8 . 0- 0 . 0 0 . 36 - . O C O 1 . 9 5 0 . C 3 2 4 0 0 . 0 1 3 8 . 0- 0 . 0 0 . 0 6 - . O C O 2. 45 0. u 3 240C.C 98.0-0.00 .36 -.OCO 1.65 0.0 0 2300.0 106. 0— 0 , 0 0 . 06 -.3 00 1.55 0,0 3 2300.0 10 2.0-0.00 .12 -.300 1. 05 C. G 0 525G.0 108.C

64

POINT NO. C O N D I T I O N S FLOW RATESP R E HEAT TEMP. PR09E HI. METHAN E 6IP

551 0. 0 7. GO 2. 27 24.50552 0.0 7. 00 2.27 24.53553 0.0 3.70 2.27 24.50554 0. 0 ,40 2.27 24.50555 0. C .40 2.27 24.50556 0.0 .10 2. 27 24.50557 0.0 .10 2.27 24.50558 0.0 .05 2,27 24.50559 0.0 7.00 2.27 21 .30560 0.0 7.00 2,27 21.30*** 0. 3 3.70 2.27 21.30562 o.c 3.70 . 2.27 21.30563 0. c .40 2.27 21.30564 0.0 .40 - 2.27 21. 30565 0. 0 .10 2.27 21.30566 0.0 .10 2.27 21.30567 0.0 .05 2.27 21. 30568 0.0 1.00 1.50 13.60569 o.c 1.00 1.50 13.60570 0.0 1.0 0 1.50 13.60571 0.0 1.0 0 1.50 13.60572 0.0 1.00 1.50 13.60573 0.0 1.00 1.50 13.60574 0.0 l.GG 1.50 13.60575 O.D 2.20 1,50 13.60576 0.0 2.20 1.50 13.60577 0. 0 2.2 0 1.50 13.60578 0.0 2*20 1.50 13.60579 0.0 1.50 1.50 13.60580 0.0 1.50 1.50 '13.60581 0.0 1.50 1.50 13.60582 0.0 1.50 1.50 13.60583 0.0 .15 1.50 17.40584 0.0 ,15 1.50 17.40585 0.0 .15 1. 5 C 17.40586 0.0 .15 1.50 17.40587 0.0 .7 0 1.50 17.40588 0.0 .70 1. 50 17.40589 . 0.0 .70 1.50 17.40590 0.0 .70 1. 50 17.40591 0.0 .70 1.50 17.40592 0.0 1.50 ‘ 1.50 17.40593 0.0 1.50 1.50 17.40594 0,0 1.50 1.50 17.40595 0.0 ! 1,50 1.50 17.49596 0.0 8.50 2.15 2 3 . JC597 0.0 8.50 2.15 20.00598 0,0 8.50 2 .15 , 20.00599 0.0 8.50 2.15 20.00600 0.0 8.50 2.15 20.00601 0.0 8.53 2.15 20.00602 1 0.0 8.50 2.15 20.00603 0.0 8.50 2.15 20. 00604 0.0 8.50 2.15 20. 00605 0,0 8.50 2. 1 5 20.00

(L/HIN> EXFESIMSNTAL DATAS02 H2S NH3 *50? 'ICO PPMS02 PPM.NO

-0.00 . 12 -.000 i.OG O.OC 543D.0 111.0- 0 , 0 G .12 - . o c o . 1.00 0*0 9 5550.0 110.0-0.00 . 12 -.000 1.00 0.9 0 5530.0 106.0-0. 00 .12 -.000 1.00 3.00 5 50 9.0 31.0-0.00 . 12 -.300 1. GO 0.00 5500.0 32.0-0.00 .12 -’. 000 1.05 3.00 5550.0 17.0-0. 0 0 ‘ .12 -.000 .95 0.00 5550.0 17.5-0.00 . 12 -.000 11.15 0.03 5 0 0 0.0 3.5- 0« 0 c . 12 -.000 0.30 1.08 6100.0 68. 0-0.00 . 12 -.050 0. 00 2.02 620 0 .'0 68.0-3.0 0 .12 - • 0 00 0.00 1.96 5990.0 69.0-0.00 .12 -.000 0.0 0 1.96 6200.0 67,0-0.00 .12 - . o c o 0.00 1.91 5930.3 50.0-0.00 .12 - . o c o 0.00 1,96 6150.0 , 5 0 . G-0,00 .12 - . o c o o . o c 1.96 5 90 0.0 32.0-0.00 .12 - . o c o 0.0 0 1.96 6100.0 32.0-0.00 .12 -.000 10.35 C . 9 3 5753.0 4. 0-0.00 -.00 - . o c o 0.0 0 0.00 0.0 62. 0-0.00 -.00 -.000 0.00 0.00 0.0 61.0-0.0 0 -. 00 - . o c o 0.00 0.0 0 0.0 61.0-0.00 -.00 -.000 0.00 0.00 -0.0 61. 0-0.0 0 -.0 0 - . o c o C.GO 0.00 0.0 58.0-9.00 -.00 - . o c a o . o c C.GO 0.0 60.0-G .0 0 -.00 - . c c c 0.00 G.GO 3.0 48,0-0.0 0 -.00 -.000 0.00 0.00 0.0 60.0— 0.00 - . o n -.000 0.00 0.00 0.0 60.0-0.00 -.00 -.QUO 0.00 0.00 0.0 50.0-0.00 -. 03 - . o c o o . o c 3.0 0 G.3 56. 0-0.00 -. 00 -.000 0. 00 C.GO 0,0 59.0-0.00 -.00 -.000 0.00 0.00 0.0 59.0- o . o c -.03 - . o c o 0. 00 O.CO 0.0 54.0-0.00 -•GO - . o c o 0.00 O.OC 0.0 42.0— 0.00 -.30 -.300 2.50 0.00 0.0 46.0— 0.00 -.00 - . o c o 2.50 0.00 0.0 47.0-0.00 -.0 0 -.000 2.50 0.00 0.0 43.0-0.00 -.00 -.300 2.50 0.00 0.0, 42.0-0.00 -.0 0 - . o c o 2.50. O.CO 0.0 56.0-0.00 -. CO - . o c o 2.50 0.00 0.0 55.0-0.00 -. 00 - . o c o 2.50 1.00 0.0 . 50.0-0.00 -. 00 - . o c o 2.50 3.00 0.0 46.0-0,00 -.00 - . o c o 2.50 0.0 G 0.0 53.0-0.00 -.00 -.000 2.50 0.00 0.0 64.0-0.00 -.00 -.000 2.50 0.00 0.0 63.0-0.00 -. 00 -.000 .2.50 0.00 0.0 52.0-0.00 -. 00 -.000 2.50 0.00 0.0 44.0- 0.00 -.0 3 - . o c o .70 0.0 3 -0.0 115.0-0.00 -.00 - . o c o .75 0.00 -0.0 120 . 0-0.00 -.00 - . c c c 1.15 0.09 -0.0 105.0-0.00 -.03 -.000 1.2C 0.00 -0,0 100.0-3.00 -.00 -.SCO .90 0.00 -0.0 110.0— 0.00 -.00 - . o c o .90 0.00 -0.0 112.0-0.00 -. 00 - . o c o .75 0.03 -0.0 115.0-0.00 -.00 -.000 . 70 0.00 -0.0 115.0-0.00 -.00 -.000 .70 C.GO -0.0 117,0-0.00 -.00 -.000 . 80 0.00 -0.0 118.0

65

,’OINT NO. C O N D I T I O N S FLOW R A T E S (L/MIN) E X P E R I M E N T A L DATAPREHEAT TEMP. PROBE HT. m e t h a n £ AIR S02 H2S , NH3 '%02 %co PPMS02 PPMNO

606 0. 0 8. 5 0‘ 2.15 20. QC -0.0 0 -.30 -.000 o ft 0 0.0 0 -0,0 120.0607 0.0 6.50 2.15 2 0 .0 0 -0.00 -. 00 -.000 ,70 0 . G G -0.0 118.0608 0.0 P.50 2.15 20 .00 -0.00 - .00 -. 000 1. 10 0.00 -0.0 10 5 i 0609 0. 0 8.50 2.15 17. 40 -0.00 -.00 -.000 0.00 5,03 0 . 0 72.0610 0.0 ft. 50 2.15 17 .4C -0.00 -.03 -.0 00 G. 00 5.00. 0.0 60.0611 0 . 0 8.50 2.15 17. 40 -0.00 -.00 -.000 0.00 5.00 0.0 78.0612 0 . 0 8.50 2.15 17. 40 -0,00 -.00 o c o 0.00 5.00 0.0 8 2 . 0613 0. 0 8.50 2.15 17. 40 - 0 . o c - .00 -.0 00 C. 00 5.0 0 0.0 82.0614 0 . 0 ft.50 2.15 17. 4 0 -0.0 0 -•JO - . o c c 0 .00 5.0 0 0 . 0 80.G615 0 . 0 6.50 2.15 17. 40 -0.0 0 - .30 - . o c o 0.00 5.00 0 . 0 77.0616 0 . 0 8.50 2.15 17. 40 — 0 • 0 c -.00 - . o c o 0 . 00 5.00 . 0 . 0 71.0617 0.0 8.50 2.15 23. 20 -0.00 -.00 - . o c o 2.80 O.CO 0.0 53.0618 0.0 8.50 2.15 23. 20 -3.00 - • C 3 -.0 00 3.20 O.CO 0.0 42.0619 0.0 • 6.50 2.15 23. 20 -0.OC -.00 - * o c o 3.05 0.0G 0.0 46.0620 0.0 8.50 2.15 23. 20 -0.00 - . n o - . o c o 3.20 0.00 0.0 43.0621 0 . c 8.50 2.15 23. 20 -0.00 -. 00 -.000 3,10 0.00 0.0 44.0622 0 . 0 8.50 2.15 23. 20 — 0.00 -.00 -.000 3.05 0.00 0.0 4 5.0623 0 . 0 8.50 2.15 23. 20 -0.00 — .00 -. 000 3. 20 G.GO 0.0 40.0624 0 . c ft.50 2.15 23. 20 -0.00 -.00 -. 000 3.20 0.0 0 0.0 40.0

APPENDIX 3

CALCULATED RESULTS -- LIST

66

67

POINT NO. '4 STOICHIOMETRIC AIR PPMNO CCRRkL TI O TO 10C7. STOICH. A I R] .82 5 2 . 0 82 . 82 5 5 . 2 93 .82 5 4 . 4 94 .82 5 2 . 0 85 .82 5 2 . 8 36 .82 5 1 * 2 67 .82 4 9 . 6 86 .82 5 1 , 2 89 .82 5 2 . 0 8

10 .82 4 8 . 0 811 ,62 5 1 . 2 812 . 82 4 7 . 2 713 .82 4 4 . 5 114 .82 4 4 . 5 115 .82 4 4 . 5 116 1 . 0 2 1 5 7 . 0 317 1 , 0 2 1 5 1 , 9 618 1 . 0 2 6 5 . 8 519 1 . 0 2 6 1 . 8 020 1 . 0 2 146.-9021 1 . 0 2 1 4 6 . 9 022 1 . 0 2 1 4 6 . 9 023 1 . 0 2 1 4 1 . 8 324 - 1 . 0 2 6 3 . 8 225 1 . 0 2 5 7 . 7 526 1 . 0 2 1 3 5 . 7 527 1 . 0 2 1 4 5 , 8 828 1 . 0 2 1 3 5 . 9 229 1 . 0 2 1 1 3 . 7 730 1 . 0 2 52. 3531 1 . 1 8 3 1 . 7 032 • 1.18 7 9 . 8 533 1 , 1 8 1 1 2 . 7 334 1. 1 8 8 5 . 7 235 1 . 1 8 7 7 . 5 036 1 . 1 8 36. 4037 1 .18 3 0 . 5 338 1 . 1 8 7 5 . 1 539 1 , 1 8 8 6 . 9 04 0 1 . 1 8 6 4 . 5 541 1 . 1 8 7 8 . 6 84 2 1 . 1 8 2 8 . 1 843 1 , 1 8 2 6 . 8 744 1 . 1 8 6 4 . 2 445 1 . 1 8 6 7 . 7 546 .82 3 5 6 . 0 94 7 .82 5 6 . 0 948 .82 5 2 . 8 849 .82 5 5 . 2 950 .82 5 3 . 6 851 .82 5 2 . 0 052 .82 4 9 . 6 053 .82 5 3 . 6 854 .82 5 3 . 6 855 .82 5 2 . 0 8

68

DINT NO. S T O I C H I O M E T R I C AIR P P M N U C O R R E C T E D TO IOC56 . 82 5 1 . 2 85 7 . 82 5 0 . 4 856 .82 4 6 . 1 059 .82 4 6 . 1 060 .82 4 6 . 1 061 1 . 0 2 1 6 4 . 1 262 1 . 0 2 1 3 8 . 7 963 1 . 0 2 60. 7964 1 . 0 2 5 9 , 7 765 1 . 0 2 1 3 8 . 7 966 1 . 0 2 1 5 9 . 0 56 7 1 . 0 2 1 5 7 . 0 368 1 . 0 2 1 3 8 . 7 969 1 . 0 2 . 5 7 . 7 57 0 1 . 0 2 5 7 . 7 571 1 . 0 2 1 3 1 . 7 072 1 . 0 2 1 5 6 . 0 173 1 . 0 2 1 2 5 . 8 574 1 . 0 2 1 1 1 . 7 57 5 1 . 0 2 5 0 , 3 476 1. 18 3 4 . 0 577 1 . 1 8 1 0 9 . 2 178 1 . 1 8 . 1 3 3 . 8 77 9 1 . 1 8 1 3 1 . 5 280 1 . 1 8 1 0 5 . 6 881 1. 18 3 4 . 0 562 1 . 1 8 3 4 . 0 583 1 . 1 8 1 0 8 . 0 384 1 . 1 8 1 2 3 . 3 065 1 . 1 8 12 3 . 3 086 1 . 1 8 1 0 2 . 1 687 1 . 1 8 3 1 . 7 088 1.18 2 6 . 8 789 1 . 1 8 9 5 . 7 890 1 . 1 8 1 0 5 . 1 291 .82 5 6 . 0 992 .82 5 6 . 0 993 .82 5.2.8894 .82 5 2 . 8 895 .82 5 6 . 0 996 .62 5 6 . 0 997 .82 5 2 . 8 898 .82 5 3 . 6 899 .82 5 1 . 2 8

100 .82 5 1 . 2 8101 *. 82 5 2 . 8 8102 .82 5 2 . 0 810 3 .62 4 4 . 5 1104 .82 4 4 , 5 110 5 .82 4 4 . 5 110 6 1 . 0 2 1 9 2 . 4 91 0 7 1 . 0 2 1 5 5 . 0 0108 1 . 0 2 6 1 . 8 01 0 9 1 . 0 2 6 1 . 1 511 0 1. 0 2 1 5 7 . 0 3

69

P O I N T NO* % S T O I C H I O . M E T R J C A I R PPt f NC C O R R E C T E D TO 100-% S T 0 1 C H * A I R111 1 .02 1 8 7 . 4 2112 1 . 0 2 ‘ 1 7 7 . 2 9113 1 * 0 2 1 5 7 . 0 3114 1 . 0 2 6 1 . 8 01 1 5 1 . 0 2 6 1 . 8 0116 1. 0 2 1 5 1 . 9 61 17 1 . 0 2 1 6 7 . 1 6118 1 . 0 2 1 4 9 . 0 011 9 1 . 0 2 1 3 2 . 9 01 20 1 . 0 2 5 4 . 3 7

* 121 1 . 1 8 3 9 . 9 2122 1 . 1 8 1 0 5 . 6 812 3 1 . 1 8 1 2 9 . 1 7124 1 . 1 8 1 0 8 , 0 3125 1 . 1 0 9 7 . 4 6126 1 . 3 8 3 5 . 2 312 7 1.-18 31. 70128 1 . 1 8 9 1 . 5 9129 1 . 1 6 1 1 5 . 0 81 3 0 1 . 1 8 1 0 6 . 8 6131 1 . 1 8 9 1 , 5 9132 . 3 . 1 8 2 9 . 3 61 33 1 . 1 8 2 8 . 0 3134 1 . 1 8 8 7 . 6 01 3 5 1 . 1 8 8 8 . 7 71 3 6 1 0 . 8 2 5 4 . 4 9137 .82 5 6 . 0 91 38 .82 5 6 . 0 91 3 9 .82 5 6 . 0 9140 .82 5 3 . 6 8141 .82 5 2 . 8 8142 .82 5 0 . 4 81 43 .82 5 2 . 8 8144 .82 .. 5 2 . 8 81 4 5 .82 5 2 . 0 81 4 6 .82 5 2 . 0 8147 .82 4 9 . 6 8148 .82 45.30149 .62' * 4 5 . 3 01 5 0 .82 4 5 . 3 0151 1 . 0 2 2 0 7 . 6 8152 1 . 0 2 1 7 2 . 2 2153 1 . 0 2 6 1 , 8 0154 1 . 0 2 5 9 . 7 71 5 5 1 . 0 2 1 6 5 . 1 3156 1 ..02 1 9 9 . 5 81 5 7 1 . 0 2 1 9 2 . 4 915 8 1 . 0 2 1 6 2 . 0 91 5 9 1 . 0 2 6 0 . 7 91 6 0 1 . 0 2 . 5 7 , 7 5161 1 . 0 2 1 6 2 . 0 9162 1 . 0 2 1 8 7 . 4 21 63 1 . 0 2 1 7 1 . 1 51 64 1 , 0 2 1 4 5 . 9 81 6 5 1 . 0 2 5 2 . 3 5

70

P O I N T NO. % S T O I C H I O M E T R I C AIR P P M N O C O R R E C T E D TO 1 0 0 % S T O K H . AIR1 6 6 1 . 1 6 4 2 2 7 . 3 2167 1 . 1 6 * 1 1 1 . 6 51 66 1 . 1 6 13 5 .041 6 9 1 . 1 0 1 2 5 . 6 51 7 0 1 . 1 8 1 0 5 . 6 8171 1 . 1 8 3 5 . 2 3172 1 . 1 8 3 4 . 0 517 3 1 . 1 8 9 8 . 6 4174 1 . 1 6 1 0 0 . 9 917 5 1 . 1 8 9 3 . 9 41 7 6 1. 1 8 8 8 . 0 71 7 7 1 . 1 8 3 0 . 5 31 7 8 1 . 1 8 2 8 . 0 31 7 9 1 . 1 8 8 1 . 7 618 0 1 . 1 8 9 6 . 9 5181 1 . 0 2 • 7 0 . 5 2162 1 . 0 2 1 3 6 . 9 618 3 „ 1 . 0 2 1 5 7 . 4 0184 1 . 0 2 1 4 8 . 2 018 5 * . 1 . 0 2 1 2 5 , 7 218 6 1 . 0 2 . 6 6 . 4 118 7 1 . 0 2 6 5 . 4 118 8 1 . 0 2 1 2 1 . 6 31 8 9 1 . 0 2 1 4 1 . 0 51 9 0 1 . 0 2 1 3 4 . 9 2191 1 . 0 2 1 1 8 . 5 6192 1 . 0 2 6 1 . 3 3193 1 . 0 2 5 4 . 8 5194 1 . 0 2 1 0 5 . 6 4195 1 . 0 2 1 1 8 . 8 41 9 6 1 . 1 8 4 0 , 2 81 9 7 1 . 1 8 7 7 . 0 11 9 8 1 , 1 8 8 5 . 3 0199 1 . 1 8 8 1 . 7 42 0 0 1 , 1 8 7 4 . 6 4201 1 . 1 8 3 7 . 9 12 02 1 . 1 8 3 5 . 5 42 0 3 1 . 1 8 -73.45204 1 . 1 8 7 8 . 1 920 5 1 .18 7 4 . 6 420 6 1 . 1 8 6 6 . 3 42 0 7 1 . 1 8 3 3 . 1 720 8 1 , 1 8 2 8 . 2 82 0 9 1 . 1 8 5 4 . 2 12 1 0 1 . 1 8 6 3 . 6 42 1 1 1 . 1 8 1 0 , 6 621 2 1 . 1 8 1 4 . 2 22 1 3 1 . 1 8 - 1 5 . 9 92 1 4 1 . 1 8 1 9 . 5 52 1 5 1 . 1 8 2 6 . 0 62 1 6 1 . 1 8 5 5 . 6 82 1 7 1 . 1 8 ’ 7 3 . 4 52 1 8 ' 1 , 1 8 8 2 . 9 32 1 9 1 . 1 8 8 7 . 6 72 2 0 1 . 1 8 8 7 . 6 7

71

P O I N T NO. % S T O I C H I O M E T R I C AIR P P M N Q C O R R E C T E D TO 1007* STO I C H . . AI R221 1 .10 7 4 . 2 4222 1 . 1 8 7 5 . 4 22 2 3 1 . 1 0 7 5 . 4 2224 1 . 1 8 6 4 . 8 12 25 ‘ 1.18 4 8 . 3 222 6 1 . 1 8 2 0 . 0 322 7 1 . 1 8 1 1 . 7 62 28 1 . 3 8 8 . 2 5229 1.16 7.662 3 0 1 . 1 8 7 . 6 6231 1 . 1 8 1 4 , 8 1232 1 . 1 8 2 0 . 1 42 3 3 1 . 1 8 2 3 . 6 9234 1 . 1 8 3 1 . 3 92 3 5 1 . 1 8 3 6 . 7 32 3 6 1 . 1 8 7 9 . 3 72 3 7 1 . 1 8 1 1 4 . 9 223 8 1 . 1 8 1 1 8 . 4 72 3 9 1 . 1 8 1 2 5 . 5 82 4 0 1 . 1 8 1 1 6 , 4 7241 1 . 1 8 9 3 . 1 0242 1 . 1 8 1 0 7 . 2 42 4 3 1. 18 101 .35 •244 1 . 1 8 9 1 . 9 224 5 1 . 1 8 6 8 . 3 524 6 . 1 . 1 8 2 8 . 2 82 4 7 1 . 1 8 1 5 . 3 224 6 1 . 1 8 1 1 . 7 824 9 1 . 1 8 9 , 4 32 5 0 1 . 1 8 9 . 4 3251 1 . 1 8 1 4 . 2 225 2 1 . 1 8 1 6 . 1 72 5 3 1 . 1 8 1 5 . 7 7254 1 . 1 8 2 4 . 8 825 5 1 . 1 8 2 4 . 2 62 5 6 1 . 1 8 2 4 . 7 82 5 7 1 . 1 8 3 6 . 7 32 5 8 1 , 1 8 3 5 . 8 12 5 9 1. 18 . 37, 172 6 0 1 . 1 8 8 4 . 1 12 61 1 . 1 8 6 4 . 3 22 6 2 1 . 1 8 9 0 , 1 226 3 1 . 1 8 * * * * * * *26 4 1 . 1 8 9 5 . 8 72 6 5 - 1 . 1 8 1 0 8 . 1 42 6 6 1 . 0 2 4 2 . 9 32 6 7 \ 1 . 0 2 3 9 . 8 2268 1 . 0 2 3 7 . 8 32 6 9 1 . 0 2 5 3 . 1 52 7 0 1 . 0 2 4 9 . 7 8271 1 . 0 2 4 8 . 5 02 72 1 . 0 2 6 9 . 5 02 7 3 1 . 0 2 6 2 . 7 227 4 1 . 0 2 6 0 . 1 42 7 5 1 . 0 2 1 4 3 . 0 9

72

P O I N T N O . 1 S T O I C H I O M E T R I C A I R P P M N O C O R R E C T E D T O 1007. S T O I C H . A I R276 1 .02 1 1 0 . 5 02 77 1 .02 83. 4 227 0 1.02 1 5 0 . 2 52 79 1 . 0 2 1 1 9 . 4 628 0 3 .02 8 5 . 3 6281 .82 1 6 . 9 8202 .82 1 . 0 2283 . 62 3 4 , 7 62 8 4 .82 .86285 .82 .922 8 6 .82 4 2 . 8 42 8 7 ,82 4 2 . 4 42 8 8 . 82 1 . 6 02 8 9 . 82 5. 7 32 9 0 .82 4 2 . 0 4291 .82 5 1 . 0 8292 .82 5 0 . 2 92 9 3 .82 43, 56294 .82 49 . 3 12 9 5 ,82 4 9 . 5 12 9 6 .82 4 4 . 3 2297 .82 5 1 . 7 42 9 8 ,82 4 6 . 7 22 99 .62 . 4 2 . 8 03 00 1,18 2 3 . 6 9301 1 . 1 8 2 0 . 7 93 0 2 1 .18 1 5 . 7 7303 1. 1 8 3 6 . 7 33 0 4 1 . 1 8 3 1 . 1 93 05 1 . 1 8 2 8 . 1 63 0 6 1 . 1 8 5 4 . 5 03 0 7 1 . 1 8 4 8 . 5 1308 1 . 1 8 4 2 . 8 13 09 1 .18 1 4 2 . 1 6310 1. 1 8 1 2 7 . 0 5311 1 . 1 8 1 2 8 . 4 2312 1 . 1 6 1 5 7 . 5 6313 1 . 1 8 1 3 5 . 1 4314 1 . 1 8 1 5 2 . 0 7315 1. 0 2 4 4 , 9 73 1 6 1. 0 2 29, 873 1 7 1 . 0 2 3 1 . 0 431 8 1 . 0 2 5 4 . 1 73 1 9 1 . 0 2 • 4 5 * 7 9320 1 . 0 2 4 0 . 7 4321 r .02 7 2 . 5 7322 1 . 0 2 5 9 . 7 3323 1 .02 4 9 . 4 7324 1 . 0 2 1 4 1 . 0 53 25 1 . 0 2 1 0 4 . 5 33 2 6 1 . 0 2 6 3 . 0 5327 1 .02 1 5 3 . 3 13 2 8 * 1 . 0 2 1 0 9 . 5 13 2 9 1 . 0 2 6 1 . 1 1330 .82 4 . 8 5

73

P O I N T NO. '% S T O I C H I O H E T R I C A I R P P M M O C O R R E C T E D T O 1007. S T O I C H . A I R331 .82 .98332 .82 .61333 .82 2 5 , 8 7334 . 82 3 3 . 7 933b . 82 1 3 . 3 7336 . 82 4 8 . 5 033 7 . 82 44,0.133 8 .82 40 . 50339 . 82 4 9 . 3 1340 .82 4 4 . 7 9341 .62 40. 50342 .82 5 2 . 5 4343 . 82 4 4 . 0 1344 .82 40. 5034 b 1 .18 1 6 2 . 3 0346 . 1 . 1 8 1 5 7 . 8 4347 1 . 1 8 1 8 9 5 . 5 1348 1.18 14 6 5 . 6 43 4 9 1 . 1 8 1 9 8 4 . 3 63 5 0 1 . 1 8 1 5 2 2 . 0 1351 1 . 1 8 2 0 1 3 . 9 8352 1 . 1 8 1 5 7 8 . 3 8353 1 . 1 8 2 0 1 3 . 9 8354 1 . 1 8 1 4 9 3 . 6 23 5 5 1 . 0 2 8 8 9 . 2 23 5 6 1 . 0 2 7 1 8 . 5 0357 1 . 0 2 14 3 0 . 9 33 58 1 . 0 2 1 1 4 0 . 8 7359 1 . 0 2 1 4 5 6 . 4 83 6 0 1 . 0 2 1 1 6 5 . 1 4361 1 , 0 2 1 5 3 3 . 1 3362 1 . 0 2 1 1 1 6 . 5 9363 1 . 0 2 1 5 3 3 . 1 3364 1 . 0 2 1 0 6 8 . 0 4365 . 82 1 2 1 . 2 63 6 6 .82 1 0 . 7 136 7 .82 1 1 5 1 . 9 43 68 .82 65. 81369 .82 115*1.94370 .82 6 1 9 . 8 1371 .62 1 1 5 1 . 9 4372 .82 5 9 6 . 6 53 7 3 .82 1 1 3 1 . 7 3374 .82 4 8 9 . 7 3375 1 . 1 8 1 8 9 5 . 5 1376 1 . 1 8 1 5 7 8 . 3 63 7 7 1 . 1 8 1 9 2 5 . 1 33 78 1 . 1 8 1 5 7 8 . 3 837 9 • 1 . 1 8 2 1 0 2 . 8 3380 1 . 1 8 1 5 5 0 . 1 9381 1. 1 8 2 0 4 3 . 6 0382 1. 1 8 1 4 0 9 . 2 6383 1. 0 2 1 4 3 0 . 9 3384 1 . 0 2 1 5 0 7 , 5 8385 1.02 1 5 5 3 . 5 8

74

P O I N T N O . % S T Q I C H I O M ' E T P I C A I R PP.KNO C O R P E C T T O T O 1007. S T O I C H . A I R386 1. 0 2 1 5 3 3 , 1 338 7 1 . 1 7 7 8 . 1 3388 1.11 12 9 . 3 7389 1 . 0 5 14 9 . 4 8390 1. 0 3 1 3 7 , 9 8391 .99 1 2 5 . 6 8392 .97 7 9 . 8 2393 .91 5 4 . 0 83 9 4 . 64 4 1 , 6 1395 . 82 4 0 . 6 53 9 6 1.04 1 4 9 . 5 5397 1. 1 1 1 2 7 . 1 6398 1 . 1 1 1 0 8 , 3 93 9 9 1 . 1 1 9 7 . 1 04 0 0 1. 0 5 1 5 3 . 6 6401 1 . 0 5 1 0 4 . 5 3402 1 . 0 5 64. 864 0 3 .97 7 5 . 0 1404 .97 5 0 . 7 7405 .97 3 4 . 5 14 0 6 .91 54 .064 0 7 .91 38 .964 0 8 .91 29. 784 0 9 1 . 1 1 1 4 5 . 9 541 0 1 . 1 1 1 9 3 . 5 0411 1 . 0 5 1 6 2 . 0 24 1 2 . 84 4 0 . 1 44 1 3 .91 5 8 . 5 8414 1 . 1 8 6 1 . 0 641 5 1 . 1 7 8 1 . 2 34 1 6 1. 1 4 1 1 8 . 4 64 17 1. 1 1 1 3 6 . 6 7416 1 , 0 5 1 5 1 . 9 44 1 9 1 . 0 2 1 3 7 . 7 84 2 0 .99 9 8 . 0 8421 .96 7 6 . 0 742 2 .90 5 2 . 7 14 2 3 .84 4*6.684 24 .81 4 4 . 0 74 2 5 .81 44. 074 2 6 .84 4 5 . 0 14 2 7 .90 5 0 . 0 34 2 8 .96 71 .324 2 9 .99 9 5 . 1 44 3 0 1 . 0 2 1 3 1 . 7 0431 1 . 0 5 1 4 8 . 8 2432 1 . 1 1 1 3 7 . 5 74 33 1. 1 4 1 1 8 . 4 6434 1 . 1 7 7 8 . 9 14 3 5 1, 1 8 6 1 . 0 64 36 1 . 1 8 8 8 . 2 94 3 7 1 . 1 1 3 2 0 . 2 94 38 1 . 0 8 1 1 8 . 7 54 3 9 1 .05 1 0 2 . 7 94 4 0 1 . 0 2 6 9 . 2 5

P O I N T N O. '% S T 0 1 C H 1 0 r. F T R IC A I R P P M N O C O R R E C T E D T O 1 0 0 % S T O I C H . A I R441 .99 5 4 . 9 144 2 .96 4 6 . 9 04 43 .90 • 4 3 . 1 7444 ' .90 4 2 . 3 244 5 .96 4 6 . 9 04 4 6 .99 5 3 . 9 84 4 7 . 1 . 0 2 6 6 . 3 64 4 8 '1.05 9 5 . 8 74 4 9 3 . 0 8 1 1 6 . 7 24 5 0 1 . 1 1 1 2 5 . 5 24 5 1 1 . 1 6 9 1 . 6 04 5 2 1 . 1 8 8 5 . 9 94 5 3 1 . 0 6 1 3 5 . 3 5454 1 . 0 5 1 1 1 . 5 44 5 5 1 . 0 2 8 6 . 8 54 5 6 .96 5 0 . 9 34 5 7 .90 4 7 . 8 24 5 8 ,.90 4 6 . 9 54 5 9 .96 5 0 . 0 04 6 0 1 . 0 2 6 6 . 8 546 1 1 . 0 5 1 1 0 . 5 346 2 1 . 0 8 1 3 5 . 3 54 6 3 1 . 1 8 8 6 . 2 5 •464 1. 18 6 0 . 0 2465 1 . 1 1 1 0 5 . 0 64 6 6 1 . 0 5 1 1 1 . 7 24 6 7 1 . 0 2 9 4 . 6 44 68 .99 7 6 . 0 14 6 9 .96 5 4 . 7 84 7 0 .90 4 3 . 4 647 1 ,84 3 8 . 8 74 7 2 .61 3 6 . 5 64 7 3 .81 x 3 6 . 5 647 4 .84 , 3 8 . 0 44 7 5 .90 ’ 4 1 . 6 94 7 6 .96 5 4 . 7 84 7 7 .99 7 5 . 0 44 7 8 1 . 0 2 9 2 . 6 24 7 9 1 . 0 5 1 0 8 . 6 24 8 0 1 . 1 1 1 0 3 . 9 6481 1 . 1 8 6 2 . 3 348 2 - 1 . 2 0 9 5 . 0 5483 1 , 1 7 1 0 7 . 6 14 84 1 , 1 4 1 7 5 . 1 64 85 1. 0 8 2 3 1 . 6 74 8 6 1 ..02 197. 554 8 7 .99 1 3 7 . 3 248 8 ,96 1 0 4 . 6 048 9 ,90 6 7 . 0 04 9 0 .84 5 8 . 3 449 1 .84 5 8 . 3 449 2 .90 6 7 . 0 04 9 3 .96 1 0 4 . 6 049 4 - , 99 3 3 2 . 4 14 9 5 1 . 0 2 1 9 7 . 5 5

76

P O I N T NO. % S T O I C H I O M E T R I C A I R ' P P M N O C O R R E C T E D T O 100-% S T O I C H .4 9 6 1. 0 8 2 3 1 . 6 7497 1.14 1 7 5 . 1 64 9 8 1 . 1 7 1 0 7 . 6 14 9 9 1 . 2 0 95 ♦ 055 00 1 . 2 0 8 6 . 2 8501 1 . 0 6 1 4 7 . 0 6502 1 . 0 8 1 6 6 . 0 550 3 1 0 2 . 0 0 1 4 3 . 9 7504 .99 1 0 5 . 2 5505 .96 6 3 . 2 9506 .90 5 0 . 5 6507 .84 4 4 . 6 6508 .84 4 4 . 6 6509 .90 5 0 . 5 65 10 .96 6 9 . 9 0511 .99 1 0 9 . 1 5512 1 .02 1 4 4 . 9 85 13 1 . 0 8 1 7 4 . 6 2514 1 . 1 4 1 4 9 . 3 2515 1 . 2 0 8 3 . 9 1516 1.21 ' 1 2 5 . 3 05 1 7 1 . 1 9 1 5 9 . 2 35181 1 . 1 7 1 6 3 . 3 35 1 9 1 . 1 0 1 5 9 . 3 65 20 1 . 0 8 1 3 3 . 1 0521 1 . 0 2 9 6 . 1 8522 .99 6 7 . 0 1523 .96 5 3 . 2 1524 .90 44. 865 2 5 .90 4 4 . 8 65 2 6 • 96 5 1 . 4 152 7 .99 6 7 . 0 1528 1 . 0 2 9 7 . 1 4529 1. 0 8 1 2 9 . 0 05 3 0 1 . 0 9 1 5 3 . 8 7531 1.15 1 6 2 . 6 8532 1 . 1 8 1 5 0 . 7 85 3 3 1 . 2 0 1 0 7 . 7 9534 1 . 2 0 1 2 7 . 4 453 5 1. 1 8 1 6 1 . 9 5536 1. 1 3 1 8 5 . 4 453 7 1 . 0 7 1 6 7 . 9 3538 1 . 0 2 1 3 3 . 2 35 3 9 .90 5 3 . 9 154 0 . .84 4 7 . 8 3541 .84 4 8.64542 .90 5 2 . 1 75 4 3 1 . 0 2 1 3 3 . 2 35 4 4 1 . 0 5 1 6 8 , 3 3545 1 . 1 2 1 8 2 . 5 054 6 1 . 1 8 1 5 7 . 3 954 7 1 . 1 9 1 1 3 . 1 05 4 8 1 . 1 4 1 1 6 . 5 8549 1 .14 1 1 2 . 1 955 0 1.14 1 1 5 . 8 4

A I R

77

P O I N T N O . <7. ST 0 ] C H I O N E TP J C . M R P P H N O C O R R E C T E D T O 1 0 0 % S T O I C H . A I R551 1 .14 1 1 9 . 0 6552 1 .14 1 1 7 . 9 8553 1 . 1 4 1 1 3 . 6 9554 1 .14 3 3 . 2 5555 1. 1 4 3 4 . 3 25 5 6 1 . 1 4 1 0 . 2 35 57 1 . 1 4 1 8 . 7 755 6 1 . 14 3 . 7 55 59 .99 6 3 . 2 9560 .99 6 3 . 2 9** * .99 6 4 . 2 2562 .99 62 .365.6 3 . 99 4 6 . 5 4564 .99 4 6 . 5 4565 .99 2 9 . 7 8566 .99 2 9 . 7 8567 .99 3 . 7 2566 .96 5 8 . 7 65 6 9 .96 5 7 . 8 1570 o 96 5 7 . 8 1571 .96 5 7 . 8 1572 .96 5 4 . 9 7573 .96 5 6 . 8 7574 .96 4 5 . 4 9575 .96 5 6 . 8 75 76 .96 5 6 . 8 7577 .96 4 7 . 3 95 7 6 .96 5 3 . 0 7579 .96 5 5 . 9 25 8 0 • 96 5 5 . 9 2581 .96 5 1 . 1 8582 .96 3 9 . 8 1583 1 . 2 0 5 5 . 7 8584 1 .20 5 6 . 9 95 85 1 . 2 0 5 2 . 1 4586 1 . 2 0 5 0 . 9 35 87 1. 2 0 6 7 . 9 0588 1 . 2 0 6 6 . 6 95 8 9 1 . 2 0 6 0 . 6 35 9 0 1 . 2 0 5 5 . 7 8591 1 . 2 0 6 4 . 2 7592 1 . 2 0 7 7 . 6 059 3 1 . 2 0 7 2 . 7 5594 1 . 2 0 6 3 . 0 5595 1 . 2 0 5 3 . 3 559 6 1..00 1 1 1 .82597 1 . 0 0 1 1 6 . 6 9598 1 . 0 0 1 0 2 . 1 05 9 9 1 . 0 0 9 7 . 2 46 0 0 1 . 0 0 1 0 6 . 9 6601 1 . 0 0 1 0 8 . 9 16 0 2 1 . 0 0 . 1 1 1 . 8 2603 1 , 0 0 1 1 1 . 8 2604 1 . 0 0 1 1 3 . 7 760 5 1 .00 1 1 4 . 7 4

78

P O I N T NO. S T O I C H I O M E T R I C AIR P P M N O C O R R E C T E D TO 1 0 0 % S T Q 1 C H , AIR 6 0 6 3 . 0 0 1 1 6 . 6 96 0 ? 1 . 0 0 1 1 4 . 7 46 0 8 1 . 0 0 1 0 2 . 1 06 0 9 .86 6 0 , 9 16 1 0 .86 6 7 . 6 8611 .86 6 8 , 9 96 1 2 .36 6 9 . 3 761 3 .86 6 9 , 3 76 1 4 .06 6 7 . 6 86 1 5 .86 6 5 , 1 46 1 6 .86 6 0 . 0 66 1 7 1 . 1 4 5 9 . 7 86 1 6 1 . 1 4 4 7 . 3 76 1 9 1 . 1 4 5 1 . 8 96 2 0 1 . 1 4 4 8 . 5 06 2 1 1 . 1 4 4 9 . 6 3622 1 .14 5 0 . 7 66 2 3 1 . 1 4 4 5 . 1 26 24 1 . 1 4 5 0 . 7 6

REFERENCES CITED

Bulewicz, E , M . , C. G. James, and T. M. Sugden, "Photometric Investigation of Alkali Metals in Hydrogen Flame Gases, II," Proc. Royal Soc,, A, 235, (1956) 89-106.

Bulewicz, E. M. and T. M. Sugden, "The Recombination of Hydrogen Atoms and Hydroxyl Radicals in Hydrogen Flames Gases," Trans. Faraday Soc., 54, (1958) 1855-1860.

Cullis, C. F. and M. F. R. Mulcahy, "The Kinetics ofCombustion of Gaseous Sulfur Compounds," Combustion and Flame, 18, (1972) 225-292.

Durie, R. A., A. M. Johnson, and M. Y. Smith, "The Effect of Sulfur Dioxide on Hydrogen-Atom Recombination in the Burnt Gas of Premixed Fuel-Rich Propane-Oxygen- Nitrogen Flames," Combustion and Flame, 17, (1971) 197-203.

Fenimore, C. P., Thirteenth Symposium (International) onCombustion, The Combustion Institute, (1971) p. 373.

Fristrom, F. M. and A. A. Westenberg, Flame Structure, McGraw-Hill, New York, (1965).

Halstead, C. J. and D, R. Jenkins, "Sulfur-Dioxide-Catalyzed Recombination of Radicals in Premixed Fuel-RichHydrogen + Oxygen + Nitrogen Flames," Trans. FaradaySoc., 8 5 , (1969) 3013.

Iverach, D . , K. S. Basden, and N. Y. Kirov, "Formation of Nitric Oxide in Fuel-Lean and Fuel-Rich Flames," Fourteenth Symposium (International) on Combustion, The Combustion Institute, (1973).

Johnson, G . M . , C. J. Matthews, M. Y . Smith, and D . J .Williams, "Distribution of Sulfur Species in the Burnt Gas of Fuel-Rich Propane-Air Flames,"Combustion and Flame, 15, (1970) 211-214.

Lange, H. B., Jr., "N0X Formation in Premixed Combustion: AKinetic Model and Experimental Data," AIChE Symposium Series, No. 126, Vol. 68, (1972) 17-27.

79

80Levy, A. and E. L . Merryman, "The Microstructure of Hydrogen

Sulphide Flames," Combustion and Flame, 9, (196 5)229 .

Merryman, E . L. and A. Levy, "Kinetics of Sulfur-OxideFormation in Flames, II. Low Pressure H S Flames," Journal of the Air Pollution Control Assoc., Vol. 17, No. 12, (Dec. 1967).

Padley, P. J . and T . N . Sugden, "Photometric Investigations of the Alkali Metals in Hydrogen Flame Gases, IV," Proc. Royal S o c . , A, 248 , (19 58) 248-265.

Sarofin, A. F . and J . H . Pohl, "Kinetics of Nitric Oxide Formation in Premixed Laminar Flames," Fourteenth Symposium (International) on Combustion, The Combustion Institute, (1973) 739 .

Thompson, D ., T. D . Brown, and J . M. Beer, "NOx Formation in Combustion," Combustion and Flame, 19, (1972) 69-79.

Waldman, C. H ., R. P. Wilson, Jr., and K. L. Maloney,"Kinetic Mechanisms of Methane/Air Combustion with Pollutant Formation," Environmental Protection Technology Series Report EPA-650/2-74-045, (1974).

Zeldovich, Ya. B ., Acta Physicochem., U S S R , 21, 577 (1946).