14
Ecological Indicators 34 (2013) 246–259 Contents lists available at ScienceDirect Ecological Indicators jou rn al hom epage: www.elsevier.com/locate/ecolind Review Ecological indicator values and life history traits of terricolous lichens of the Western Carpathians Alica Dingová Koˇ suthová a,b,, Jozef ˇ Sibík a,c a Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovakia b Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlᡠrská 2, Brno 61137, Czech Republic c Department of Forest & Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523, USA a r t i c l e i n f o Article history: Received 16 March 2012 Received in revised form 15 May 2013 Accepted 16 May 2013 Keywords: Abiotic conditions Distribution types Environmental gradients Indicator values Lichenized fungi Life strategies Optimum a b s t r a c t Plant indicator values are widely used in ecological studies, but they are not well developed for cryp- togams, what prevents their application in some environments such as lichen-rich habitats. The aim of this study was to determine the ecological indicator values of terricolous lichens occurring in the Western Carpathians. A total of 271 lichen taxa from the eastern part of Central Europe in Czech Republic, Slovakia, Hungary and Austria are listed and evaluated. Their known indicator values for light conditions, climate (temperature, continentality), substratum (humidity, soil reaction-pH, nutrients, eutrophication) were reviewed or modified, and original values were established for taxa with missing information. Besides the traditional ordinal scale, the index of variability was established to distinguish between generalists and specialists in particular applications. Our list further contains important species traits such as ecological strategies (growth and life forms, photobiont type, substrate, reproduction) and geographic values (geo- graphical elements, threat, frequency) allowing applications in functional ecology and macroecology. Our database can be easily associated with widely used software for the analysis of vegetation data allowing the indication of ecological conditions in lichen-rich vegetation types in currently developed large-scale vegetation surveys. © 2013 Elsevier Ltd. All rights reserved. Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 2. Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 2.1. Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 2.2. Criteria for the selection of indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 3. Ecological indicator values of lichen taxa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 3.1. Light and climatic indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 3.2. Indicators of substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 3.3. Life strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 3.4. Geographical distribution and threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 3.5. Index of variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 5.1. Different indicator value scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 5.2. Problems with indicator value validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 5.3. Suggested approach for application in vegetation science and large-scale ecology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 Appendix A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 Corresponding author at: Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovakia. Tel.: +421 2 59426170; fax: +421 2 5477 1948. E-mail addresses: [email protected], [email protected] (A. Dingová Koˇ suthová), [email protected] (J. ˇ Sibík). 1470-160X/$ see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.ecolind.2013.05.013

Ecological indicator values and life history traits of terricolous lichens of the Western Carpathians

  • Upload
    jozef

  • View
    228

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ecological indicator values and life history traits of terricolous lichens of the Western Carpathians

R

Eo

Aa

b

c

a

ARRA

KADEILLO

C

f

1h

Ecological Indicators 34 (2013) 246– 259

Contents lists available at ScienceDirect

Ecological Indicators

jou rn al hom epage: www.elsev ier .com/ locate /eco l ind

eview

cological indicator values and life history traits of terricolous lichensf the Western Carpathians

lica Dingová Kosuthováa,b,∗, Jozef Sibíka,c

Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, SlovakiaDepartment of Botany and Zoology, Faculty of Science, Masaryk University, Kotlárská 2, Brno 61137, Czech RepublicDepartment of Forest & Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523, USA

r t i c l e i n f o

rticle history:eceived 16 March 2012eceived in revised form 15 May 2013ccepted 16 May 2013

eywords:biotic conditionsistribution typesnvironmental gradients

a b s t r a c t

Plant indicator values are widely used in ecological studies, but they are not well developed for cryp-togams, what prevents their application in some environments such as lichen-rich habitats. The aim ofthis study was to determine the ecological indicator values of terricolous lichens occurring in the WesternCarpathians. A total of 271 lichen taxa from the eastern part of Central Europe in Czech Republic, Slovakia,Hungary and Austria are listed and evaluated. Their known indicator values for light conditions, climate(temperature, continentality), substratum (humidity, soil reaction-pH, nutrients, eutrophication) werereviewed or modified, and original values were established for taxa with missing information. Besides thetraditional ordinal scale, the index of variability was established to distinguish between generalists and

ndicator valuesichenized fungiife strategiesptimum

specialists in particular applications. Our list further contains important species traits such as ecologicalstrategies (growth and life forms, photobiont type, substrate, reproduction) and geographic values (geo-graphical elements, threat, frequency) allowing applications in functional ecology and macroecology. Ourdatabase can be easily associated with widely used software for the analysis of vegetation data allowingthe indication of ecological conditions in lichen-rich vegetation types in currently developed large-scalevegetation surveys.

© 2013 Elsevier Ltd. All rights reserved.

ontents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2472. Materials and methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

2.1. Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2482.2. Criteria for the selection of indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

3. Ecological indicator values of lichen taxa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2483.1. Light and climatic indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2483.2. Indicators of substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2493.3. Life strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2493.4. Geographical distribution and threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2503.5. Index of variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2505. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

5.1. Different indicator value scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2505.2. Problems with indicator value validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

5.3. Suggested approach for application in vegetation science and largAcknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Appendix A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∗ Corresponding author at: Institute of Botany, Slovak Academy of Sciences, Dúbravskáax: +421 2 5477 1948.

E-mail addresses: [email protected], [email protected] (A. Dingová K

470-160X/$ – see front matter © 2013 Elsevier Ltd. All rights reserved.ttp://dx.doi.org/10.1016/j.ecolind.2013.05.013

e-scale ecology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

cesta 9, SK-845 23 Bratislava, Slovakia. Tel.: +421 2 59426170;

osuthová), [email protected] (J. Sibík).

Page 2: Ecological indicator values and life history traits of terricolous lichens of the Western Carpathians

ologic

1

emaomiewoTcLua2ifieaW

vWwvvil

A. Dingová Kosuthová, J. Sibík / Ec

. Introduction

The system of plant indicator values became widely used incological studies, because it allows scientists to estimate environ-ental conditions based upon species composition of plants. This

pproach has a great advantage in the analyses of recently devel-ped large vegetation-plot databases (Dengler et al., 2011). Theost commonly used system is that of expert-based Ellenberg’s

ndicator values for vascular plants (Ellenberg, 1965; Ellenbergt al., 1992) which was established for Central European plants,ith some later modifications for either western (Hill et al., 2000)

r eastern (Borhidi, 1993; Jurko, 1990) areas of Central Europe.heir extremely wide application has stimulated long-lasting dis-ussion (Jurko, 1986; Klimes, 1987; Mucina, 1985; ter Braak andooman, 1986; ter Braak and Gremmen, 1987) which has contin-ed to the present (Käfer and Witte, 2004; Pröll et al., 2011; Seidlingnd Fischer, 2008; Smart et al., 2010; Tichy et al., 2010; Urban et al.,012; Zeleny et al., 2010). A series of papers directly tests the valid-

ty of Ellenberg’s indicator values by their comparison with directeld measurement of environmental characteristics (e.g., Balkovict al., 2012; Huisman et al., 1993; Klaus et al., 2012; Lawessonnd Oksanen, 2002; Pakeman et al., 2008; Peppler-Lisbach, 2008;amelink et al., 2005).Apart from methodological problems associated either with the

alidity of the values (Ersten et al., 1998; Smart and Scott, 2004;amelink et al., 2002, 2003; Witte and Von Asmuth, 2003) orith statistical analyses (Zeleny and Schaffers, 2011), indicator

alues for vascular plants became an essential tool in European

egetation science and large-scale ecology. However, the systems more poorly developed for cryptogams, especially terricolousichens. This shortcoming largely prevents applications of the plant

Fig. 1. Range of the Wes

al Indicators 34 (2013) 246– 259 247

indicator values in some lichen-rich habitats such as alpine andboreal heaths, sandy habitats, pine forests, rocks or screes. Theprevious works dealing with the ecological values of lichens usedvarious ordinal scales.

Wirth (1992, 2010) and Bültman (2006) used a 9-numberscale, while Nimis and Martellos (2008), Landolt et al. (2010) andFabiszewski and Szczepanska (2010) modified the scale to 5 num-bers. Landolt et al. (2010) used the index of variability whichshowed the niche breadth of species with respect to the targetecological factor. Because these studies did not present completelists of the eastern part of Central-European lichen flora and havelisted factors using different scales, we aim to review and com-plement accumulated data and create a consensus list for theWest Carpathians, the region that contain most of the easternpart of Central-European lichen flora. The basis for our list isthe similar studies for Germany by Wirth (1992, 2010), using arather wide ordinal scale from 1 to 9. The same scale was usedby Bültman (2006) for lichens occurring in grassland vegetation.The uncritical application of these values outside of Germany maylead to incorrect results, because of possible niche shifts betweenthe distant regions as well as missing data for the taxa that donot occur in Germany. Other recent studies were performed byNimis and Martellos (2008) for Italy, Fabiszewski and Szczepanska(2010) for Poland and Landolt et al. (2010) and Clerc and Truong(2010) for Switzerland. We reviewed these indicator systems usingknowledge gathered by the leading Slovakian expert in terricolouslichens, Ivan Pisút, who co-operated with us in creating the list.

Our objective was to review and complement the accumulated

data and create a consensus list of terricolous lichens for the West-ern Carpathians with the specific conditions of its sub-continentalregion.

tern Carpathians.

Page 3: Ecological indicator values and life history traits of terricolous lichens of the Western Carpathians

2 ologic

2

2

7(TGppDf

tiosl

2

s(twttetwBotOhpbiibtiPa

cutl(abcmitt(fwaoin

48 A. Dingová Kosuthová, J. Sibík / Ec

. Materials and methods

.1. Study area

The area of the Western Carpathians covers approximately0,000 km2 and extends across the territories of the Czech RepublicMoravia and Silesia), Slovakia, Poland, Hungary and Austria (Fig. 1).he highest peak is also the highest peak of the entire Carpathians,erlachovsky stít Peak, which reaches 2655 m a.s.l. The essentialart of the study area, more than 73%, was located in the Slovakianart of the Western Carpathians and in neighbouring countries.ifferent geological, geomorphological, geographical and climatic

actors influence vegetation and lichen diversity.The core part of the Western Carpathians is composed of crys-

alline (granite) and metamorphic rocks. The outer part of the areas formed by flysch (sandstone, shale). The inner part is composedf volcanic rocks with isolated limestone series. The wide range ofubstrates and altitudes are important for the great biodiversity ofichens in this region.

.2. Criteria for the selection of indicators

The list (Table A.1) includes terricolous lichens. The criterion forelection was terricolous status according to Nimis and Martellos2008). Lichen taxa were selected from the checklist of lichens ofhe Western Carpathians (Bielczyk et al., 2004). Cladonia strictaas excluded from the list because of an incorrect determina-

ion (Lisická, 2005). The categories of threat in most cases wereaken from Pisút et al. (2001), Liska and Palice (2010) and Cieslinskit al. (2006). The Least Concern category was assigned accordingo Liska and Palice (2010). For some taxa, the categories of threatere modified in accordance with their occurrence in the area.ecause Squamarina concrescens and Cladonia brevis are found onlyn the boundary of the Western Carpathians, they were assignedo the endangered category. Because the recent occurrence ofmphalina alpina in the study region is not reliably confirmed, weave assigned it to the category extinct. Cladonia zopfii and Cladoniaortentosa were included in the list, but Cladonia zopfii is known toe extinct in the Western Carpathians, although there is a chance

t might have been overlooked. C. portentosa may not be extinctn the study area given that it was recorded recently in Slovakiay Dingová and Pisút (2009) and in the surrounding countries, andherefore it was also treated as endangered. Cladonia glauca, whichs known as extinct (Pisút et al., 2001) and vulnerable (Liska andalice, 2010) was found in several additional localities (Dingovánd Pisút, 2010) and thus classified as endangered.

In general, many lichens are taxonomically and phylogeneti-ally complicated, and morphologically similar. The taxonomicalncertainty is especially true for the genus Cladonia. We intendedo use Cladonia furcata and Cladonia subrangiformis as two taxa fol-owing Bielczyk et al. (2004) despite their taxonomic uncertaintyGünzl, 2003), with C. furcata having a generally wide ecologicalltitude, so we have added the index of variability as wide as possi-le in many cases. Cladonia subrangiformis has been mostly found onalcareous substrates with the highest possible pH value. Cladoniaonomorpha could be an overlooked taxon because it appears sim-

lar to Cladonia chlorophaea and we therefore cannot conclude thathese values may have to be modified later. Cladonia monomorphaogether with Cladonia borealis were found in the Tatra MountainsAptroot et al., 2003), and according to the altitude where they wereound, indicator value shows the occurrence into subalpine level,e add value 2 (i.e., subalpine location) was set to Cladonia bore-

lis, and a value of 3 (i.e., mountain location, with the highest indexf variability of 3) was set to C. monomorpha. Furthermore, theres general disagreement about the species Cladonia rei and Clado-ia subulata in the literature (Dolnik et al., 2010; Paus et al., 1993;

al Indicators 34 (2013) 246– 259

Spier and Aptroot, 2007; Syrek and Kukwa, 2008). Spier and Aptroot(2007) suggested that C. subulata is only one taxon with threechemotypes (including C. rei), but Dolnik et al. (2010) and Syrekand Kukwa (2008) used molecular and chemical methods to clarifythe taxonomical position of these species. They considered Clado-nia rei and C. subulata as two separate taxa and so we intended touse them as two taxa following (Bielczyk et al., 2004), with similarecological requirements. Cladonia stygia is an overlooked reindeerlichen (Ahti and Hyvönen, 1985), because it looks similar to Clado-nia rangiferina. Because its distribution has not yet been sufficientlydetermined, and we suggest it is similar to C. rangiferina we did notadd any threat category for it.

The most problematic taxa are mostly crustose thallus lichenspecies. Taxa forming only thallus and growing together with thesubstrate are overlooked due to the lack of visibility. Those taxawithout a clear categorisation with respect to their habitat require-ments were listed with the average value and the highest index ofvariability.

The indicator values have been elaborated based on field studies,expert analysis by researchers and other authorities in lichenology(Pisút, 1958, 1959, 1961, 1962a, 1962b, 1964, 1965, 1968a,b, 1970,1971, 1972, 1977, 1982, 1983, 1990, 2001, 2002; Pisút et al., 2001),and information from published papers focused on the ecology ofthe lichens (Clerc and Truong, 2010; Hestmark et al., 2005; Holtand Bench, 2008; Krog et al., 1980; Landolt et al., 2010; Lisická,2005; Malícek et al., 2011; Nimis and Martellos, 2008; Normannet al., 2010; Paus, 1997, Robertson and Piercey-Normore, 2007;Smith et al., 2009; Wirth, 1992, 1995, 2010). Supplementary notesabout the effect of sun irradiation on the mentioned lichens weregiven by Kalapos and Mázsa (2001) and Daniel et al. (2010). Anadditional understanding of the habitat was supplied by Biermannet al. (1995), Bültman and Daniëls (2001), Lisická (2005), Nimisand Martellos (2008), and Olech (1998). Additional information onecology of the Leptogium spp., Collema tenax and Lemphollema cha-lazanum was taken from Guttová (2006), for Cladonia magyaricafrom Farkas (2007), Kalapos and Mázsa (2001) and Litterski andAhti (2004), for Cladonia turgida from Zarabska and Guttová (2008),and Psora vallesiaca from Westberg et al. (2007).

3. Ecological indicator values of lichen taxa

Abbreviations and explanations of values in Table A.1:

3.1. Light and climatic indicators

L – Light. The light value quantifies the intensity of light inthe micro-habitats where lichens grow. Low numbers (1, 2) indi-cate solar irradiation not higher than 10%, and high numbers (4, 5)indicate intense sun radiation higher than 40% of full sun.

1. Deep-shaded places: optimum is less than 3% illumination2. Moderate-shaded places: requires 3–10% illumination3. Half-light places: not often occurring in full light; often requires

less than 40% illumination4. Light places: often in full light but also in shaded places; occa-

sionally found in less than 40% illumination for a short period5. Full-light places: open and sunny places with intense direct solar

irradiation

A – Altitudinal belt. The temperature value indicates the abilityof lichens to occur with respect to the altitude, which strongly cor-relates with mean annual temperature in the study area. The lowerthe value is, the higher the altitude level that the lichen appears in.

Page 4: Ecological indicator values and life history traits of terricolous lichens of the Western Carpathians

ologic

1

2

3

4

5

tlaht

1

2

3

4

5

3

l

hwac

1

2

3

4

5

s

12345

A. Dingová Kosuthová, J. Sibík / Ec

. Alpine-nival: taxa mainly occurring in the alpine, sub-nival andnival areas

. Subalpine: taxa mainly occurring in the subalpine and supra-montane areas

. Montane: transition from cold to warmth; taxa mainly occurringin the cooler submontane to cooler mountain areas

. Submontane-colline: taxa mainly occurring in the submontaneto colline areas but also in the middle mountains areas

. Warm colline: taxa mainly occurring in the lowlands, but oftenin warmer mountain areas

C – Continentality. The continentality value is obtained fromhe air humidity and annual and daily temperature range in theandscape where the lichens grow well. A low temperature rangend high humidity level are characteristic of oceanic taxa, and aigh temperature range and low humidity level are typical for con-inental taxa.

. Oceanic: taxa mainly occurring in Western Europe to WesternCentral Europe, in the Eastern neighbouring countries, and spo-radically in the Eastern Europe

. Suboceanic: taxa mainly occurring in Western Central Europe toCentral Europe and sporadically in the Eastern Europe

. Intermediate-wide amplitude: taxa with a wide distribution,mainly occurring from Western Europe to Siberia, with the cen-tre in Central Europe and in Western and Eastern Europe; oftenin continental regions and have wide amplitude from Europe toAsia

. Subcontinental: taxa mainly occurring in Eastern Europe, foundin Western Europe (British Islands and Western France) but oftenrare or absent

. Continental: taxa mainly occurring in micro localities in EasternEurope; found in Central Europe only in specific stands

.2. Indicators of substrate

Indicators of substrate define the soil conditions where theichens prosper.

H – Humidity/moisture. The humidity values represent airumidity and the ability of substrate to retain moisture. Substratesith very low humidity, which can lead to drying out rapidly, have

number of 1. Substrates that retain water for a longer period areonsidered category 5, wet.

. Very dry: taxa strictly live in dry areas and prefers stands withlow precipitation (less than 750 mm)

. Lower dry: taxa tolerating stands with low precipitation, butoccurs on stands with higher moisture levels

. Lower humidity: taxa avoid stands with low precipitation; livein area with precipitation more than 700 mm

. Very humid: taxa receive precipitation mainly more than1000 mm; mainly subalpine and alpine lichens

. Wet: taxa often live in stands with precipitation more than1400 mm but also in stands with variable moisture levels; livesmostly in fissures and in areas with long winters and high humid-ity levels

pH – Soil reaction. The soil reaction depends on acidity of theubstrate.

. Extremely acid: pH less than 3.4–4

. Very acid: pH 4.1–4.9

. Weakly acid: pH 4.9–5.6

. Subneutral: pH 5.7–6.5

. Neutral to basic: pH 6.6–7.5 and higher

al Indicators 34 (2013) 246– 259 249

N – Nutrients (soil fertility). The nutrient value characterisesthe quantity of nutrients suitable for lichens in the surface of thesoil. It corresponds with nutrient availability that naturally occursin soil types where particular taxa occur. Mainly bare, poor sandhas a value of 1, very poor in nutrients, and organic humus soil hasa value of 5, extremely rich in nutrients.

1. Nutrients very poor2. Nutrients poor3. Nutrients medium4. Nutrients rich5. Nutrients extremely rich

Eu – Eutrophication. This value refers to the small-scalenutrient enrichment of the substrate where the lichens grow on(nitrogen and dust deposition compounds in the soil).

1. Very low2. Low3. Medium4. High5. Very high

3.3. Life strategies

GLF – Growth and life forms.Crustose lichens

Ak – Crustose lichens: thallus is clearly connected to the substrate(e.g., Lecanora and Lecidea)Ab – Crustose lichens: typically Baeomyces-type (the body hasreproductive organs)Ik – Internal crust: crustose lichens with thallus experience co-growth with the substrate (Verrucaria-type)Le – Leprose lichen (e.g., Lepraria)Pl – Crustose lichens: a radiating growth form and rudimentarymarginal lobes (Placodium growth form, e.g., many Caloplaca sp.)Sq – Squamulose lichens (e.g., Toninia)

Foliose lichens

Lf – Foliose lichens: thallus is attached with special organs calledrhizines on the substrate, located randomly from the centre to themargin

Fruticose lichens

Ce – Fruticose lichens: Cetraria-type, with a shrubby thallus andlobes that vary from canaliculated to flattenedCl – Fruticose lichens: Cladonia-type, generally shrubby, withouta primary thallus, often richly branchedCp – Fruticose lichens: Cladonia-type, with typical thallus dividedinto primary ground squamules and brad-, fork- to cup-formedsecondary thallus segments, which mainly contain reproductiveorgans (Cladonia-type and Stereocaoulon sp.)

PB – Photobionts. The photobionts are green algae or cyanobac-teria living with mycobionts as a symbiosis in the lichen thallus.

Cb – CyanobacteriaGa – Green algaeGc – Green algae and cyanobacteria

Page 5: Ecological indicator values and life history traits of terricolous lichens of the Western Carpathians

2 ologic

mf

tt

3

gfC

m(

dnP

i

50 A. Dingová Kosuthová, J. Sibík / Ec

RD – Reproduction. Although some lichens can reproduce byore than one type, we have selected the main reproduction type

or each taxon

ap – Sexual reproduction by apothecia or peritheciaso – Vegetative reproduction by soredia and isidiave – Vegetative reproduction by thallus fragmentation

S – Substrate type. Terricolous lichens are mostly nonspecificerricolous, but they also grow on other types of substrate charac-erised for lichens.

T – Terricolous: growing on soilM – Growing on mosses: found on terricolous mossesPd – Growing on plants and debris: occurs on dead plants andplant debrisE – Epiphytic: growing on the bark of treesG – Saxicolous: growing on rocksR – Lignicolous: growing on rotten, decayed and dead woodL – Lichenicolous: growing on lichens, parasites on other lichenthallus

.4. Geographical distribution and threats

Generally lichens are widely distributed. Selected values, such aseoelements, threats and frequency, follow the extension of lichensrom wide-ranging (the world) to short-ranging scales (Westernarpathians).

GE – Geographical elements. This scale of geographical ele-ents was modified according to Hendrych (1984), Sibíková et al.

2010) and Wirth (1995).

a-a – Arctic-alpine taxa: found in Central Europe and Mediter-ranean areas in the alpine belt.bor – Boreal taxa: found from the Arctic (sub-arctic)-borealthrough Central Europe to the Mediterranean area (submediter-ranean) in the mountain and alpine beltseu.m – Boreal-central european montane taxa: traverse throughboreal regions in Central Europe and Mediterranean, where theyare found in the mountain belteu – Boreal-centraleurope-mediterranean taxa: found in borealareas of lowlands through the mediterranean areassatl-med – Subatlantic-mediterranean taxa: found from the sub-atlantic zone through the submediterranean to the mediterraneanzonecos – Cosmopolitan taxa: widespread and cosmopolitan and thosenot specific for any other category because they occur in three ormore continents

TM – Threat. The categories of threat were elaborated to coor-inate the criteria of threat with version 3.1 IUCN according to theational red lists (Cieslinski et al., 2006; Liska and Palice, 2010;isút et al., 2001).

EX – ExtinctCR – Critically endangeredEN – EndangeredVU – VulnerableLR:nt – Nearly threatenedLR:lc – In the least concernDD – Data deficient

X – Without threat

F – Frequency. The frequency of the lichen species occurrencen the Western Carpathians.

al Indicators 34 (2013) 246– 259

1. Very low: taxa known as extinct to critically endangered2. Low: taxa known as vulnerable3. Medium: taxa known as nearly threatened to in the least concern4. High: taxa known with data deficient5. Very high: taxa known without threat

3.5. Index of variability

The niche breadths of particular lichen taxa are different. Someare found only on sites with specific substrate, others have wideecological amplitude in case on some specific environmental con-ditions.

I No variationII Small variation: varying only by one class

III High variation: varying by two or more classes around the givenvalue.

4. Results

The total list includes 271 lichen taxa (Table A.1). Of these, 258taxa occurred also in the Slovak republic in the main part of thearea, 10 in Poland, 1 in the Czech Republic only, 1 in Poland andHungary and 1 in the Czech Republic and Poland. Although a widerange of substrates is occupied by lichens (Fig. 2), most taxa prefernutrient-poor habitats (Fig. 2), which are usually associated withlow human impact (Fig. 2). Altitudinal variation seems to be animportant driver of lichen biodiversity in the study region. Almost50% of the lichen taxa occur in mountains and surrounding levels(Fig. 2), but those mostly have wide ecological amplitude. Differentaltitudinal levels support different geographical elements (Fig. 2).

West-Carpathian lichens are typically photophilous andxerophilous (Fig. 2). Taxa that are specific to mountain habitatsand that are associated with a higher level of humidity (Fig. 2) areconsidered to be more hygrophilous.

The study area extended within the eastern part of the Cen-tral Europe mainly contains typical subcontinental taxa and thosethat often occur in continental regions, with a wide the distributionrange spanning from Europe to Asia (Fig. 2).

Lichen taxa are divided into three groups of growth forms: crus-tose, foliose and fruticose (Table A.1). The fruticose type is mainlyrepresented by Cladonia type, which has a typical thallus dividedinto primary ground squamules and secondary thallus segmentsthat mainly bear the reproductive organs. Sexual reproduction byapothecia and perithecia is the main used reproduction type of alltaxa (Table A.1).

More than half of the terricolous lichens in the WesternCarpathians are included in the local Red lists (Table A.1). How-ever, 110 of the taxa are with the very high value of frequency ofthe occurrence in the area (Table A.1).

5. Discussion

5.1. Different indicator value scales

The basic study of ecological indicator values was based onexpert assessment of Slovak lichenologists. Lichens are very impor-tant ecological indicators. The first integrated study of ecologicalindicator values of European lichens was published by Wirth(1992). Additional information about lichens and their ecologicalindicator values were mentioned by Wirth (2010) and Bültman

(2006). They used a 9-numbers scale to express lichen taxa andtheir possibility to specialise on the precise environmental condi-tions. The 9-numbers scale was very detailed and did not includelichens with wide ecological amplitude. However, Fabiszewski and
Page 6: Ecological indicator values and life history traits of terricolous lichens of the Western Carpathians

A. Dingová Kosuthová, J. Sibík / Ecological Indicators 34 (2013) 246– 259 251

F contic Sectio

S(wiuaoWfaipscncs

5

spa

ig. 2. Percentage coverage of lichens in different degrees of: light, altitudinal belt,ation and different types of geographical elements. Explanations are mentioned in

zczepanska (2010), Landolt et al. (2010) and Nimis and Martellos2008) transfer the 9-numbers scale to the scale of 5-numbers scale,hich made it possible to include some taxa which are not special-

sts on a precise environment. To improve that, Landolt et al. (2010)sed the index of variability based on two values, which differenti-te between generalist and specialist. We followed the modificationf ecological indicator values into the 5-numbers scale (Table A.1).e decided to use index of variability used by Landolt et al. (2010)

or each ecological indicator value. We did not adopt index of vari-bility used by Landolt et al. (2010) completely, but modified itnto the three numbers scale (Table A.1). Index of variability sup-lies the wideness of the 9-number scale modified to 5-numbercale (Table A.1). It allows to include the taxa with wide ecologi-al amplitude. The taxa with wide ecological amplitude are givenumber 3 within the index of variability. Those, which show pre-ise substrate conditions are given number 1 or 2 according to theirpecialisation (Table A.1).

.2. Problems with indicator value validation

The exact measurements of environmental factors (pH of theubstrate, nutrients in the substrate, etc.) do not show direct andrecise ability for lichens to colonise such habitats. Such studiesre so far rare and many of them concern epiphytic macrolichens

nentality, humidity/moisture, soil reaction (pH), nutrients (soil fertility), eutrophi-n 2.

(Bergamini et al., 2005, 2007). The experimental evidence thatlichens adapt anatomically, strong light permits higher rates ofarea-based CO2 assimilation in strong light was suggested byVondrák and Kubásek (2012). Direct environmental measurementsshow evidence that lichens can grow in a wide range of environ-mental factors for short periods. We have measured dust in thesoil and pH of the soil in the several localities (Zaniewski et al.,2012) and agreed with two different ecological values, Eu accord-ing to the dust and pH itself (Table A.1). Experiments using C.portentosa could not find evidence that growth was affected byacid rain (Hyvärinen and Crittenden, 1998a), but C. portentosa wasoften absent from eutrophicated heathlands even Liska and Herben(2008) are awarded of positive interactions between eutrophica-tion and the pH of the substrate. We have suggested C. portentosathe lowest value for eutrophication (Table A.1). Direct environmen-tal measurements can be snapshots, whereas indicator values tellus something over longer time periods.

5.3. Suggested approach for application in vegetation science andlarge-scale ecology

We created the list of lichen ecological values in the format tobe easily implemented into the JUICE software (Tichy, 2002), whichis frequently used for the analyses of Ellenberg’s indicator values

Page 7: Ecological indicator values and life history traits of terricolous lichens of the Western Carpathians

2 ologic

f22votaoinviTieo

52 A. Dingová Kosuthová, J. Sibík / Ec

or vascular plants (Dúbravková et al., 2010; Hájkova and Hájek,005; Hegedüsová et al., 2011; Rozbrojová et al., 2010; Sibík et al.,008; Skodová et al., 2011). Using JUICE, mean indicator values peregetation plot record can be calculated, allowing the assessmentf the environmental quality of the lichen-rich habitats not only byhe species composition of other groups, but also by lichens. Thepplication of indicator values of lichens may supplement analysesn vascular plants which generally have a broad role in the ecolog-cal analysis of plant communities and their habitats, especially inature conservation research. JUICE further allows analyses of largeegetation-plot databases, opening the possibility to utilise lichenndicator values in large-scale and even macroecological studies.

he applicability of our list in macroecology is further enhanced byncluding life-history and functional traits of lichens opening thextension of trait-based analyses to this rather overlooked groupf organisms.

al Indicators 34 (2013) 246– 259

Acknowledgements

We would like to thank RNDr. Ivan Pisút, Dr Sc. for his help andconsultations. We are also grateful to Doc. Michal Hájek PhD. forhis helpful suggestions that improved the manuscript.

We thank two anonymous reviewers and the editor for theirrecommendations and comments. For English proofreading we areindebted to Dr. David J. Cooper from Colorado State University,Fort Collins. For financial support, we are thankful to Grant AgencyVEGA Nr. 2/0090/12 and Visegrad Fund 51201038, as well as SlovakAmerican Foundation.

Appendix A.

See Table A.1.

Page 8: Ecological indicator values and life history traits of terricolous lichens of the Western Carpathians

A.

Dingová

Kosuthová,

J.Sibík /

Ecological Indicators

34 (2013) 246– 259253

Table A.1The list of ecological indicator values and life history traits of terricolous lichens of the Western Carpathians (the abbreviations and explanations of values are arranged in the chapter Materials and Methods).

Nr Taxa L Lv A Av C Cv H Hv PH PHv N Nv Eu Euv GLF PB RD-Repr GE TM I

1 Absconditella annexa 3 2 2 3 3 3 4 2 1 2 3 2 1 2 Ak Ga ap eu.m DD 42 Agonimia opuntiella 3 2 5 3 2 3 3 2 3 2 4 2 2 3 Sq Ga ap satl-med x 53 Agonimia tristicula 4 2 3 3 3 3 3 2 4 2 4 2 1 1 Sq Ga ap cos DD 44 Alectoria nigricans 5 2 1 1 3 2 2 2 1 2 1 1 1 1 Cl Ga ve a-a EN 25 Alectoria ochroleuca 5 2 1 1 3 2 2 2 1 3 1 1 1 1 Cl Ga ve a-a x 56 Allocetraria madreporiformis 5 2 1 2 4 1 3 2 3 2 1 1 2 2 Cl Ga ve a-a x 57 Anaptychia bryorum 3 2 2 2 4 2 4 2 4 1 3 2 3 2 Lf Ga ap bor EN 28 Arthrorhaphis alpina 5 2 1 2 4 2 4 2 4 2 4 2 1 1 Ak Ga ve a-a VU 29 Arthrorhaphis grisea 4 2 2 2 3 3 4 2 2 2 1 3 1 1 Ak Ga ap a-a x 5

10 Arthrorhaphis citrinella 4 2 2 3 3 2 3 1 2 2 1 3 1 1 Ak Ga so bor x 511 Bacidia bagliettoana 4 2 3 2 3 2 2 3 5 3 2 2 2 2 Ak Ga ap bor LR:lc 412 Bacidia herbarum 4 2 2 2 3 2 2 2 3 2 3 2 1 2 Ak Ga ap a-a x 513 Baeomyces carneus 3 2 2 2 3 2 4 2 2 2 2 2 1 1 Ab Ga ap bor x 514 Baeomyces placophyllus 4 2 3 3 3 2 4 2 1 2 1 2 1 1 Ab Ga ap bor CR 115 Baeomyces rufus var. callianthus 3 3 3 3 3 3 3 3 2 2 3 2 1 1 Ab Ga ap satl-med x 516 Baeomyces rufus var. rufus 3 3 3 3 3 3 3 3 2 2 3 2 1 1 Ab Ga ap satl-med x 517 Belonia incarnata 3 2 3 2 2 3 4 2 2 2 3 3 1 1 Ak Ga ap a-a VU 218 Belonia russula 3 2 4 2 2 3 4 2 2 2 3 3 1 1 Ak Ga ap a-a VU 219 Biatora subduplex 4 2 3 3 3 3 3 2 2 2 2 3 1 2 Ak Ga ap cos x 520 Biatora vernalis 4 2 3 3 3 3 3 2 1 2 2 3 1 1 Ak Ga ap bor x 521 Biatorella fossarum 3 2 4 2 3 2 2 2 4 2 2 3 2 2 Ak Ga ap satl-med EN 222 Biatorella hemisphaerica 3 2 2 2 3 2 3 2 4 2 3 2 2 2 Ak Ga ap eu EN 223 Bryodina rhypariza 4 2 2 3 3 2 3 2 2 2 2 2 2 2 Ak Ga ap a-a EN 224 Bryonora castanea 4 2 1 1 4 2 4 1 2 2 2 2 2 2 Ak Ga ap a-a EN 225 Bryophagus gloeocapsa 2 1 2 2 2 3 4 2 1 2 3 2 2 2 Ak Cb ap cos LR:nt 326 Caloplaca ammiospilla 4 2 2 2 3 3 3 2 3 2 3 3 2 2 Ak Ga ap a-a VU 227 Caloplaca aurea 5 2 2 2 3 3 3 2 5 3 2 2 3 2 Ak Ga ap eu.m LR:nt 328 Caloplaca cerina 4 2 4 3 4 3 3 2 4 2 1 2 4 2 Ak Ga ap eu x 529 Caloplaca livida 3 2 2 2 3 3 3 2 2 2 2 2 1 1 Ak Ga ap a-a x 530 Caloplaca nivalis 4 2 2 2 3 3 4 2 2 2 2 2 1 2 Ak Ga ap a-a LR:nt 331 Caloplaca tiroliensis 5 3 1 2 3 3 2 2 4 2 2 3 2 3 Ak Ga ap a-a VU 232 Catapyrenium cinereum 5 2 3 3 4 2 3 2 1 3 4 3 1 2 Sq Ga ve eu.m x 533 Catapyrenium daedaleum 4 2 3 3 5 2 3 2 4 3 1 3 1 2 Sq Ga ve a-a x 534 Caloplaca sinapisperma 4 2 2 2 4 2 3 2 5 3 4 2 2 2 Ak Ga ap a-a VU 235 Catolechia wahlenbergii 4 2 1 3 2 3 3 3 2 2 1 2 1 1 Sq Ga ap a-a VU 236 Cetraria aculeata 5 1 4 3 4 3 1 2 2 2 1 1 1 1 Cl Ga ve bor x 537 Cetraria ericetorum 5 1 1 2 4 3 3 2 1 2 1 1 1 1 Ce Ga ve a-a VU 238 Cetraria islandica 4 2 3 3 4 3 3 2 3 2 2 2 2 2 Ce Ga ve bor VU 239 Cetraria muricata 5 1 2 3 2 3 1 3 2 2 1 2 1 1 Cl Ga ve bor x 540 Cetrariella delisei 5 2 1 2 3 3 5 2 1 2 2 2 1 1 Cl Ga ve a-a EN 241 Cladonia acuminata 5 2 3 2 5 2 4 2 3 2 2 2 1 1 Cp Ga so a-a VU 242 Cladonia amaurocraea 5 2 2 2 4 1 4 3 2 2 1 2 1 1 Cp Ga ve,ap a-a VU 243 Cladonia arbuscula ssp. mitis 4 2 4 3 4 2 3 2 2 2 1 2 1 1 Cl Ga ve bor x 544 Cladonia arbuscula ssp. squarrosa 5 2 4 3 4 2 3 2 2 2 1 2 1 1 Cl Ga ve bor x 545 Cladonia bellidiflora 4 2 2 3 4 3 3 2 2 3 2 2 1 1 Cp Ga ap bor x 546 Cladonia borealis 5 2 2 2 4 1 4 2 2 2 2 2 1 1 Cp Ga ap bor x 547 Cladonia brevis 4 2 3 2 3 2 3 2 2 2 2 2 1 1 Cp Ga ap satl-med CR 148 Cladonia caespiticia 3 2 3 2 1 3 3 2 3 2 2 2 1 1 Cp Ga ap satl-med x 549 Cladonia cariosa 4 3 3 2 5 3 3 2 4 2 3 3 3 2 Cp Ga ap bor x 550 Cladonia carneola 4 1 2 2 4 2 3 3 1 2 4 3 1 1 Cp Ga so bor EN 251 Cladonia cenotea 3 2 3 3 3 2 3 2 1 2 4 3 1 1 Cp Ga so bor LR:lc 452 Cladonia cervicornis ssp. verticillata 4 2 3 2 3 3 3 2 2 1 1 3 1 1 Cp Ga ap bor x 553 Cladonia chlorophaea 3 3 3 3 3 3 3 3 2 3 3 3 2 2 Cp Ga ap cos LR:lc 4

Page 9: Ecological indicator values and life history traits of terricolous lichens of the Western Carpathians

254A

. D

ingová K

osuthová, J.Sibík

/ Ecological

Indicators 34 (2013) 246– 259

Table A.1 (Continued)

Nr Taxa L Lv A Av C Cv H Hv PH PHv N Nv Eu Euv GLF PB RD-Repr GE TM I

54 Cladonia ciliata var. tenuis 4 1 5 1 2 3 3 2 3 2 1 2 1 1 Cl Ga ve satl-med VU 255 Cladonia coccifera 4 3 3 3 3 3 3 2 2 2 3 3 2 2 Cp Ga ap cos LR:lc 456 Cladonia coniocraea 2 3 3 3 3 3 3 3 3 2 2 3 2 2 Cp Ga so eu LR:lc 457 Cladonia convoluta 5 2 5 1 3 2 1 2 5 2 2 1 1 2 Cp Ga ve eu VU 258 Cladonia cornuta 4 2 3 2 4 2 3 2 2 3 3 2 1 1 Cp Ga so eu.m VU 259 Cladonia crispata 4 2 3 2 4 2 3 2 2 2 1 2 1 1 Cl Ga ve bor VU 260 Cladonia cyanipes 3 2 3 2 4 2 3 2 2 1 2 1 1 1 Cp Ga so eu VU 261 Cladonia decorticata 4 2 2 2 4 2 2 2 2 1 3 2 1 1 Cp Ga so bor VU 262 Cladonia deformis 4 2 3 3 4 2 3 2 1 2 4 2 1 1 Cp Ga so bor x 563 Cladonia digitata 3 2 3 3 3 2 4 3 1 2 4 2 1 1 Cp Ga so eu LR:lc 464 Cladonia ecmocyna 3 2 2 1 4 1 5 2 1 2 1 2 1 1 Cp Ga ve,ap bor EN 265 Cladonia fimbriata 4 3 3 3 3 3 3 3 2 3 3 2 2 2 Cp Ga so,ap cos LR:lc 466 Cladonia foliacea 5 1 5 1 4 2 1 2 2 3 1 2 1 2 Cp Ga ve satl-med x 567 Cladonia furcata 3 3 3 3 3 3 4 3 3 2 2 3 1 2 Cl Ga ap,ve eu LR:lc 468 Cladonia glauca 4 2 4 2 1 3 2 2 1 2 1 2 1 1 Cp Ga so bor EN 269 Cladonia gracilis 4 3 2 3 3 3 3 3 2 2 1 3 1 1 Cp Ga ve,ap eu.m LR:lc 470 Cladonia grayi 4 3 3 3 3 3 3 3 1 3 2 3 1 1 Cp Ga ap bor x 571 Cladonia humilis 3 2 4 2 2 3 3 2 2 2 4 2 1 1 Cp Ga so satl-med DD 472 Cladonia incrassata 4 2 4 2 1 3 4 2 1 2 1 2 1 1 Cp Ga ap satl-med EX 173 Cladonia macilenta ssp. floerkeana 3 3 3 3 3 3 3 3 2 2 1 2 1 1 Cp Ga ap eu LR:lc 474 Cladonia macilenta ssp. macilenta 3 3 3 3 3 3 3 3 1 2 1 2 1 2 Cp Ga ap eu LR:lc 475 Cladonia macroceras 4 2 2 1 4 2 4 2 2 2 2 2 1 1 Cp Ga ve,ap a-a x 576 Cladonia macrophylla 4 2 2 2 4 2 3 2 2 2 1 2 1 1 Cp Ga ap a-a EN 277 Cladonia macrophyllodes 4 2 2 2 4 3 4 2 2 2 1 1 1 1 Cp Ga ap a-a EN 278 Cladonia magyarica 5 2 5 2 5 1 1 2 5 3 2 2 1 1 Cp Ga ve eu CR 179 Cladonia merochlorophaea 3 2 3 3 2 3 3 3 1 2 4 2 1 1 Cp Ga so bor DD 480 Cladonia metacorallifera 5 3 2 2 3 3 3 3 2 2 2 3 2 2 Cp Ga ve,ap eu.m x 581 Cladonia monomorpha 3 3 3 3 3 2 3 3 4 3 3 3 2 2 Cp Ga ap cos x 582 Cladonia peziziformis 4 2 4 2 2 3 2 2 2 2 2 2 1 1 Cp Ga ap satl-med EN 283 Cladonia phyllophora 4 2 3 3 5 3 3 2 2 2 2 2 1 1 Cp Ga ve,ap eu x 584 Cladonia pleurota 4 2 3 3 4 3 4 3 2 2 3 3 1 2 Cp Ga so,ap bor x 585 Cladonia pocillum 5 3 3 3 3 3 2 1 4 2 3 3 2 2 Cp Ga ap cos LR:lc 486 Cladonia polycarpoides 5 2 4 2 3 2 3 1 2 3 2 2 1 1 Cp Ga ap satl-med x 587 Cladonia polydactyla 2 2 3 2 2 3 4 2 1 2 3 2 1 1 Cp Ga so,ap bor x 588 Cladonia portentosa 4 1 5 2 2 3 2 2 2 2 1 1 1 1 Cl Ga ve satl-med EN 289 Cladonia pyxidata 3 3 3 3 3 3 2 2 2 3 3 3 2 2 Cp Ga ap cos LR:lc 490 Cladonia ramulosa 4 2 4 2 1 3 3 3 2 1 1 2 1 1 Cp Ga so satl-med x 591 Cladonia rangiferina 4 2 3 3 4 2 3 2 2 2 2 2 1 1 Cl Ga ve bor x 592 Cladonia rangiformis 5 2 4 2 3 3 2 2 3 2 2 1 2 2 Cl Ga ve eu x 593 Cladonia rei 4 2 4 2 3 3 2 2 2 3 2 3 3 2 Cp Ga so eu LR:lc 494 Cladonia scabriuscula 3 2 4 2 1 3 3 2 2 2 1 2 1 2 Cp Ga so satl-med EX 195 Cladonia squamosa ssp. squamosa 3 1 3 3 3 2 3 2 1 2 3 2 2 2 Cp Ga so cos LR:lc 496 Cladonia squamosa ssp. subsquamosa 3 1 2 3 3 2 3 2 1 2 3 2 1 2 Cp Ga so cos LR:nt 397 Cladonia stellaris 5 2 1 2 4 2 4 3 1 2 1 1 1 1 Cl Ga ve a-a CR 198 Cladonia strepsilis 5 2 2 2 4 2 3 3 2 2 2 2 1 1 Cp Ga ve satl-med CR 199 Cladonia stygia 4 2 3 3 4 2 3 2 1 2 2 2 1 1 Cp Ga ve bor x 5

100 Cladonia subcervicornis 4 2 4 3 1 3 3 2 2 2 5 2 1 1 Cp Ga ve bor EX 1101 Cladonia subrangiformis 5 2 4 3 3 2 1 2 5 3 2 2 2 2 Cl Ga ve eu VU 2102 Cladonia subulata 4 2 3 3 4 2 3 3 2 3 2 2 3 3 Cp Ga so cos LR:lc 4103 Cladonia sulphurina 4 2 2 2 4 2 4 2 1 2 3 2 1 1 Cp Ga so bor EN 2104 Cladonia symphycarpia 5 1 2 3 4 2 2 1 5 2 2 2 2 2 Cp Ga ap bor x 5105 Cladonia turgida 4 1 2 3 3 2 4 2 1 2 2 2 1 1 Cp Ga ve,ap bor CR 1106 Cladonia uncialis 4 2 3 3 4 2 2 3 1 2 1 1 1 1 Cl Ga ve bor x 5107 Cladonia zopfii 5 2 5 2 1 3 2 2 1 2 1 1 1 1 Cl Ga ve satl-med EX 1

Page 10: Ecological indicator values and life history traits of terricolous lichens of the Western Carpathians

A.

Dingová

Kosuthová,

J.Sibík /

Ecological Indicators

34 (2013) 246– 259255

108 Collema coccophorum 4 2 4 2 3 2 2 2 4 2 1 2 1 1 Lf Cb ap eu CR 1109 Collema crispum 4 1 4 2 3 2 3 1 5 3 3 3 3 2 Lf Cb ap cos x 5110 Collema tenax 4 2 4 3 3 3 1 3 5 2 3 3 2 2 Lf Cb ap cos LR:lc 4111 Dibaeis baeomyces 5 2 2 3 4 2 3 2 2 2 3 2 1 2 Ab Ga ap cos LR:lc 4112 Diploschistes muscorum 5 2 3 3 3 3 1 2 4 3 3 2 2 2 Ak Ga ap cos LR:lc 4113 Diploschistes scruposus 5 2 3 3 3 3 2 2 2 3 2 2 2 2 Ak Ga ap cos LR:lc 4114 Endocarpon adscendens 5 2 3 3 5 2 2 2 4 3 4 3 2 2 Sq Ga ap eu x 5115 Endocarpon pusillum 4 2 3 3 4 2 2 1 5 2 2 2 1 2 Sq Ga ap cos x 5116 Flavocetraria cucullata 5 2 1 1 4 2 5 3 2 3 1 1 1 1 Ce Ga ve a-a x 5117 Flavocetraria nivalis 5 2 1 1 4 3 5 3 2 3 1 1 1 1 Ce Ga ve a-a x 5118 Fulgensia bracteata 4 2 4 3 4 2 2 1 5 2 3 3 2 2 Sq Ga ap a-a VU 2119 Fulgensia fulgens 5 1 4 2 5 3 2 2 5 2 3 2 2 2 Pl Ga ap eu VU 2120 Fulgensia schistidii 5 2 3 3 3 3 2 2 3 3 3 3 2 3 Ak Ga ap cos LR:nt 3121 Fuscopannaria praetermissa 4 2 2 3 4 1 3 2 3 2 2 2 1 1 Sq Cb so a-a x 5122 Gyalecta geoica 2 2 3 2 3 2 4 2 4 2 1 2 1 1 Ak Ga ap a-a VU 2123 Heppia lutosa 4 1 4 2 3 2 2 2 4 2 1 2 1 1 Ak Cb ap cos CR 1124 Icmadophila ericetorum 3 2 2 3 3 2 4 2 1 2 1 2 1 1 Ab Ga ap bor CR 1125 Lecania cuprea 3 2 2 2 3 2 4 1 2 2 2 2 3 2 Ik Ga ap bor x 5126 Lecanora epibryon 5 2 2 2 4 2 2 2 5 3 2 2 3 2 Ak Ga ap a-a VU 2127 Lecidoma demissum 5 2 1 2 4 2 5 2 2 2 1 2 1 1 Ak Ga ap bor x 5128 Lempholemma chalazanum 3 2 3 2 5 2 2 2 5 2 1 2 2 1 Ak Cb ap eu DD 4129 Lempholemma polyanthes 3 2 3 2 3 2 5 2 5 2 1 2 1 1 Ak Cb ap cos x 5130 Lepraria borealis 3 2 3 3 3 3 3 3 3 2 2 3 1 1 Le Ga so eu.m x 5131 Lepraria cacuminum 3 2 2 3 3 2 3 3 2 2 2 2 1 1 Le Ga so eu.m x 5132 Lepraria caesioalba 3 2 3 3 3 3 3 3 2 2 2 2 1 1 Le Ga so cos LR:lc 4133 Lepraria crassissima 3 2 3 3 3 3 3 2 1 2 2 2 1 1 Le Ga so eu.m x 5134 Lepraria eburnea 3 2 4 3 3 2 3 2 4 3 2 2 1 2 Le Ga so cos LR:lc 4135 Lepraria incana 2 2 3 3 3 2 3 2 2 3 2 2 1 2 Le Ga so cos LR:lc 4136 Lepraria membranacea 3 2 3 3 3 3 3 2 2 2 2 2 1 2 Le Ga so cos LR:lc 4137 Lepraria neglecta 3 2 2 3 3 3 3 2 2 2 2 3 1 2 Le Ga so a-a LR:lc 4138 Lepraria nivalis 2 2 3 3 3 3 5 2 4 2 3 3 1 2 Le Ga so cos x 5139 Lepraria rugidula 3 2 3 3 3 3 3 2 2 3 2 3 2 2 Le Ga so cos LR:lc 4140 Lepraria umbricola 2 2 4 3 3 3 4 2 2 2 2 3 1 1 Le Ga so cos x 5141 Leprocaulon microscopicum 5 2 4 3 2 3 3 1 3 2 3 3 2 2 Le Ga so satl-med x 5142 Leptogium biatorinum 4 2 3 2 2 3 3 2 4 3 4 2 1 2 Pl Cb ap eu x 5143 Leptogium corniculatum 3 2 3 3 1 3 3 3 3 2 2 2 1 1 Lf Cb ap eu EN 2144 Leptogium cyanescens 2 2 4 2 2 3 5 3 3 2 5 2 1 1 Lf Cb so satl-med CR 1145 Leptogium gelatinosum 4 2 3 3 3 3 3 2 4 2 3 3 1 2 Sq Cb ap cos DD 4146 Leptogium intermedium 3 2 3 2 3 2 2 2 4 2 2 2 1 2 Sq Cb ap eu x 5147 Leptogium lichenoides 3 2 3 3 3 2 3 2 4 2 3 3 2 2 Sq Cb ap cos x 5148 Leptogium tenuissimum 3 3 5 3 3 2 3 2 4 2 3 2 3 2 Sq Cb ap bor x 5149 Leucocarpia biatorella 3 2 3 3 3 2 4 2 2 2 3 3 1 1 Ak Ga ap eu.m VU 2150 Megaspora verrucosa 5 2 3 2 3 2 4 2 5 3 2 3 2 2 Ak Ga ap a-a VU 2151 Micarea botryoides 1 3 3 2 1 3 5 2 1 2 2 2 1 1 Ak Ga ap satl-med LR:lc 4152 Micarea lignaria 3 3 3 3 3 2 4 2 2 2 2 2 1 2 Ak Ga ap eu.m LR:lc 4153 Micarea melaena 2 3 3 2 3 2 3 2 1 2 3 2 1 1 Ak Ga ap bor LR:lc 4154 Micarea peliocarpa 3 2 3 3 3 3 3 3 1 2 2 2 1 1 Ak Ga ap eu LR:lc 4155 Micarea prasina 1 3 3 2 2 3 3 2 2 2 2 3 1 1 Ak Ga ap eu.m LR:lc 4156 Micarea turfosa 2 2 3 3 3 3 4 3 1 2 2 2 1 1 Ak Ga ap bor VU 2157 Moelleropsis humida 3 2 4 2 2 3 4 2 2 2 4 2 1 1 Ak Cb ap satl-med EX 1158 Moelleropsis nebulosa 3 2 3 2 2 3 4 2 2 3 2 2 1 2 Ak Cb ap satl-med CR 1159 Mycobilimbia hypnorum 3 2 2 2 3 2 3 2 4 2 2 2 1 2 Ak Ga ap bor VU 2160 Mycobilimbia lurida 5 2 2 3 3 2 3 2 5 2 3 3 2 2 Ak Ga ap cos x 5161 Mycobilimbia tetramera 4 2 2 2 3 2 4 2 4 2 2 2 1 2 Ak Ga ap bor x 5

Page 11: Ecological indicator values and life history traits of terricolous lichens of the Western Carpathians

256A

. D

ingová K

osuthová, J.Sibík

/ Ecological

Indicators 34 (2013) 246– 259

Table A.1 (Continued)

Nr Taxa L Lv A Av C Cv H Hv PH PHv N Nv Eu Euv GLF PB RD-Repr GE TM I

162 Myxobilimbia accedens 3 2 2 3 3 2 3 2 2 2 2 2 1 2 Ak Ga ap cos x 5163 Myxobilimbia lobulata 3 2 3 3 3 2 3 2 4 2 1 2 1 2 Ak Ga ap a-a x 5164 Myxibilimbia microcarpa 3 2 3 3 3 2 3 2 4 2 4 3 1 2 Ak Ga ap bor x 5165 Myxobilimbia sabuletorum 3 2 3 3 3 2 3 2 4 2 3 2 3 2 Ak Ga ap eu x 5166 Nephroma arcticum 4 2 1 2 4 2 4 2 2 2 2 2 1 1 Lf Cb ap bor CR 1167 Nephroma expallidum 4 2 2 2 4 2 4 2 2 2 3 3 1 1 Lf Ga ap a-a CR 1168 Nephroma parile 3 2 2 3 2 3 5 2 2 2 4 2 1 2 Lf Cb so eu CR 1169 Ochrolechia upsaliensis 5 2 1 2 3 2 3 2 5 3 2 2 1 2 Ak Ga ap a-a VU 2170 Omphalina alpina 4 2 2 2 3 2 5 2 1 2 4 2 1 1 Ak Ga ap bor Ex 1171 Omphalina hudsoniana 3 2 2 3 3 2 5 3 1 3 2 2 1 1 Sq Ga ap eu.m VU 2172 Omphalina umbellifera 2 3 3 3 3 2 5 3 1 3 2 2 1 1 Ak Ga ap eu.m x 5173 Peltigera aphthosa 3 2 2 2 3 3 4 2 2 3 4 2 1 1 Lf Gc ap a-a VU 2174 Peltigera canina 3 3 3 3 2 3 3 2 4 2 2 2 1 1 Lf Cb ap cos x 5175 Peltigera collina 3 2 4 3 2 3 5 3 3 2 2 2 1 2 Lf Cb so eu.m CR 1176 Peltigera degenii 2 3 3 3 4 3 3 3 3 3 2 2 1 1 Lf Cb ap eu.m VU 2177 Peltigera didactyla 4 2 4 3 3 3 2 3 3 3 3 3 3 2 Lf Cb so cos LR:lc 4178 Peltigera elisabethae 2 3 3 3 4 2 3 3 2 3 3 3 1 1 Lf Cb ap eu.m x 5179 Peltigera horizontalis 2 3 3 3 3 3 3 2 3 3 2 3 1 1 Lf Cb ap eu.m x 5180 Peltigera hymenina 3 2 3 2 4 2 4 2 3 3 2 2 1 1 Lf Cb ap cos x 5181 Peltigera kristinssonii 4 2 2 3 4 2 3 2 2 3 1 2 1 1 Lf Cb ap bor x 5182 Peltigera lepidophora 4 2 3 3 3 3 3 3 4 2 4 2 1 2 Lf Cb ap bor CR 1183 Peltigera leucophlebia 3 2 2 2 3 2 4 2 4 2 2 3 1 1 Lf Gc ap bor VU 2184 Peltigera malacea 4 2 2 2 4 3 4 2 2 3 2 2 1 1 Lf Ga ap bor VU 2185 Peltigera membranacea 3 2 3 3 3 2 3 2 3 3 2 2 1 1 Lf Cb ap eu x 5186 Peltigera monticola 4 2 2 3 4 2 2 2 5 2 2 2 1 1 Lf Cb ap eu.m x 5187 Peltigera neckeri 3 2 3 3 2 3 3 2 4 3 2 2 1 1 Lf Cb ap bor x 5188 Peltigera neopolydactyla 2 2 3 3 3 3 3 3 3 2 2 2 1 1 Lf Cb ap a-a x 5189 Peltigera polydactylon 3 2 3 3 3 3 3 3 3 2 2 2 1 1 Lf Cb ap cos x 5190 Peltigera ponojensis 4 2 3 3 3 2 3 2 4 2 2 2 1 1 Lf Cb ap bor x 5191 Peltigera praetextata 2 2 3 3 3 3 3 2 3 3 2 3 1 2 Lf Cb ap eu x 5192 Peltigera rufescens 4 2 3 3 3 3 2 2 5 3 4 3 2 2 Lf Cb ap cos x 5193 Peltigera scabrosa 2 2 2 2 3 2 4 2 2 1 1 2 1 1 Lf Cb ap a-a EN 2194 Peltigera venosa 2 3 2 2 4 3 3 2 3 3 2 2 1 1 Lf Ga ap a-a VU 2195 Pertusaria bryontha 4 2 2 2 3 3 4 2 4 3 3 3 1 1 Ak Ga ap a-a VU 2196 Pertusaria glomerata 4 1 2 2 3 2 3 2 4 2 2 2 1 1 Ak Ga ap a-a VU 2197 Phaeophyscia constipata 4 2 4 2 3 3 2 2 4 2 3 3 2 2 Lf Ga ap eu.m VU 2198 Phaeorrhiza nimbosa 5 3 2 2 3 2 2 2 4 2 2 2 1 2 Sq Ga ap a-a VU 2199 Physconia muscigena 5 2 3 3 3 2 2 3 5 3 4 3 3 2 Lf Ga ap eu x 5200 Placidium adami-borosi 5 2 3 3 4 3 2 2 3 2 3 3 1 2 Sq Ga ap satl-med x 5201 Placidium lachneum 4 2 2 2 3 3 2 2 3 3 3 2 1 2 Sq Ga ap a-a x 5202 Placidium lacinulatum 5 2 5 2 2 3 1 3 5 2 3 3 1 2 Sq Ga ap satl-med x 5203 Placidium michelii 5 2 4 3 3 3 1 3 3 2 3 3 1 1 Sq Ga ap satl-med x 5204 Placidium pilosellum 4 2 5 3 2 3 2 2 5 2 4 2 1 1 Sq Ga ap satl-med x 5205 Placidium rufescens 5 2 4 3 3 3 2 3 5 2 3 2 2 2 Sq Ga ap satl-med x 5206 Placidium squamulosum 5 2 4 3 3 3 2 2 5 2 3 2 2 2 Sq Ga ap eu LR:lc 4207 Placynthiella dasea 4 2 3 3 3 3 2 2 1 2 2 2 1 2 Ak Ga so cos LR:lc 4208 Placynthiella icmalea 4 2 3 3 3 3 2 2 1 2 2 2 1 2 Ak Ga so cos LR:lc 4209 Placynthiella oligotropha 4 2 3 3 3 3 3 2 1 2 1 1 1 1 Ak Ga ap bor LR:lc 4210 Placynthiella uliginosa 4 2 3 3 3 3 2 2 1 2 1 1 1 1 Ak Ga ap cos LR:lc 4211 Polyblastia helvetica 4 2 2 2 3 3 4 2 3 2 3 2 1 1 Ak Ga ap eu.m x 5212 Polyblastia terrestris 4 2 2 2 3 3 3 2 3 3 2 2 1 1 Ak Ga ap eu.m VU 2213 Polychidium muscicola 2 3 3 2 2 3 4 1 2 2 2 2 1 2 Ak Cb ap cos VU 2214 Protopannaria pezizoides 2 2 2 2 3 2 3 2 2 3 2 3 1 2 Ak Cb ap bor VU 2215 Protothelenella leucothelia 4 2 2 3 3 3 2 3 2 2 2 2 1 1 Ik Ga ap eu.m x 5216 Protothelenella sphinctrinoidella 3 2 2 3 3 3 3 2 2 2 3 2 1 1 Ik Ga ap eu.m x 5217 Protothelenella sphinctrinoides 3 1 2 3 3 2 3 2 3 2 1 2 1 1 Ik Ga ap a-a x 5

Page 12: Ecological indicator values and life history traits of terricolous lichens of the Western Carpathians

A.

Dingová

Kosuthová,

J.Sibík /

Ecological Indicators

34 (2013) 246– 259257

218 Psilolechia clavulifera 2 2 5 3 3 3 4 2 1 3 2 2 1 1 Ak Ga ap cos LR:lc 4219 Psora decipiens 5 1 3 3 4 3 1 2 5 2 2 2 2 2 Sq Ga ap cos x 5220 Psora globifera 4 2 4 3 3 3 2 2 4 3 4 3 1 2 Sq Ga ap eu.m x 5221 Psora rubiformis 5 2 2 2 4 2 1 2 4 2 3 3 1 2 Sq Ga ap eu.m VU 2222 Psora testacea 5 2 3 3 4 3 2 2 5 2 2 3 2 2 Sq Ga ap eu.m LR:nt 3223 Psora vallesiaca 4 2 3 3 4 3 2 2 3 3 2 3 2 2 Sq Ga ap eu.m LR:nt 3224 Psoroma hypnorum 4 2 1 2 4 3 5 3 1 2 1 1 1 1 Sq Ga ap cos VU 2225 Pycnothelia papillaria 5 2 3 3 3 2 3 1 1 2 2 2 1 2 Ab Ga ap eu VU 2226 Rinodina conradii 5 2 3 2 3 1 3 1 4 2 2 2 1 2 Ak Ga ap cos x 5227 Rinodina mniaraea var. cinnamomea 4 2 2 2 4 3 3 2 4 2 3 2 1 2 Ak Ga ap bor VU 2228 Rinodina olivaceobrunnea 4 2 2 2 4 3 3 2 2 3 3 3 2 3 Ak Ga ap a-a VU 2229 Rinodina roscida 5 2 2 2 3 2 3 2 4 2 1 2 1 2 Ak Ga ap a-a VU 2230 Sarcosagium campestre var. campestre 4 2 2 3 3 2 3 2 4 2 3 2 1 2 Ak Ga ap eu DD 4231 Sarcosagium campestre var. macrosporum 4 2 2 3 3 2 3 2 4 2 3 2 1 2 Ak Ga ap eu DD 4232 Solorina bispora 4 2 1 2 4 2 3 2 4 2 2 1 1 1 Lf Ga ap a-a VU 2233 Solorina crocea 4 2 1 2 4 2 5 3 2 2 3 3 1 1 Lf Gc ap a-a VU 2234 Solorina octospora 3 2 1 2 4 2 3 2 4 3 3 2 1 1 Lf Ga ap a-a EN 2235 Solorina saccata 3 2 2 3 4 2 3 2 5 3 3 2 1 1 Lf Ga ap bor x 5236 Solorina spongiosa 3 2 2 3 4 2 3 2 5 2 2 2 1 1 Lf Gc ap a-a VU 2237 Solorinella asteriscus 5 2 4 2 4 2 1 2 5 3 2 2 1 2 Sq Ga ap eu CR 1238 Squamarina cartilaginea 5 2 3 3 3 2 2 2 5 2 2 1 2 2 Sq Ga ap eu LR:nt 3239 Squamarina concrescens 5 2 3 2 3 2 2 2 4 2 2 3 2 2 Pl Ga so satl-med CR 1240 Squamarina gypsacea var. subcetraroides 3 3 4 2 3 2 3 2 5 2 2 2 1 1 Sq Ga ap,ve eu.m LR:nt 3241 Squamarina lentigera 5 2 5 2 4 2 1 3 5 2 2 2 1 2 Pl Ga ap satl-med VU 2242 Steinia geophana 3 2 3 2 3 2 3 2 3 2 2 2 1 2 Ak Ga ap cos DD 4243 Stereocaulon alpinum 4 2 1 1 4 2 5 3 2 2 1 2 1 1 Sq Gc ap a-a VU 2244 Stereocaulon condensatum 4 2 3 2 3 2 3 1 2 2 1 2 1 1 Sq Gc ap eu.m CR 1245 Stereocaulon incrustatum 4 2 3 3 2 3 3 1 2 2 1 1 1 1 Sq Gc ap eu.m x 5246 Stereocaulon tomentosum 4 2 3 3 3 2 3 2 2 2 2 2 1 1 Sq Gc ap eu.m VU 2247 Thamnolia vermicularis var. vermicularis 5 2 1 2 3 2 4 3 1 3 1 3 1 2 Cl Ga ve a-a x 5248 Thamnolia vermicularis var. subuliformis 5 2 1 2 3 2 4 3 1 3 1 3 1 2 Cl Ga ve a-a x 5249 Thelidium zwackhii 4 2 3 3 4 2 3 2 5 3 2 2 1 2 Ak Ga ap eu x 5250 Thelocarpon epibolum 3 2 3 2 3 2 4 2 2 2 2 2 1 1 Ak Ga ap cos LR:lc 4251 Thelocarpon laureri 4 2 3 2 3 2 4 2 2 2 2 2 1 2 Ak Ga ap cos LR:lc 4252 Thelocarpon lichenicola 4 2 3 3 3 2 3 2 1 2 2 2 1 2 Ak Ga ap cos x 5253 Thrombium epigaeum 4 2 3 3 4 2 2 2 4 2 3 3 1 2 Ak Ga ap bor LR:lc 4254 Toninia albilabra 5 2 4 2 5 1 1 2 4 3 2 2 1 2 Ik Ga ap eu.m x 5255 Toninia aromatica 4 2 3 3 3 2 4 2 4 2 2 2 3 2 Sq Ga ap bor x 5256 Toninia diffracta 5 2 3 3 4 2 2 2 5 2 2 2 1 2 Sq Ga ap eu x 5257 Toninia opuntioides 3 2 3 2 3 2 3 2 5 2 2 2 2 1 Sq Ga ap cos x 5258 Toninia physaroides 4 2 4 3 4 2 3 2 4 2 2 2 2 2 Sq Ga ap eu x 5259 Toninia rosulata 4 2 2 3 3 2 2 2 2 2 3 2 1 2 Sq Ga ap a-a x 5260 Toninia sedifolia 4 2 4 3 4 2 2 2 5 2 2 2 2 2 Sq Ga ap cos LR:lc 4261 Toninia squalida 5 2 3 3 4 2 2 2 2 2 1 2 2 1 Sq Ga ap bor VU 2262 Toninia taurica 3 2 3 3 4 2 2 2 4 2 2 2 1 2 Sq Ga ap eu x 5263 Toninia tristis 4 2 3 3 5 2 2 2 4 2 3 2 1 2 Sq Ga ap eu.m x 5264 Trapelia coarctata 3 2 3 3 3 3 3 3 2 3 1 3 1 2 Ak Ga ap cos LR:lc 4265 Trapeliopsis gelatinosa 3 3 3 2 3 3 4 2 1 3 3 3 1 1 Ak Ga ap bor x 5266 Trapeliopsis granulosa 5 3 4 3 4 3 2 3 1 2 1 2 1 1 Ak Ga ap cos LR:lc 4267 Trapeliopsis pseudogranulosa 2 3 3 3 4 3 4 3 1 1 1 3 1 1 Ak Ga ap cos LR:lc 4268 Trapeliopsis wallrothii 4 2 4 3 3 3 2 3 2 3 3 3 1 1 Ak Ga ap cos x 5269 Verrucaria bryoctona 4 1 3 3 2 3 3 2 5 2 2 2 1 1 Ik Ga ap satl-med x 5270 Vezdaea aestivalis 3 1 4 2 2 3 3 2 5 2 1 2 1 1 Ak Ga ap satl-med x 5271 Vulpicida tubulosus 5 2 1 2 4 2 4 2 5 2 2 2 1 1 Ce Ga ve bor VU 2

Abbreviations and explanations of the table are as follow: Ecological demands on L, light; A, altitudinal belt; C, continentality; H, humidity/moisture; PH, soil reaction; N nutrients (soil fertility); Eu, eutrophication; GLF, growthand life forms; PB, photobionts; RD, reproduction; S, substrate type; GE, geographical elements; TM, threat; F, frequency; v, index of variability, which reflects ranging within the ecological indicator values (the abbreviations andexplanations of other values are arranged in Section 2).

Page 13: Ecological indicator values and life history traits of terricolous lichens of the Western Carpathians

2 ologic

R

A

A

B

B

B

B

B

B

B

B

C

C

D

D

D

D

D

D

E

E

E

F

F

G

G

H

H

58 A. Dingová Kosuthová, J. Sibík / Ec

eferences

hti, T., Hyvönen, S., 1985. Cladina stygia, a common, overlooked species of reindeerlichen. Ann. Bot. Fennici 22, 223–229.

ptroot, A., Lisická, E., Paclová, L., 2003. Cladonia borealis, C. monomorpha andPhyscia vitii (lichenized Ascomycota), new to Slovakia – Cladonia borealis, C.monomorpha and Physcia vitii (Lichenized Ascomycota), new to Slovakia. Biolo-gia 58, 766–771.

alkovic, J., Kollár, J., Simonovic, V., 2012. Conclusions on using Ellenberg‘s indica-tor values in Slovakia: oligotrophic and mesotrophic submontane broad-leavedforests. Biologia (Bratisl.) 67, 474–482.

ergamini, A., Scheidegger, C., Stofer, S., Carvalho, P., Davey, S., Dietrich, M., Dubs,F., Farkas, E., Groner, U., Karkkainen, K., Keller, C., Lokos, L., Lommi, S., Maguas,C., Mitchell, R., Pinho, P., Rico, V.J., Aragon, G., Truscott, A.M., Wolseley, P., Watt,A., 2005. Performance of macrolichens and lichen genera as indicators of lichenspecies richness and composition. Conserv. Biol. 19, 1051–1062.

ergamini, A., Stofer, S., Bolliger, J., Scheidegger, Ch., 2007. Evaluating macrolichensand environmental variables as predictors of the diversity of epiphyticmicrolichens. Lichenologist 39, 475–489.

ielczyk, U., Lackovicová, A., Farkas, E.E., Lökös, L., Liska, J., Breuss, O., Kondratyuk,S.Y., 2004. Checklist of Lichens of the Western Carpathians. W. Szafer Instituteof Botany, Kraków.

iermann, R., Breder Ch Daniëls, F.J.A., Kiffe, K., 1995. Flechten und Moose als Indika-toren bei der Bewertung von Heiden. Natur und Landschaft 70, 247–251.

orhidi, A., 1993. A Magyar flóra szociális magatartás típusai, természetességiés relatív ökológiai értékszámai (Social behaviour types of the Hungarianflora, its naturalness and relative ecological indicator values). Janus PannoniusTudományegyetem Növénytani Tanszék, Pécs.

ültman, H., 2006. Zeigerwerte von Erdflechten in Trockenrasen: Vorschläge zurErgänzung und Korrektur. In: Bültman, H., Fartmann, T., Hasse, T. (Eds.), Trock-enrasen auf unterschiedlichen Betrachtungsebenen. Arb. Inst. Landschaftsökol.,Münster, pp. 127–143.

ültman, H., Daniëls, F.J.A., 2001. Lichen richness–biomass relationship in ter-ricolous lichen vegetation on non-calcareous substrates. Phytocoenologia 31,537–570.

ieslinski, S., Czyzewska, K., Fabiszewski, J., 2006. Red list of the lichens in Poland(Czerwona lista porostów w Polsce). In: Mirek, Z., Zarzycki, K., Wojewoda, W.,Szelag, Z. (Eds.), Red list of Plants and Fungi in Poland (Czerwona lista rostlin igrzybów Polski). W. Szafer Institute of Botany, Kraków, pp. 71–89.

lerc, P., Truong, C., 2010. Catalogue des lichens de Suisse. http://www.ville-ge.ch/musinfo/bd/cjb/cataloguelichen

aniel, J., Lennart, N., Thierry, B., Arve, E., 2010. Plants as bioindicator for tempera-ture interpolation purposes: analyzing spatial correlation between botany basedindex of thermophily and integrated temperature characteristics. Ecol. Indic. 10,990–998.

engler, J., Jansen, F., Glöckler, F., Peet, R.K., De Cáceres, M., Chytry, M., Ewald, J.,Oldeland, J., Lopez-Gonzalez, G., Finckh, M., Mucina, L., Rodwell, J.S., Schaminée,J.P.J., Spencer, N., 2011. The Global Index of Vegetation-Plot Databases (GIVD):a new resource for vegetation science. J. Veg. Sci. 22, 582–597.

ingová, A., Pisút, I., 2009. Cladonia portentosa – nové lokality na Záhorskej nízine(JZ Slovakia). Bryonora 43, 1–3.

ingová, A., Pisút, I., 2010. Three overlooked Cladonia species in Slovakia. Thaiszia20, 71–76.

olnik, Ch., Beck, A., Zarabska, D., 2010. Distinction of Cladonia rei and C. subulatabased on molecular, chemical and morphological characteristics. Lichenologist42, 373–386.

úbravková, D., Chytry, M., Willner, W., Illyés, E., Janisová, M., Szerényi, J.K., 2010.Dry grasslands in the Western Carpathians and the northern Pannonian Basin:a numerical classification (Xerotermné trávnaté porasty Západnych Karpát asevernej casti Panónskej kotliny: numerická klasifikácia). Preslia 82, 165–221.

llenberg, H., 1965. Zeigerpflanzen im Landwirtschaftsbereich. Ber. Geob. Inst. ETH,Stiftung Rübel. 36, 121–176.

llenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W., Paulissen, D., 1992. Zeiger-werte von Pflanzen in Mitteleuropa. Scr. Geobot. 18, 215–237.

rsten, A.C.D., Alkemade, J.R.M., Wassen, M.J., 1998. Calibrating Ellenberg indicatorvalues for moisture, acidity, nutrient availability and salinity in the Netherlands.Plant Ecol. 135, 113–124.

abiszewski, J., Szczepanska, K., 2010. Ecological indicator values of some lichenspecies noted in Poland. Acta Soc. Bot. Poloniae 79, 305–313.

arkas, E., 2007. Lichenológia – a zuzmók tudománya. MTA Ökológiai és BotanikaiKutatóintéyete, Vácrátót.

uttová, A., 2006. K diverzite cyanolisajníkov na vybranych terestrickych biotopochslovenska (A contribution on cyanolichens of selected terrestrial biotopes ofSlovakia). Bryonora 37, 1–16.

ünzl, B., 2003. Erdflechten und ihre Gesellschaften in Nordhessen mit beson-derer Berücksichtigung der morphologischen und genetischen Variabilitätbei Cladonia furcata (Hudson) Schrader. In: Dissertation zur Erlangungdes Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten derGeorg-August-Universität, Göttingen.

ájkova, P., Hájek, M., 2005. Diversity of Calthion wet meadows in the western partof flysh Carpathians: regional classification based on national formal definitions.

Thaiszia 15, 85–116.

egedüsová, K., Ruzicková, H., Senko, D., Zuccarini, P., 2011. Plant communities ofthe montane mesophilous grasslands (Polygono bistortae–Trisetion flavescentisalliance) in central Europe: formalized classification and syntaxonomical revi-sion. Plant Biosyst., 1–16.

al Indicators 34 (2013) 246– 259

Hendrych, R., 1984. Fytogeografie. Státní pedagogické nakladatelství, Praha.Hestmark, G., Skogesal, O., Skullerud, Ø., 2005. Growth, population density and

population structure of Cetraria nivalis during 240 years of primary colonization.Lichenologist 37, 535–541.

Hill, M.O., Roy, D.B., Mountford, J.O., Bunce, R.G.H., 2000. Extending Ellenberg’sindicator values to a new area: an algorithmic approach. J. Appl. Ecol. 37, 3–15.

Holt, E.A., Bench, G., 2008. 14 C/C measurements support Andreev’s internodemethod to determine lichen growth rates in Cladonia stygia (Fr.) Ruoss. Liche-nologist 40, 559–565.

Huisman, J., Olff, H., Fresco, L.F.M., 1993. A hierarchical set of models for speciesresponse analysis. J. Veg. Sci. 4, 37–46.

Hyvärinen, M., Crittenden, P.D., 1998a. Growth of the cushion-forming lichen, Clado-nia portentosa, at nitrogen-polluted and unpolluted heathland sites. Environ.Exp. Bot. 40, 67–76.

Jurko, A., 1986. Poznámky k diskusii o uzitocnosti Ellenbergovych indikacnychhodnôt. Biologia (Bratisl.) 41, 91–100.

Jurko, A., 1990. Ekologické a socioekonomické hodnotenie vegetácie. Príroda,Bratislava.

Kalapos, T., Mázsa, K., 2001. Juniper shade enables terricolous lichens and mosses tomaintain high photochemical efficiency in a semiarid temperate sand grassland.Photosynthetica 39, 263–268.

Käfer, J., Witte, J.-P.M., 2004. Cover-weighted averaging of indicator values in veg-etation analyses. J. Veg. Sci. 15, 647–652.

Klaus, V.H., Kleinebecker, T., Boch, S., Müller, J., Socher, S.A., Prati, D., Fischerb,M., Hölzel, N., 2012. NIRS meets Ellenberg’s indicator values: prediction ofmoisture and nitrogen values of agricultural grassland vegetation by means ofnear-infrared spectral characteristics. Ecol. Indic. 14, 82–86.

Klimes, L., 1987. Pouzití tabelovanych indikacnych hodnot v gradientové analyzevegetace. Preslia 59, 15–24.

Krog, H., Østhagen, H., Tønsberg, T., 1980. LAVFLORA, Norske busk-og bladlav. Uni-versitetsforlaget, Oslo.

Landolt, E., Bäumler, B., Erhardt, A., Hegg, O., Klötyli, F., Lämmler, W., Nobis, M.,Rudmann-Maurer, K., Schweingruber, F.H., Theurillat, J.-P., Urmi, E., Vust, M.,Wohlgemuth, T., 2010. Ökologische Zeigerwerte und biologische Kennzeichenzur Flora of Switzerland and the Alps (Ecological indicator values and biolog-ical attributes of the flora of Switzerland and the Alps). Flora indicativa, Bern,Stuttgart, Vien.

Lawesson, J.E., Oksanen, J., 2002. Niche characteristics of Danish woody species asderived from coenoclines. J. Veg. Sci. 13, 279–290.

Litterski, B., Ahti, T., 2004. World distribution of selected European Cladonia species.Symb. Bot. Upsal. 34, 205–236.

Lisická, E., 2005. The Lichens of the Tatry Mountains. Veda, Bratislava.Liska, J., Herben, T., 2008. Long-term changes of epiphytic lichen species composi-

tion over landscape gradients: an 18 year time series. Lichenologist 40, 437–448.Liska, J., Palice, Z., 2010. Cerveny seznam lisejníku Ceské republiky (verze 1.1) (Red

List of lichens of the Czech Republic (version 1.1)). Príroda 29, 3–66.Malícek, J., Bouda, F., Palice, Z., Peksa, O., 2011. Interesting records of rare and

overlooked Cladonia species in the Czech Republic. Bryonora 48, 34–50.Mucina, L., 1985. Pouzívat’ ci nepouzívat’ Ellenbergove indikacné hodnoty? Biologia

(Bratisl.) 40, 511–516.Nimis, P.L., Martellos, S., 2008. ITALIC – The Information System on Ital-

ian Lichens. Version 4.0. University of Trieste, Dept. of Biology, IN4.0/1http://www.dbiodbs.univ.trieste.it/

Normann, F., Weigelt, P., Gehrig-Downie, Ch., Gradstein, S.R., Sipman, H.J.M., Obre-gonc, A., Bendix, J., 2010. Diversity and vertical distribution of epiphyticmacrolichens in lowland rain forest and lowland cloud forest of French Guiana.Ecol. Indic. 10, 1111–1118.

Olech, M., 1998. Apophytes in the lichen flora of Poland. Phytocoenosis 10, 251–255.Pakeman, R.J., Reid, C.L., Lennon, J.J., Kent, M., 2008. Possible interactions between

environmental factors in determinig species optima. J. Veg. Sci. 19, 201–208.Paus, S., 1997. Die Erdflechtenvegetation Nordwestdeutschlands und einiger

Randgebiete. Bibl. Lichenol. 66, 1–222.Paus, S., Daniels, F.J.A., Lumbsch, H.T., 1993. Chemical and Ecological Studies in

the Cladonia subulata complex in northern Germany (Cladoniaceae, lichenizedAscomycotina). Bibl. Lichenol. 53, 191–200.

Peppler-Lisbach, C., 2008. Using species-environmental amplitudes to predict pHvalues from vegetation. J. Veg. Sci. 19, 437–444.

Pisút, I., 1958. Lisajníky rodu Cladonia na Slovensku. Dipl. Práca, Katedra botanikyPFUK, Praha.

Pisút, I., 1959. Príspevok k poznaniu lisajníkov Slovenska II. Acta Fac. Rerum Nat.Univ. Comenianae, Bot. 3, 593–597.

Pisút, I., 1961. Bemerkungen über einige Flechtenarten der Gattung Cladonia in derSlowakei. Acta Fac. Rerum Nat. Univ. Comenianae, Bot. 6, 125–143.

Pisút, I., 1962a. Doplnky k poznaniu lisajníkov Slovenska II. Zborn. Slov. Nár. Múz.Prír. Vedy 8, 95–100.

Pisút, I., 1962b. Bemerkungen über einige interessantere Arten der Flechtengat-tung Cladonia in der Slowakei 2. Acta Fac. Rerum Nat. Univ. Comenianae, Bot. 7,423–434.

Pisút, I., 1964. Lichenes Slovakiae exsiccati editi a Museo nationali slovac, Bratislava.Fasc. I (no. 1–25)., pp. 1–7.

Pisút, I., 1965. Lichenes Slovakiae exsiccati editi a Museo nationali slovac, Bratislava.Fasc. III (no. 51–75)., pp. 1–7.

Pisút, I., 1968a. Lichenes Slovakiae exsiccati editi a Museo nationali slovac,Bratislava. Fasc. VI (no. 126–150)., pp. 1–7.

Pisút, I., 1968b. Doplnok k poznaniu lisajníkov Slovenska V. Zbor. Slov. Nár. Múz.Prír. Vedy 14, 35–39.

Page 14: Ecological indicator values and life history traits of terricolous lichens of the Western Carpathians

ologic

P

P

P

P

P

P

P

P

P

P

P

R

R

S

S

S

S

S

S

S

A. Dingová Kosuthová, J. Sibík / Ec

isút, I., 1970. Doplnky k poznaniu lisajníkov Slovenska 6. Zborn. Slov. Nár. Múz.Prír. Vedy 16, 31–40.

isút, I., 1971. Lichenes Slovakiae exsiccati editi a Museo nationali slovac, Bratislava.Fasc. VIII (no. 176–200)., pp. 1–7.

isút, I., 1972. Lichenes Slovakiae exsiccati editi a Museo nationali slovac, Bratislava.Fasc. IX (no. 201–225)., pp. 1–7.

isút, I., 1977. Lichenes Slovakiae exsiccati editi a Museo nationali slovac, Bratislava.Fasc. XI (no. 251–275)., pp. 1–8.

isút, I., 1982. Die Verbreitung der Flechte Cladonia portentosa (Dufour) Coem. inder Tschechoslowakei. Preslia 54., pp. 193–199.

isút, I., 1983. Nachträge zur Kenntnis der Flechten der Slowakei 10. Zborn. Slov.Nár. Múz. Prír. Vedy 29, 67–77.

isút, I., 1990. Nachträge zur Kenntnis der Flechten der Slowakei 12. Zborn. Slov.Nár. Múz. Prír. Vedy 36, 9–13.

isút, I., 2001. Nachträge zur Kenntnis der Flechten der Slowakei 15. Zborn. Slov.Nár. Múz. Prír. Vedy 47, 12–20.

isút, I., 2002. Nachträge zur Kenntnis der Flechten der Slowakei 16. Zborn. Slov.Nár. Múz. Prír. Vedy 48, 5–11.

isút, I., Guttová, A., Lackovicová, A., Lisická, E., 2001. Cerveny zoznam lisajníkovSlovenska (december 2001). In: Baláz, D., Marhold, K., Urban, P. (Eds.), Cervenyzoznam rastlín a zivocíchov Slovenska (Red list of plants and animals of Slo-vakia). Ochrana prírody 20, Bratislava, pp. 23–32.

röll, G., Dullinger, S., Dirnböck, T., Kaiser Ch Richter, A., 2011. Effect of nitrogenon tree recruitment in a temperate montane forest as analysed by measuredvariables and Ellenberg indicater values. Preslia 83, 111–127.

obertson, J., Piercey-Normore, M.D., 2007. Gene flow in symbionts of Cladoniaarbuscula. Lichenologist 39, 69–82.

ozbrojová, Z., Hájek, M., Hájek, O., 2010. Vegetation diversity of mesic mead-ows and pastures in the West Carpathians-Diverzita vegetace mezofilních luk apastvin v Západních Karpatech. Preslia 82, 307–332.

eidling, W., Fischer, R., 2008. Deviances from expected Ellenberg indicator valuesfor nitrogen are related to N throughfall deposition in forests. Ecol. Indic. 8,639–646.

mart, S.M., Scott, W.A., 2004. Bias in Ellenberg indicator values – prob-lems with detection of the effect of vegetation type. J. Veg. Sci. 15,843–846.

mart, S.M., Scott, W.A., Whitaker, J., Hill, M.O., Roy, D.B., Critchley, C.N., Marini,L., Evans Ch Emmett, B.A., Rowe, E.C., Crowe, A., Le Duc, M., Marrs, R.H., 2010.Empirical realised niche models for British higher and lower plants – develop-ment and preliminary testing. J. Veg. Sci. 21, 643–656.

mith, C.W., Aptroot, A., Coppins, B.J., Fletcher, A., Gilbert, O.L., James, P.W., Wolseley,P.A., 2009. The Lichens of the Great Britain and Ireland. British Lichen Society,London.

pier, L., Aptroot, A., 2007. Cladonia rei is a chemotype and synonym of Cladoniasubulata. Lichenologist 39, 57–60.

yrek, M., Kukwa, M., 2008. Taxonomy of the lichen Cladonia rei and its status inPoland. Biologia 63, 493–497.

ˇibík, J., Díte, D., Sibíková, I., Pukajová, D., 2008. Plant communities dominated byPinus mugo agg. in Central Europe comparison of the oligotrophic communitiesrich in Sphagnum. Phytocoenologia 38/3, 221–238.

al Indicators 34 (2013) 246– 259 259

Sibíková, I., Sibík, J., Hájek, M., Kliment, J., 2010. The distribution of arctic-alpineelements within high-altitude vegetation of the Wester Carpathians in relationto environmental factors, life forms and phytogeograhy. Phytocoenologia 40,189–203.

Skodová, I., Devánová, K., Senko, D., 2011. Subxerophilous and mesophilous grass-lands of the Biele Karpatz Mts. (White Carpathian Mts.) in Slovakia. Tuexenia31, 235–269.

ter Braak, C.J.F., Looman, C.W.N., 1986. Weighted averaging, logistic regression andthe Gaussian response model. Vegetatio 65, 3–11.

ter Braak, C.J.F., Gremmen, N.J.M., 1987. Ecological amplitudes of plant species andthe internal consistency of Ellenberg’s indicator values for moisture. Vegetatio69, 79–87.

Tichy, L., 2002. JUICE, software for vegetation classification. J. Veg. Sci. 13, 451–453.Tichy, L., Hájek, M., Zeleny, D., 2010. Imputation of environmental variables for

vegetation plots based on compositional similarity. J. Veg. Sci. 21, 88–95.Urban, N.A., Swihart, R.K., Malloy, M.C., Dunning, J.B., 2012. Improving selection of

indicator species when detection is imperfect. Ecol. Indic. 15, 188–197.Vondrák, J., Kubásek, J., 2012. Algal stacks and fungal stacks as adaptations to high

light in lichens. Lichenologist 45, 1–10.Wamelink, G.W.W., Joosten, V., Van Dobben, H.F., Berendse, F., 2002. Validity of

Ellenberg indicator values judged from physico-chemical field measurement. J.Veg. Sci. 13, 269–279.

Wamelink, G.W.W., Van Dobben, H.F., Berendse, F., 2003. Apparently we do needphytosociological classes to calibrate Ellenberg indicator values. J. Veg. Sci. 14,619–620.

Wamelink, G.W.W., Goedhart, P.W.V., Van Dobben, H.F., Berendse, F., 2005. Plantspecies as predictors of soil pH: replacing expert judgement with measurements.J. Veg. Sci. 16, 363–372.

Westberg, M., Fröberg, L., Arup, U., 2007. Ltgärdsprogram för bevarande av öländsktegellav (Psora vallesiaca). Naturvlrdsverket, Stockholm.

Witte, J.P.M., Von Asmuth, J.R., 2003. Do we really need phytosociological classes tocalibrate Ellenberg indicator values? J. Veg. Sci. 14, 615–618.

Wirth, V., 1992. 4. Zeigerwerte von Flechten. In: Ellenberg, H., Weber, H.E., Düll,R., Wirth, V., Werner, W., Paulissen, D. (Eds.), Zeigerwerte von Pflanzen in Mit-teleuropa, 18. Scr. Geobot., pp. 215–237.

Wirth, V., 1995. Flechtenflora I, II. Verlag Eugen Ulmer, Stuttgart.Wirth, V., 2010. Okologishe Zeigerwerte von Flechten. – erweiterte und aktualisierte

Fassung. Herzogia 23, 229–248.Zaniewski, P., Dingová, A., Valachovic, M., Wierzbicka, M., 2012. The conservation

status of Cladonio-Pinetum in Mazowiecki Landscape Park and adjacent areas.In: Lipnicki, L. (Ed.), Monograph from the International Conference. LICHENPROTECTION–LICHEN PROTECTED SPECIES, pp. 177–189.

Zarabska, D., Guttová, A., 2008. Report on the new records of Cladonia turgida inSlovakia-Správa o novych nálezoch Cladonia turgida na Slovensku. Bryonora 42,10–12.

Zeleny, D., Li Ch, F., Chytry, M., 2010. Pattern of local plant species richness along agradient of landscape topographical heterogeneity: result of spatial mass effector environmental shift? Ecography 33, 1–12.

Zeleny, D., Schaffers, A., 2011. Too good to be true: pitfalls of using mean Ellenbergindicator values in vegetation analyses. J. Veg. Sci., 1–13.