36
EELE 3332 Electromagnetic II Chapter 12 Waveguides Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2012 1

EELE 3332 Electromagnetic II Chapter 12 Waveguidessite.iugaza.edu.ps/tskaik/files/EMII_Chapter_12.pdf · 2012. 5. 18. · EELE 3332 – Electromagnetic II Chapter 12 Waveguides Islamic

  • Upload
    others

  • View
    17

  • Download
    1

Embed Size (px)

Citation preview

  • EELE 3332 – Electromagnetic II

    Chapter 12

    Waveguides

    Islamic University of Gaza

    Electrical Engineering Department

    Dr. Talal Skaik

    2012 1

  • 2

    Waveguides

    Waveguides are used at high frequencies since they have larger

    bandwidth and lower signal attenuation than transmission lines.

    Waveguides are used at high power applications.

    Waveguides can operate above certain frequencies. (act as high

    pass filter).

    Normally circular or rectangular.

  • 3

    Waveguides

  • 4

    Waveguides

    Dr. Talal Skaik 2012 IUG

    Rectangular waveguide Waveguide to coax adapter

    E-tee Waveguide bends

  • 5

    Waveguide Filter

  • 6

    Transmission Lines, Waveguides - Comparison

  • 7

    Transmission Lines, Waveguides - Comparison

  • 8

    12.2 Rectangular Waveguides

    Assume a rectangular waveguide filled with lossless dielectric

    material and walls of perfect conductor, Maxwell equations in

    phasor form become,

    2 2

    2 2

    E E 0 where

    H H 0

    s s

    s s

    kk

    k

  • 9

    Rectangular Waveguides

    2 2

    2 2 22

    2 2 2

    2

    Applying on z-component:

    0

    0

    Solving by method of Separation of Variables:

    ( , , ) ( ) ( ) ( )

    from where we obtain:

    zs zs

    zs zs zszs

    z

    '' '' ''

    E k E

    E E Ek E

    x y z

    E x y z X x Y y Z z

    X Y Zk

    X Y Z

  • 1 2

    3 4

    cos sin

    cos sin

    ( , , ) ( ) ( ) ( ) ( )

    x x

    y y

    zs

    X(x) c k x c k x

    Y(y) c k y c k y

    E x y z X x Y y Z z Z z c

    5 6

    1 2 3 4 5 6

    1 2 3 4

    1

    cos sin cos sin

    Assume wave propagates along waveguide in direction:

    cos sin cos sin

    Similarly for the magnetic field,

    cos

    z z

    z z

    zs x x y y

    z

    zs x x y y

    zs

    e c e

    E c k x c k x c k y c k y c e c e

    z

    E A k x A k x A k y A k y e

    H B

    2 3 4sin cos sin zx x y yk x B k x B k y B k y e 10

    Rectangular Waveguides

  • 11

    Other Components

    From Maxwell’s equations, we can determine the other components Ex , Ey , Hx , Hy .

    2 2

    2 2

    2 2

    2 2

    2 2 2 2 2

    zs zsxs

    zs zsys

    zs zsxs

    zs zsys

    x y

    E HjE

    h x h y

    E HjE

    h y h x

    E HjH

    h y h x

    E HjH

    h x h y

    where

    h k k k

    *So once we know

    Ez and Hz, we can

    find all the other

    fields.

  • From these equations we notice that there are different field patterns,

    each of these field patterns is called a mode.

    • Ezs=Hzs=0 (TEM mode): transverse electromagnetic mode. Both E

    and H are transverse to the direction of propagation. From previous

    equations we notice that all field components vanish for Ezs=Hzs=0.

    →Rectangular waveguide can’t support TEM mode.

    • Ezs=0, Hzs≠0 (TE modes) transverse electric

    The electric field is transverse to the direction of propagation.

    • Ezs ≠ 0, Hzs= 0 (TM modes) transverse magnetic

    The magnetic field is transverse to the direction of propagation.

    • Ezs ≠ 0, Hzs ≠ 0 (HE modes) hybrid modes

    All components exist. 12

    Modes of Propagation

  • 13

    Transverse Magnetic (TM) mode

    1 2 3 40, cos sin cos sin

    0 at 0 (bottom and top walls)

    0 at 0 (left and right walls)

    Applying boundary conditio

    Boundar

    ns at ( 0 and

    y

    Conditio s

    0

    n

    z

    z zs x x y y

    zs

    zs

    H E A k x A k x A k y A k y e

    E y ,b

    E x ,a

    y x

    zs 1 3

    0 0 2 4

    zs

    ) to E 0

    sin sin ( )

    Applying boundary conditions at ( and ) to E

    sin 0, sin 0 , This implies that :

    , 1, 2,3,...

    ,

    z

    zs x y

    x y

    x

    y

    A A

    E E k x k y e E A A

    y b x a

    k a k b

    k a m m

    k b n n

    0

    1,2,3,...

    ,

    sin sin

    x y

    z

    zs

    m nor k k

    a b

    m x n yE E e

    a b

    Tangential components are continuous

  • 14

    Transverse Magnetic (TM) mode

    • Other components are

    2

    2

    2

    2

    zsx

    zsy

    zsx

    zsy

    EE

    h x

    EE

    h y

    EjH

    h y

    EjH

    h x

    sin sin , 0zzs o zsm n

    E E x y e Ha b

    2

    2

    2

    2

    cos sin

    sin cos

    sin cos

    cos sin

    z

    xs o

    z

    ys o

    z

    xs o

    z

    ys o

    m m x n yE E e

    h a a b

    n m x n yE E e

    h b a b

    j n m x n yH E e

    h b a b

    j m m x n yH E e

    h a a b

    2 2

    2 2 2 x ym n

    where h k ka b

  • 15

    Transverse Magnetic (TM) mode

    2 2

    2 2

    2

    2 2

    2

    Propagation constant: ,

    ,

    h k

    m nh k

    a b

    m n

    a b

    •Each set of integers m and n gives a different field pattern or mode.

    •Integer m equals the number of half cycle variations in the x-direction.

    •Integer n is the number of half cycle variations in the y-direction.

    •Note that for the TM mode, if n or m is zero, all fields are zero. Hence,

    TM11 is the lowest order mode of all the TMmn modes.

  • 16

    Example: Field configuration for TM21 mode

  • 17

    Transverse Magnetic (TM) mode 2 2

    2m n

    a b

    2 2

    2

    2 2

    ,

    then 0

    1 1or

    2

    No propagation takes pla

    The cuttoff occurs when

    ce at this frequenc

    :

    y

    c

    cm n

    m nj

    a b

    m nf

    a b

    2 2

    2When and 0

    No wave propagation at all. (everything is attenuated)

    So when

    Evanescent m

    , all field components will decay exponantially

    odes :

    .c

    m n

    a b

    f f

  • 18

    Transverse Magnetic (TM) mode

    2 2

    2 and 0

    This is the case we are interested since is when the wave

    is allowed to travel t

    Propaga

    hrough the guide.

    , at a given operating fre

    tion occurs

    que

    whe

    nc

    n

    m nj

    a b

    So

    y f, only those modes with

    will propagate.f fc

    fc,mn

    attenuation Propagation

    of mode mn

    The cutoff frequency is the

    frequency below which attenuation

    occurs and above which propagation

    takes place. (High Pass)

  • 2 2

    ,

    2 2

    2 2

    2

    :

    1 1

    2

    ' 1 , where '

    2

    T can be written in term

    The cutoff Frequency is

    he phase co s of asnst t :an

    cm n

    cmn

    c

    m nf

    a b

    u m nor f u

    a b

    f

    m n

    a b

    2 2

    2

    2

    1

    ' 1 , where ' / 'c

    m n

    a b

    fk u

    f

    19

    Transverse Magnetic (TM) mode

  • 20

    Transverse Magnetic (TM) mode

    2 2

    2 2

    2 2 2 ' ', but ' , '

    '' 1 1

    :- (varies with freq

    The gu

    uency)

    1 ' 1

    ide wavelength is:

    Intrinsic Impedance

    , w

    g g

    c c

    x c cTM TM

    y

    u

    ff f

    f f

    E f f

    H f f

    ' /

    ', ', ', and ' are parameters for unguided wave propagating

    in the same dielectric medium ( , ) unbounded by the waveguide.

    (i.e. waveguide removed and entire space is filled with diele

    here

    u

    ctric.)

  • 21

    Transverse Electric (TE) modes

    1 2 3 4

    2

    0, cos sin cos sin

    0 at 0 (bottom and top walls)

    0 at 0 (le

    Bounda

    ft and right walls)

    0 at

    ry

    Conditions

    0

    z

    z zs x x y y

    xs

    ys

    zs zsxs

    E H B k x B k x B k y B k y e

    E y ,b

    E x ,a

    j H HE y ,b

    h y y

    2

    0 1 3

    0 at 0

    From this we conclude

    cos cos ( = )

    zs zsys

    z

    zs o

    j H HE x ,a

    h x x

    m x nH H y e H B B

    a b

    Tangential components are continuous

  • Other components are

    22

    Transverse Electric (TE) modes

    2

    2

    2

    2

    cos sin

    sin cos

    sin cos

    cos sin

    z

    xs o

    z

    ys o

    z

    xs o

    z

    ys o

    j n m x n yE H e

    h b a b

    j m m x n yE H e

    h a a b

    j m m x n yH H e

    h a a b

    j n m x n yH H e

    h b a b

    0, cos cos zz zs om n

    E H H x y ea b

    2

    2

    2

    2

    zxs

    zys

    zxs

    zys

    HjE

    h y

    HjE

    h x

    HH

    h x

    HH

    h y

  • 23

    Example: Field configuration for TE32 mode

  • • The cutoff frequency is the same expression as for the TM

    mode

    • For TE modes, (m,n) may be (0,1) or (1,0) but not (0,0). Both

    m and n cannot be zero at the same time because this will force

    the field components to vanish.

    • Hence, the lowest mode can be TE10 or TE01 depending on the

    values of a and b.

    • It is standard practice to have a>b, thus TE10 is the lowest

    mode.

    24

    22

    2

    '

    b

    n

    a

    muf

    mnc

    TE modes - Cuttoff

    10 '/ 2cf u a

  • 25

    TE modes

    • The dominant mode is the mode with lowest cutoff frequency.

    The cutoff frequency of the TE10 mode is lower than that of TM11

    mode. Hence, TE10 is the dominant mode.

    If more than one mode is propagating, the waveguide is overmoded.

    Single mode propagation is highly desirable to reduce dispersion.

    This occurs between cutoff frequency for TE10 mode and cuttoff

    frequency of next higher mode.

  • 26

    2

    2 2

    he phase constant is the same as TM mode:

    The intrinsic impedance of the TE mod

    T

    ' 1 , where ' / '

    1 ' , w ' /

    1 1

    e is:

    c

    xTE TE

    yc c

    fu

    f

    Ehere

    H f f

    f f

    2

    2Note that ' ' 1 cTE TM TMf

    f

    TE modes

  • 10

    For TE mode, cos cos

    For TE mode, cos

    In the time domain: =Re

    cos cos

    ,

    j z

    zs o

    j z

    zs o

    j t

    z zs

    z o

    y

    m nH H x y e

    a b

    xH H e

    a

    H H e

    or

    xH H t z

    a

    Similarly

    E

    0

    0

    sin sin

    sin sin

    0

    x

    z x y

    a xH t z

    a

    a xH H t z

    a

    E E H

    27

    TE10 mode

    Variation of the field components with x for TE10 mode.

  • 28

    TE10 mode

    Field lines for TE10 mode

  • 29

    TE/TM modes Wave in the dielectric medium Inside the waveguide

    /'

    '/' u

    2

    1

    '

    f

    fc

    TE

    2

    '

    1 cf

    f

    /

    1'

    2

    f

    f

    u

    c

    p

    2

    1'

    f

    fc

    fu /''

    /1'/' fu

    2

    , ' 1 cTMf

    f

  • 2 2

    2 2 2 2

    2 2

    The cutoff frequency is given by:

    ' 1 , u'=

    2 2

    Hence

    4 4 2.5 10 1 10

    cmn

    r r

    cmn

    u m n c cf

    a b

    c m n c m nf

    a b

    30

    Example 12.1

    • Example: A rectangular waveguide with dimensions a=2.5 cm,

    b=1 cm is to operate below 15.1 GHz. How many TE and TM

    modes can the waveguide transmit if the guide is filled with a

    medium characterized by σ=0, ε=4 ε0, µr=1? Calculate the

    cutoff frequencies of the modes.

  • 2 2

    2 2

    01 01

    02 02

    03 03

    10 10

    20 10

    4 2.5 10 1 10

    For TE mode ( =0, =1), 7.5 GHz

    For TE 15 GHz

    For TE 22.5 GHz

    For TE 3 GHz

    For TE 6 GH

    cmn

    c m nf

    m n fc

    fc

    fc

    fc

    fc

    30 10

    40 10

    50 10

    60 10

    z

    For TE 9 GHz

    For TE 12 GHz

    For TE 15 GHz

    For TE 18 GHz

    fc

    fc

    fc

    fc

    31

    Example 12.1 - solution

  • 2 2

    2 2

    11 11 11

    21 21 21

    31 31 31

    4 2.5 10 1 10

    For TE , TM modes , 8.078 GHz

    For TE , TM modes , 9.6 GHz

    For TE , TM modes , 11.72 GHz

    cmn

    c m nf

    fc

    fc

    fc

    41 41 41

    12 12 12

    Modes with cutoff frequencies les

    For TE , TM modes , 14.14 GHz

    s than or equal 15.1 GHz

    will be tran

    For TE

    smitt

    , TM modes , 15

    ed. (11 TE modes

    .3

    an

    GHz

    d 4 TM

    modes)

    fc

    fc

    32

    Example 12.1 - solution

  • 33

    Example 12.1 - solution

    Cutoff frequencies of rectangular waveguide with a 2.5b; for Example 12.1.

  • 34

    Example 12.3

    • Example: in a rectangular waveguide for which a=1.5 cm,

    b=0.8 cm, σ=0, µ=µ0, ε=4ε0.

    • Determine:

    • (a) the mode of operation.

    • (b) the cutoff frequency

    • (c) the phase constant β.

    • (d) the propagation constant γ.

    • (e) the intrinsic wave impedance η.

    113

    2sin cos sin 10 A/mxx y

    H t za b

  • 13 13 13

    2 2

    2 2

    13 2 2

    ( ) the guide is operating at TM or TE . Suppose we choose TM .

    ' 1( ) , '

    2 2

    1 3 28.57 GHz

    4 1.5 10 0.8 10

    (c) ' 1

    cmn

    r r

    c

    c

    a

    u m n c cb f u

    a b

    cHence f

    f

    f

    13

    2 2 2

    11

    211

    8

    2 2

    TM

    1 1

    2 10 50 GHz

    10 4 28.571 1718.81 rad/m

    3 10 50

    ( ) = 1718.81/ m

    377 28.57( ) ' 1 1 154.7

    50

    rc c

    c

    r

    f f

    f c f

    f f

    d j j

    fe

    f

    35

    Example 12.3 - Solution

  • 36