47
4: DC and Transient Respo nse 1 EE 447 VLSI Design VLSI Design DC & Transient Response

EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

Embed Size (px)

Citation preview

Page 1: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 1EE 447 VLSI Design

VLSI Design

DC & Transient Response

Page 2: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 2EE 447 VLSI Design

Outline

DC Response Logic Levels and Noise Margins Transient Response Delay Estimation

Page 3: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 3EE 447 VLSI Design

DC Response

DC Response: Vout vs. Vin for a gate Ex: Inverter

When Vin = 0 -> Vout = VDD

When Vin = VDD -> Vout = 0 In between, Vout depends on

transistor size and current By KCL, must settle such that

Idsn = |Idsp| We could solve equations But graphical solution gives more insight

Idsn

Idsp Vout

VDD

Vin

Page 4: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 4EE 447 VLSI Design

Transistor Operation Current depends on region of transistor

behavior For what Vin and Vout are nMOS and

pMOS in Cutoff? Linear? Saturation?

Page 5: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 5EE 447 VLSI Design

I-V Characteristics Make pMOS is wider than nMOS such that n =

p

Vgsn5

Vgsn4

Vgsn3

Vgsn2Vgsn1

Vgsp5

Vgsp4

Vgsp3

Vgsp2

Vgsp1

VDD

-VDD

Vdsn

-Vdsp

-Idsp

Idsn

0

Page 6: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 6EE 447 VLSI Design

Current vs. Vout, Vin

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

Page 7: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 7EE 447 VLSI Design

Load Line Analysis

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

For a given Vin: Plot Idsn, Idsp vs. Vout

Vout must be where |currents| are equal in

Idsn

Idsp Vout

VDD

Vin

Page 8: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 8EE 447 VLSI Design

Load Line Analysis

Vin0

Vin0

Idsn, |Idsp|

VoutVDD

Vin = 0

Page 9: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 9EE 447 VLSI Design

Load Line Analysis

Vin1

Vin1Idsn, |Idsp|

VoutVDD

Vin = 0.2VDD

Page 10: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 10EE 447 VLSI Design

Load Line Analysis

Vin2

Vin2

Idsn, |Idsp|

VoutVDD

Vin = 0.4VDD

Page 11: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 11EE 447 VLSI Design

Load Line Analysis

Vin3

Vin3

Idsn, |Idsp|

VoutVDD

Vin = 0.6VDD

Page 12: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 12EE 447 VLSI Design

Load Line Analysis

Vin4

Vin4

Idsn, |Idsp|

VoutVDD

Vin = 0.8VDD

Page 13: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 13EE 447 VLSI Design

Load Line Analysis

Vin5Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

Vin = VDD

Page 14: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 14EE 447 VLSI Design

Load Line Summary

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

Page 15: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 15EE 447 VLSI Design

DC Transfer Curve

Transcribe points onto Vin vs. Vout plot Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

VoutVDD

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD/2 VDD+Vtp

Page 16: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 16EE 447 VLSI Design

Operating Regions Revisit transistor operating regions

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD/2 VDD+Vtp

Region nMOS pMOS

A Cutoff Linear

B Saturation

Linear

C Saturation

Saturation

D Linear Saturation

E Linear Cutoff

Page 17: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 17EE 447 VLSI Design

Beta Ratio If p / n 1, switching point will move from

VDD/2 Called skewed gate Other gates: collapse into equivalent inverter

Vout

0

Vin

VDD

VDD

0.51

2

10p

n

0.1p

n

Page 18: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 18EE 447 VLSI Design

Noise Margins How much noise can a gate input see before it

does not recognize the input?

IndeterminateRegion

NML

NMH

Input CharacteristicsOutput Characteristics

VOH

VDD

VOL

GND

VIH

VIL

Logical HighInput Range

Logical LowInput Range

Logical HighOutput Range

Logical LowOutput Range

Page 19: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 19EE 447 VLSI Design

Logic Levels To maximize noise margins, select logic levels at

unity gain point of DC transfer characteristic

VDD

Vin

Vout

VOH

VDD

VOL

VIL VIHVtn

Unity Gain PointsSlope = -1

VDD-|Vtp|

p/n > 1

Vin Vout

0

Page 20: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 20EE 447 VLSI Design

Transient Response

DC analysis tells us Vout if Vin is constant Transient analysis tells us Vout(t) if Vin(t) changes

Requires solving differential equations

Input is usually considered to be a step or ramp From 0 to VDD or vice versa

Page 21: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 21EE 447 VLSI Design

Inverter Step Response Ex: find step response of inverter driving load

cap

0( )

(

)

)

(o

i

ut

n

out

V t t

t

V

t

V

d

d

t

Vin(t) Vout(t)

Cload

Idsn(t)

Page 22: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 22EE 447 VLSI Design

Inverter Step Response Ex: find step response of inverter driving load

cap0

0

( )

( )

( )

( )

ou

DDin

t

out

u t t V

d

d

t

t t

V t

V

V

t

Vin(t) Vout(t)

Cload

Idsn(t)

Page 23: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 23EE 447 VLSI Design

Inverter Step Response Ex: find step response of inverter driving load

cap0

0(

( ))

(

(

)

)

DD

Do

i

D

o t

n

ut

u

V t

u t t V

V

d

d

t

t

V

V

t

t

Vin(t) Vout(t)Cload

Idsn(t)

Page 24: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 24EE 447 VLSI Design

Inverter Step Response Ex: find step response of inverter driving load

cap

0

0

( )

( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

V

V

u t t V

t t

V t

V

d

dt C

t

I t

0

( ) DD tout

ou

ds

t DD t

nI t V V

VV V

V

t t

Vin(t) Vout(t)Cload

Idsn(t)

Page 25: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 25EE 447 VLSI Design

Inverter Step Response Ex: find step response of inverter driving load

cap

0

0

( )

( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

V

V

u t t V

t t

V t

V

d

dt C

t

I t

0

2

2

0

2)

)

( ( )

( DD DD t

DD

out

outout out D t

n

t

ds

D

I V

t t

V V V V

V V V VV

t

V t V t

Vin(t) Vout(t)Cload

Idsn(t)

Page 26: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 26EE 447 VLSI Design

Inverter Step Response Ex: find step response of inverter driving load

cap

0

0

( )

( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

V

V

u t t V

t t

V t

V

d

dt C

t

I t

0

2

2

0

2)

)

( ( )

( DD DD t

DD

out

outout out D t

n

t

ds

D

I V

t t

V V V V

V V V VV

t

V t V t

Vout(t)

Vin(t)

t0t

Vin(t) Vout(t)Cload

Idsn(t)

Page 27: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 27EE 447 VLSI Design

Delay Definitions tpdr:

tpdf:

tpd:

tr:

tf: fall time

Page 28: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 28EE 447 VLSI Design

Delay Definitions tpdr: rising propagation delay

From input to rising output crossing VDD/2 tpdf: falling propagation delay

From input to falling output crossing VDD/2 tpd: average propagation delay

tpd = (tpdr + tpdf)/2 tr: rise time

From output crossing 0.2 VDD to 0.8 VDD

tf: fall time From output crossing 0.8 VDD to 0.2 VDD

Page 29: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 29EE 447 VLSI Design

Delay Definitions tcdr: rising contamination delay

From input to rising output crossing VDD/2 tcdf: falling contamination delay

From input to falling output crossing VDD/2 tcd: average contamination delay

tpd = (tcdr + tcdf)/2

Page 30: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 30EE 447 VLSI Design

Simulated Inverter Delay Solving differential equations by hand is too hard SPICE simulator solves the equations numerically

Uses more accurate I-V models too! But simulations take time to write

(V)

0.0

0.5

1.0

1.5

2.0

t(s)0.0 200p 400p 600p 800p 1n

tpdf = 66ps tpdr = 83psVin Vout

Page 31: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 31EE 447 VLSI Design

Delay Estimation We would like to be able to easily estimate delay

Not as accurate as simulation The step response usually looks like a 1st order

RC response with a decaying exponential. Use RC delay models to estimate delay

C = total capacitance on output node Use effective resistance R So that tpd = RC

Characterize transistors by finding their effective R

Depends on average current as gate switches

Page 32: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 32EE 447 VLSI Design

RC Delay Models Use equivalent circuits for MOS transistors

Ideal switch + capacitance and ON resistance Unit nMOS has resistance R, capacitance C Unit pMOS has resistance 2R, capacitance C

Capacitance proportional to width Resistance inversely proportional to width

kg

s

d

g

s

d

kCkC

kCR/k

kg

s

d

g

s

d

kC

kC

kC

2R/k

Page 33: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 33EE 447 VLSI Design

Example: 3-input NAND A 3-input NAND with transistor widths chosen

to achieve effective rise and fall resistances equal to a unit inverter (R).

3

3

222

3

Page 34: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 34EE 447 VLSI Design

3-input NAND Caps Annotate the 3-input NAND gate with gate and

diffusion capacitance.

2 2 2

3

3

33C

3C

3C

3C

2C

2C

2C

2C

2C

2C

3C

3C

3C

2C 2C 2C

Page 35: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 35EE 447 VLSI Design

3-input NAND Caps Annotate the 3-input NAND gate with gate and

diffusion capacitance.

9C

3C

3C3

3

3

222

5C

5C

5C

Page 36: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 36EE 447 VLSI Design

Elmore Delay ON transistors look like resistors Pullup or pulldown network modeled as RC ladder Elmore delay of RC ladder

R1 R2 R3 RN

C1 C2 C3 CN

nodes

1 1 1 2 2 1 2... ...

pd i to source ii

N N

t R C

RC R R C R R R C

Page 37: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 37EE 447 VLSI Design

Example: 2-input NAND Estimate worst-case rising and falling delay of

2-input NAND driving h identical gates.

h copies2

2

22

B

Ax

Y

Page 38: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 38EE 447 VLSI Design

Example: 2-input NAND Estimate rising and falling propagation delays

of a 2-input NAND driving h identical gates.

h copies

6C

2C2

2

22

4hC

B

Ax

Y

Page 39: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 39EE 447 VLSI Design

Example: 2-input NAND Estimate rising and falling propagation delays

of a 2-input NAND driving h identical gates.

h copies

6C

2C2

2

22

4hC

B

Ax

Y

R

(6+4h)CY pdrt

Page 40: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 40EE 447 VLSI Design

Example: 2-input NAND Estimate rising and falling propagation delays

of a 2-input NAND driving h identical gates.

h copies

6C

2C2

2

22

4hC

B

Ax

Y

R

(6+4h)CY 6 4pdrt h RC

Page 41: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 41EE 447 VLSI Design

Example: 2-input NAND Estimate rising and falling propagation delays

of a 2-input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

Page 42: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 42EE 447 VLSI Design

Example: 2-input NAND Estimate rising and falling propagation delays

of a 2-input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

pdft (6+4h)C2CR/2

R/2x Y

Page 43: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 43EE 447 VLSI Design

Example: 2-input NAND Estimate rising and falling propagation delays

of a 2-input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

2 2 22 6 4

7 4

R R Rpdft C h C

h RC

(6+4h)C2CR/2

R/2x Y

Page 44: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 44EE 447 VLSI Design

Delay Components

Delay has two parts Parasitic delay

6 or 7 RC Independent of load

Effort delay 4h RC Proportional to load capacitance

Page 45: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 45EE 447 VLSI Design

Contamination Delay Best-case (contamination) delay can be

substantially less than propagation delay. Ex: If both inputs fall simultaneously

6C

2C2

2

22

4hC

B

Ax

Y

R

(6+4h)CYR

3 2cdrt h RC

Page 46: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 46EE 447 VLSI Design

7C

3C

3C3

3

3

222

3C

2C2C

3C3C

IsolatedContactedDiffusionMerged

UncontactedDiffusion

SharedContactedDiffusion

Diffusion Capacitance we assumed contacted diffusion on every s / d. Good layout minimizes diffusion area Ex: NAND3 layout shares one diffusion contact

Reduces output capacitance by 2C Merged uncontacted diffusion might help too

Page 47: EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response

4: DC and Transient Response 47EE 447 VLSI Design

Layout Comparison Which layout is better?

AVDD

GND

B

Y

AVDD

GND

B

Y