37
EE5390: Analog Integrated Circuit Design Introduction Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India 6 Jan. 2010 Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Embed Size (px)

Citation preview

Page 1: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

EE5390: Analog Integrated Circuit DesignIntroduction

Nagendra Krishnapura

Department of Electrical EngineeringIndian Institute of Technology, Madras

Chennai, 600036, India

6 Jan. 2010

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 2: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Course info

http://www.ee.iitm.ac.in/∼nagendra/EE539/201001/courseinfo.html

TAs: P. Rakesh, Kunal Karanjkar

E Slot (Tue. 1100-1150, Wed. 1000-1050, Thu. 0800-0850, Fri.1400-1450)

Check it regularly for recorded lectures, assignments, andreferences

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 3: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Modern signal processing systems

DSP...0100011011...

Digital Processing

Interface Electronics

(A-D and D-A Conversion)

. . .

Sensor(s) Actuator(s)

. . .. . .

(Signal Conditioning)

Continuous-timeContinuous-amplitude

Discrete -timeDiscrete -amplitude

Continuous-timeContinuous-amplitude

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 4: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Analog circuits in modern systems on VLSI chips

Analog to digital conversion

Digital to analog conversion

Amplification

Signal processing circuits at high frequencies

Power management-voltage references, voltageregulators

Oscillators, Phase locked loops

The last two are found even on many “digital” ICs

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 5: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Image sensor[ISSCC 2004]

Chip Micrograph

Chip size: 4.74mm x 6.34mm

10b pipelined

ADC

Column

CDS circuits

Timing Generator

I/O circuit

703 x 499 pixels

(VGA format)

Voltage

Regulator

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 6: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Wireless LAN transceiver[ISSCC 2004]

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 7: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

DRAM[ISSCC 2004]

512K

ARRAY

VPP PUMP

1088

SENSE AMPS

64 I/Os

DATA LINES

64 I/OsADDRESSES

AND CONTROL

BANK 3

BANK 2

BANK 1

BANK 0

ROW

DECODERS

COLUMN

DECODERS

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 8: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Analog IC design in India

Many companies starting analog centers

Multinationals-TI, National, ST, ADI etc.

Indian start ups-Cosmic, Manthan, Karmic, Sankalp etc.

Big demand for skilled designers

Interesting and profitable activity ⌣̈

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 9: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Course goals

Learn to design negative feedback circuits on CMOS ICs

Negative feedback for controlling the output

Amplifiers, voltage references, voltage regulators, biasing

Phase locked loops

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 10: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Course prerequisites

Circuit analysis-small and large signal

Laplace transforms, frequency response, Bode plots,Differential equations

Opamp circuits

Single transistor amplifiers, differential pairs

EE542 (Analog Electronic Circuits)/EC201 (Analog Circuits)

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 11: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Course contents-Negative feedback amplifiers

Amplifiers using negative feedback

Stability, Frequency compensation

Negative feedback circuits using opamps

Opamp macromodel

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 12: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Course contents-Opamps on CMOS ICs

Components available on a CMOS integrated circuit

Device models-dc small signal, dc large signal, ac smallsignal, mismatch, noise

Single stage opamp

Cascode opamps

Two stage opamp with miller compensation

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 13: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Course contents-Fully differential circuits

Differential and common mode half circuits, common modefeedback

Fully differential miller compensated opamp

Fully differential feedforward compensated opamp

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 14: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Course contents-Phase locked loop

Frequency multiplication using negative feedback

Type I, type II loops

Oscillators

Phase noise basics

PLL noise transfer functions

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 15: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Course contents-Design of opamps

Single stage opamp

Folded, telescopic cascode opamps

Two stage opamp

Fully differential opamps and common mode feedback

Applications: Bandgap reference, constant gm biasgeneration

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 16: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Course contents-Applications

Bandgap reference

Constant current and constant gm bias generators

Continuous-time filters

Switched capacitor filters

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 17: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Design versus Analysis

Design: Create something that doesn’t yet exist

Analysis: Analyze something that exists

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 18: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

To be able to design

Knowing analysis is necessary, not sufficient

Multiple ways of looking at building blocks

Trial and error approaches

Intuitive thinking/understanding

Curiosity

Open mind

Thoroughness

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 19: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Intuition

Intuitive thinking is not sloppy thinking!

Relate problems to other problems already solved

Use boundary conditions, dimension checks etc.Build your intuition

Solve many problemsThink about why the answer is what it isCome up with the form of the solution before applying fullblown analysis

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 20: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Circuit analysis

Nodal analysis-Kirchoff’s Current Law (KCL) at each node

Solve N simultaneous equations for an N node circuit

Mesh analysis-Kirchoff’s Voltage Law (KVL) around eachloop

Solve M simultaneous equations for a circuit with Mindependent loops

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 21: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Nodal analysis

i11(v) + i12(v) + . . . + i1N(v) = i1i21(v) + i22(v) + . . . + i2N(v) = i2

...

iN1(v) + iN2(v) + . . . + iNN(v) = iN

ikl : Current in the branch between nodes k and l

ikk : Current in the branch between node k and ground

vk : Voltage at node k ; v = [v1v2 . . . vN ]T

ik : Current source into node k

ikl can be a nonlinear function of v

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 22: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Nodal analysis—Linear circuits

g11v1 + g12v2 + . . . + g1NvN = i1g21v1 + g22v2 + . . . + g2NvN = i2

...

gN1v1 + gN2v2 + . . . + gNNvN = iN

gkl : Conductance between nodes k and l

gkk : Conductance between node k and ground

vk : Voltage at node k

ik : Current source into node k

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 23: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Nodal analysis—Independent voltage source

...

gk1v1 + gk2v2 + . . . + gkNvN = ik node k...

vk = Vo node k

Ideal voltage source Vo connected to node k

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 24: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Nodal analysis—Controlled voltage source

...

gk1v1 + gk2v2 + . . . + gkNvN = ik node k...

vk − kvl = 0 node k

Voltage controlled voltage source vk = kvl driving node k

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 25: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Nodal analysis—Controlled voltage source

gk1v1 + gk2v2 + . . . + gklvl + . . . + gkNvN = ik node k

gk1v1 + gk2v2 + . . . +vk

Rm+ . . . + gkNvN = ik node k

gl1v1 + gl2v2 + . . . + glkvk + . . . + glNvN = il node l

gl1v1 + gl2v2 + . . . −vk

Rm+ . . . + glNvN = il node l

Current controlled voltage source vk = Rmikl driving node k

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 26: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Nodal analysis—Controlled current source

gk1v1 + gk2v2 + . . . + gklvl + . . . + gkNvN = ik + gmvl

gk1v1 + gk2v2 + . . . + gklvl − gmvl + . . . + gkNvN = ik

Current controlled voltage source i0 = gmvl driving node k

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 27: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Nodal analysis—Ideal opamp

...

gm1v1 + gm2v2 + . . . + gmNvN = im node m...

vk − vl = 0 node m

Ideal opamp with input terminals at nodes k , l and outputat node m

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 28: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Nodal analysis—solution

g11g12 . . . g1N

g21g22 . . . g2N...

gN1gN2 . . . gNN

v1

v2...

vN

=

i1i2...

iN

Gv = i

v = G−1i

gkl : Conductance between nodes k and lgkk : Conductance between node k and groundvk : Voltage at node kik : Current source into node kModified terms for voltage sources or controlled sourcesMatrix inversion yields the solution

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 29: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Nodal analysis—solution

vk =

g11g12 . . . i1 . . . g1N

g21g22 . . . i2 . . . g2N...

gN1gN2 . . . iN . . . gNN

g11g12 . . . g1k . . . g1N

g21g22 . . . g2k . . . g2N...

gN1gN2 . . . gNk . . . gNN

Cramer’s rule can be used for matrix inversion

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 30: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Circuits with capacitors and inductors

Y11(s)Y12(s) . . . Y1N(s)Y21(s)Y22(s) . . . Y2N(s)

...YN1(s)YN2(s) . . . YNN(s)

V1(s)V2(s)

...VN(s)

=

I1(s)I2(s)

...IN(s)

Y(s)V (s) = I(s)

V (s) = Y−1I(s)

Conductances gkl replaced by admittances Ykl(s)

Roots of the determinant of Y(s) are system poles

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 31: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Laplace transform analysis for linear systems

Input Output

X (s) H(s)X (s)

est H(s)est

X (jω) H(jω)X (jω)

ejωt H(jω)ejωt

cos(ωt) |H(jω)| cos (ωt + ∠H(jω)) (Steady state solution)

Linear time invariant system described by its transferfunction H(s)

H(s) is the laplace transform of the impulse response

s = jω represents a sinusoidal frequency ω

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 32: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Laplace transform analysis for linear systems

Transfer function H(s) (no poles at the origin)

H(s) = Adc1 + b1s + b2s2 + . . . + bMsM

1 + b1s + b2s2 + . . . + bNsN

= Adc

∏Mk=1 1 + s/zk

∏Nk=1 1 + s/pk

Single pole at the origin

H(s) =ωu

s

∏Mk=1 1 + s/zk

∏Nk=2 1 + s/pk

All poles pk must be in the left half plane for stability

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 33: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Frequency and time domain analyses

Frequency domain

Algebraic equations-easier solutions

Only for linear systems

Time domain

Differential equations-more difficult to solve

Can be used for nonlinear systems as well

Piecewise linear systems occur quite frequently (e.g.saturation)

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 34: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Bode plots

Sinusoidal steady state response characterized by |H(jω)|,∠H(jω)

Bode plot: Plot of 20 log |H(jω)|, ∠H(jω) versus log ωapproximated by straight line segments

Good approximation for real poles and zeros

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 35: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

Simulators

Very powerful tools, indispensable for complex calculations, butGIGO!

Matlab: System level analysis (Frequency response,pole-zero, transfer functions)

Spice: Circuit analysis

Maxima: Symbolic analysis

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 36: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

References: Recorded lectures

EC201: Analog Circuits

EE539: Past years’ lectures

URL: http://www.ee.iitm.ac.in/∼nagendra/videolectures/

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design

Page 37: EE5390: Analog Integrated Circuit Design - Introductionnagendra/EE539/201001/handouts/e… ·  · 2010-04-20... Analog Integrated Circuit Design Introduction ... Analog circuits

References

Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, August 2000.

Hayt and Kemmerly, Engineering Circuit Analysis, McGraw Hill, 6/e.

B. P. Lathi, Linear Systems and Signals, Oxford University Press, 2 edition, 2004.

Sergio Franco, Design with operational amplifiers and analog ICs, Tata McGraw Hill.

H. Takahashi et al., “A 3.9 µm pixel pitch VGA format 10b digital image sensor with 1.5-transistor/pixel,”IEEE International Solid-State Circuits Conference, vol. XVII, pp. 108 - 109, February 2004.

M. Zargari et al., “A single-chip dual-band tri-mode CMOS transceiver for IEEE 802.11a/b/g WLAN,” IEEEInternational Solid-State Circuits Conference, vol. XVII, pp. 96 - 97, February 2004.

K. Hardee et al. “A 0.6V 205MHz 19.5ns tRC 16Mb embedded DRAM,” IEEE International Solid-StateCircuits Conference, vol. XVII, pp. 200 - 201, February 2004.

Nagendra Krishnapura EE5390: Analog Integrated Circuit Design