52
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE PRÓ-REITORIA DE PÓS-GRADUAÇÃO UNIDADE ACADÊMICA ESPECIALIZADA EM CIÊNCIAS AGRÁRIAS - UAECIA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS FLORESTAIS ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA REPRODUTIVO DE Copernicia prunifera (ARECACEAE) RICHELIEL ALBERT RODRIGUES SILVA Macaíba RN 2017

ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

1

MINISTÉRIO DA EDUCAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE PRÓ-REITORIA DE PÓS-GRADUAÇÃO

UNIDADE ACADÊMICA ESPECIALIZADA EM CIÊNCIAS AGRÁRIAS - UAECIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS FLORESTAIS

ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA

REPRODUTIVO DE Copernicia prunifera (ARECACEAE)

RICHELIEL ALBERT RODRIGUES SILVA

Macaíba – RN

2017

Page 2: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

2

RICHELIEL ALBERT RODRIGUES SILVA

ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA

REPRODUTIVO DE Copernicia prunifera (ARECACEAE)

Dissertação de mestrado apresentada ao Programa de

Pós-Graduação em Ciências Florestais da

Universidade Federal do Rio Grande do Norte, como

pré-requisito para obtenção do título de Mestre.

Orientador: Prof. Dr. Fábio de Almeida Vieira

Macaíba - RN

2017

Page 3: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

Universidade Federal do Rio Grande do Norte - UFRN

Sistema de Bibliotecas - SISBI

Catalogação de Publicação na Fonte. UFRN - Biblioteca Setorial da Escola Agrícola Jundiaí - EAJ

Silva, Richeliel Albert Rodrigues.

Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

Albert Rodrigues Silva. - Macaíba, 2017. 51f.: il.

Dissertação (Mestre) Universidade Federal do Rio Grande do

Norte, Unidade Acadêmica Especializada em Ciências Agrárias,

Programa de Pós-Graduação em Ciências Florestais.

Orientador: Fábio de Almeida Vieira.

1. Carnaúba - Dissertação. 2. Fenologia reprodutiva -

Dissertação. 3. Estruturas reprodutivas - Dissertação. 4. ISSR -

Dissertação. 5. Taxa de cruzamento - Dissertação. I. Vieira,

Fábio de Almeida. II. Título.

RN/UF/BSPRH CDU 633.9

Page 4: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA

REPRODUTIVO DE Copernicia prunifera (ARECACEAE)

Richeliel Albert Rodrigues Silva

Dissertação avaliada e aprovada pela banca examinadora:

Banca Examinadora:

Data de aprovação:

16/02/2017

Macaíba - RN

2017

Page 5: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

DEDICO

A minha mãe Maria da Piedade Rodrigues Silva.

Page 6: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

AGRADECIMENTOS

A Deus, por ter proporcionado tantos momentos bons na minha vida.

Aos meus pais e irmãos, pelo amor e apoio em todos os momentos.

Ao Programa de Pós-Graduação em Ciências Florestais da UFRN.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pelos materiais e

equipamentos adquiridos por meio de projetos.

À Fundação de Apoio à Pesquisa do Rio Grande do Norte (FAPERN), pela concessão das bolsas

de estudo.

À Unidade Acadêmica Especializada em Ciências Agrárias, pela estrutura disponibilizada para

realização das minhas atividades de mestrado.

Ao professor Dr. Fábio de Almeida Vieira, pela orientação, atenção e incentivo durante a minha

vida acadêmica.

À Professora Drª Cristiane Gouvêa Fajardo, pela amizade, carinho e orientação acadêmica.

Ao Professor Dr. Murilo Malveira Brandão, por fazer parte da minha banca.

A todos que fazem parte do Laboratório de Genética e Melhoramento Florestal da UFRN

(LabGeM), pela amizade, carinho e colaboração durante o meu mestrado.

Aos professores do Programa de Pós-Graduação em Ciências Florestais da UFRN.

Aos meus amigos Jardel, André, Anny, Jéssica e Nicinha, pelo companheirismo e apoio durante

todos os momentos da minha vida.

Page 7: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

SUMÁRIO

RESUMO ........................................................................................................................................ 7

ABSTRACT .................................................................................................................................... 8

INTRODUÇÃO ............................................................................................................................... 9

REFERÊNCIAS ............................................................................................................................ 11

CAPÍTULO 1: REPRODUCTIVE ECOLOGY OF THE Copernicia prunifera, A NATIVE

PALM FROM BRAZILIAN SEMIARID ..................................................................................... 14

ABSTRACT. ................................................................................................................................. 14

INTRODUCTION ......................................................................................................................... 14

MATERIAL AND METHODS..................................................................................................... 16

RESULTS ...................................................................................................................................... 19

DISCUSSION ................................................................................................................................ 23

CONCLUSION ............................................................................................................................. 25

ACKNOWLEDGMENTS ............................................................................................................. 25

REFERENCES .............................................................................................................................. 25

CAPÍTULO 2: MATING SYSTEM OF Copernicia prunifera (ARECACEAE) ......................... 29

ABSTRACT .................................................................................................................................. 29

INTRODUCTION ......................................................................................................................... 29

MATERIAL AND METHODS..................................................................................................... 31

RESULTS ...................................................................................................................................... 34

DISCUSSION ................................................................................................................................ 39

IMPLICATIONS FOR CONSERVATION AND MANAGEMENT .......................................... 41

ACKNOWLEDGMENTS ............................................................................................................. 42

REFERENCES...............................................................................................................................42

CONCLUSÕES GERAIS...............................................................................................................51

Page 8: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

7

RESUMO

O presente estudo teve como objetivos descrever as características reprodutivas da palmeira

Copernicia prunifera, investigar a diversidade genética e o sistema de reprodução de uma

população natural por meio de marcadores ISSR no estado do Rio Grande do Norte, Brasil.

Foram observadas inflorescências múltiplas, constituídas de flores hermafroditas, com

coloração clara. Além disso, as flores são compostas por 3 sépalas, 3 pétalas, 6 estames e 3

carpelos. O percentual médio de pólens viáveis foi de 62%. Existem divergências nas

fenofases reprodutivas entre as populações avaliadas, sendo observada atividade contínua na

produção de flores e frutos maduros na população de Parnamirim, e descontínua na população

de Macaíba. Os marcadores utilizados para analisar a diversidade genética e o sistema

reprodutivo da Copernicia prunifera foram mediamente informativos e apresentaram elevado

polimorfismo. Os valores dos índices de diversidade entre os indivíduos adultos e as

progênies não diferiram estatisticamente (He = 0,319 e I = 0,470; He = 0,337 e I = 0,505),

respectivamente. No teste de hipóteses para detecção de gargalo genético, nos modelos IAM

(alelos infinitos) e SMM (passos de mutações), observaram-se ocorrência de redução

populacional. As taxas de cruzamento em nível de população (n = 247) apontaram

cruzamento multiloco (tm) de 0,878 e entre indivíduos não aparentados (ts) de 0,738,

indicando que a Copernicia prunifera é uma espécie de cruzamento misto, sendo

preferencialmente alógama. A diferença entre a taxa de cruzamento uniloco e multiloco (tm -

ts) foi reduzida, sinalizando baixo cruzamento entre indivíduos aparentados. O índice de

fixação entre as árvores matrizes (F) foi negativo (- 0,200), apontado ausência de endogamia.

A correlação de autofecundação (rs) evidenciou valor elevado (0,914). Os resultados

encontrados nesse estudo geraram informações sobre a ecologia reprodutiva da espécie, como

também para adoção de estratégias de manejo, conservação e melhoramento genético da

palmeira Copernicia prunifera.

PALAVRAS-CHAVES: Carnaúba, Fenologia reprodutiva, Estruturas reprodutivas, ISSR,

Taxa de cruzamento

Page 9: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

8

ABSTRACT

The present study aimed to describe the reproductive characteristics of the palm Copernicia

prunifera, investigating the genetic diversity and the system of reproduction of a natural

population by using ISSR markers in the state of Rio Grande do Norte, Brazil. Were observed

multiple inflorescences, constituted of hermaphroditic flowers, with clear coloration. In

addition, the flowers are composed of 3 sepals, 3 petals, 6 stamens and 3 carpels. The average

percentage of viable pollen was 62%. There are differences in the reproductive phenophases

between populations evaluated, being observed continuous activity in the production of

flowers and ripe fruit in the population of Parnamirim, and discontinuous observation in the

Macaíba population. The markers used to analyze the genetic diversity and reproductive

system of Copernicia prunifera were usually informative and presented high polymorphism.

The values of the indices of diversity among the adults and the progenies did not differ

statistically (He = 0.319 and I = 0.470; He = 0.337 and I = 0.505), respectively. In the

hypothesis test for detection of genetic bottleneck, IAM models (infinite alleles) and SMM

(steps of mutations), observed occurrence of population reduction. Outcrossing rates in

population level (n = 247) pointed multilocus outcrossing rate (tm) of 0.878 and single locus

outcrossing rate (ts) of 0.738, indicating that the Copernicia prunifera is a species of mixed

mating system, and preferentially alogamous. The mating among relatives rate (tm - ts) has

been reduced, indicating low outcrossing between closely related individuals. The fixation

index between seed tree (F) was negative (- 0.200), pointed to the absence of inbreeding. The

correlation of selfing (rs) showed high value (0.914). The results found in this study generated

information on the reproductive ecology of the specie, but also to adopt management

strategies, conservation and genetic improvement of palm Copernicia prunifera.

KEYWORDS: Carnaúba, Reproductive phenology, Reproductive structures, ISSR,

Outcrossing rate

Page 10: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

9

INTRODUÇÃO

A família Arecaceae possui cerca de 200 gêneros e 2.000 espécies (SOUZA e

LORENZI, 2008), onde no Brasil ocorrem cerca de 40 gêneros e 283 espécies (LEITMAN et

al., 2015), incluindo representantes dioicos e monoicos, de morfologia floral variada, com

inflorescências interfoliares ou infrafoliares na antese em forma de espiga, juntamente com a

presença de poucas ou muitas ráquilas (HENDERSON et al., 2000). As suas raízes podem ser

subterrâneas ou aéreas (LORENZI et al., 1996). Os estipes podem ser solitários ou cespitosos

e raramente escandentes, aéreos ou subterrâneos. Quando aéreo, o estipe pode apresentar-se

liso ou densamente coberto por espinhos (MIRANDA et al., 2001). As plântulas possuem

folhas inteiras, bífidas e pinadas (MIRANDA et al., 2001).

Dentre as espécies que constituem a família Arecaceae, destaca-se o gênero

Copernicia que compreende aproximadamente 13 espécies. No Brasil, este gênero é

representado por duas espécies nativas, Copernicia prunifera e Copernicia alba, que ocorrem

em regiões bem distintas (SOUZA et al., 2005). A palmeira Copernicia prunifera (Miller) H.

E. Moore, conhecida popularmente como carnaúba, é uma espécie nativa da Caatinga, com

ocorrência predominante nos estados do Piauí, Ceará e Rio Grande do Norte (LEITMAN et

al., 2015). Observa-se que a Copernicia prunifera ocorre predominantemente em áreas

alagáveis com solos halomórficos, incluindo-se áreas de vegetação ciliar (ARRUDA e

CALBO, 2003). Além disso, é uma espécie conhecida como “árvore da vida”, com várias

utilidades na indústria e na construção civil (PEREIRA et al., 2014), como também a extração

do pó cerífero e exploração das folhas para o artesanato (COSTA e GOMES, 2016).

O estudo fenológico é um importante instrumento na caracterização da dinâmica

florestal, facilitando o entendimento de processos como a polinização, reprodução,

regeneração e estabelecimento de espécies no seu ambiente natural (TANNUS et al., 2006).

Além disso, a caracterização fenológica é relevante, devido à obtenção de informações sobre a

biologia reprodutiva da espécie de interesse, de maneira a compreender e elaborar estratégias

sustentáveis de uso da mesma (CAMPOS et al., 2013; CESÁRIO e GAGLIANONE, 2008).

Diante disso, espera-se que as informações sobre os eventos reprodutivos da Copernicia

prunifera sejam úteis para o entendimento da dinâmica da população e melhoramento

genético da espécie.

Outra abordagem importante refere-se ao conhecimento sobre as estruturas

reprodutivas de uma espécie, sendo fundamental para descrição do seu sucesso reprodutivo

(LENZI e ORTH, 2004). O entendimento da biologia reprodutiva é relevante no sentido de

Page 11: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

10

subsidiar novos trabalhos de manejo, melhoramento genético e domesticação de espécies

nativas, além de informações relevantes sobre os padrões de cruzamentos (OLIVEIRA et al.,

2003; OLIVEIRA et al., 2002; VIEIRA et al., 2010; ARRUDA et al., 2015). Adicionalmente,

o sistema de reprodução pode modificar a dinâmica genética das populações, interferindo na

composição genética das gerações subsequentes (OOSTERMEIJER et al., 2003).

As avaliações dos sistemas reprodutivos das espécies florestais podem ser realizadas

pelo método direto, que compreende a observação da dispersão de pólen e sementes, ou

através do método indireto, que consiste na análise dos genótipos dos indivíduos nas

populações, com o auxílio de marcadores moleculares (BROQUET e PETIT, 2009). Tais

métodos fornecem informações relevantes sobre o sistema reprodutivo de uma espécie.

O método indireto pode ser aplicado em estudos que visam detectar o sistema

reprodutivo das espécies vegetais, através do uso de marcadores dominantes (MULUVI et al.,

2004; MUCHUGI et al., 2008) e co-dominantes (RAMOS et., 2011; ABREU et al., 2012;

PICANÇO-RODRIGUES et al., 2015), sendo os marcadores dominantes relevantes para

estimar as taxas de cruzamento (GAIOTTO et al., 1997). Dentre os marcadores dominantes,

há os ISSR (Inter Simple Sequence Repeats), onde um único marcador na amplificação do

DNA, resultando em múltiplos fragmentos de diversos comprimentos (SLOTTA e PORTER,

2006), além de não ser necessário o conhecimento prévio do genoma da espécie de interesse

(OLIVEIRA et al., 2014).

Estruturalmente, a presente dissertação está dividida em dois capítulos, os quais

organizados em artigos gerados de estudos desenvolvidos com a palmeira Copernicia

prunifera.

O primeiro capítulo “Reproductive ecology of the Copernicia prunifera, a native palm

from brazilian semiarid” foi enviado para revista Floresta e Ambiente (Qualis CAPES B1), no

qual foram descritas as características reprodutivas da Copernicia prunifera.

O Segundo capítulo “Mating system of Copernicia prunifera (Arecaceae)” será

submetido à revista Biochemical Systematics and Ecology (Qualis CAPES A2) e teve como

objetivo investigar o sistema de reprodução e a diversidade genética da espécie, gerando

informações para o entendimento dos mecanismos de reprodução.

Page 12: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

11

REFERÊNCIAS

ABREU, A. G.; PRIOLLI, R. H. G.; AZEVEDO-FILHO, J. A.; NUCCI, S. M.; ZUCCHI, M.

I.; COELHO, R. M.; COLOMBO, C. A. The genetic structure and mating system of

Acrocomia aculeata (Arecaceae). Genetics and Molecular Biology, n. 35, v. 1, p. 119-121,

2012.

ARRUDA, C. C.; SILVA, M. B.; SEBBENN, A. M.; KANASHIRO, M.; LEMES, M. R.;

GRIBEL, R. Mating system and genetic diversity of progenies before and after logging: a

case study of Bagassa guianensis (Moraceae), a low-density dioecious tree of the Amazonian

forest. Tree Genetics & Genomes, v. 11, p. 3, 2015.

ARRUDA, G. M. T.; CALBO, M. E. R. Efeitos da inundação no crescimento, trocas gasosas

e porosidade radicular da carnaúba (Copernicia prunifera (Mill.) H.E. Moore). Acta Botânica

Brasileira, v. 18, p. 219-224, 2003.

BROQUET, T.; PETIT, E. J. Molecular estimation of dispersal for ecology and population

genetics. Annual Review of Ecology, Evolution, and Systematics, Palo Alto, v. 40, n. 1, p.

193-216, 2009.

CAMPOS, A. M.; FREITAS, J. L.; SANTOS, E. S.; SILVA, R. B. L. Fenologia reprodutiva

de Bertholletia excelsa Bonpl. em floresta de terra firme em Mazagão, Amapá. Biota

Amazônia, v. 3, n. 1, p. 1-8, 2013.

CESÁRIO, L. F.; GAGLIANONE, M. C. Biologia floral e fenologia reprodutiva de Schinus

terebinthifolius Raddi (Anacardiaceae) em Restinga do Norte Fluminense. Acta Botanica

Brasilica, v. 22, n. 3, p. 828-833, 2008.

COSTA, V. L. S.; GOMES, J. M. A. Crédito e conservação ambiental no extrativismo da

carnaúba (Copernicia prunifera (Mill.) H. E. Moore) no nordeste brasileiro no período de

2007 a 2012. Interações, v. 17, n. 1, p. 4-14, 2016.

GAIOTTO, F. A.; BRAMUCCI, M.; GRATTAPAGLIA, D. Estimation of outcrossing rate in

a breeding population of Eucalyptus urophylla with dominant RAPD and AFLP markers.

Theor. Appl. Genet, v. 95, p. 842-849, 1997.

HENDERSON, A.; FISCHER, B.; SCARIOT, A.; PACHECO, M. A. W. & PARDINI, R.

Flowering phenology of a palm community in a central Amazon forest. Brittonia, v. 52, p.

149-159, 2000.

LEITMAN, P.; SOARES, K.; HENDERSON, A.; NOBLICK, L.; MARTINS, R. C.

Arecaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro,

2015. Disponível em: <http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB15706>.

LEITMAN, P.; SOARES, K.; HENDERSON, A.; NOBLICK, L.; MARTINS, R. C.

Arecaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro,

2015. Disponivel em: <http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB53>.

Page 13: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

12

LENZI, M.; ORTH, A. I. Fenologia reprodutiva, morfologia e biologia floral de Schinus

terebinthifolius Raddi (Anacardiaceae), em restinga da Ilha de Santa Catarina, Brasil.

Biotemas, v. 17, n. 2, p. 67-89, 2004.

LORENZI, H.; SOUZA, H. M.; MEDEIROS-COSTA, J. T.; CERQUEIRA, L. S. C.; BEHR,

N. Palmeiras do Brasil: exóticas e nativas. Nova Odessa: Editora Plantarum, p. 1-20, 1996.

MIRANDA, I. P. A.; RABELO, A.; BUENO, C. R.; BARBOSA, E. M.; RIBEIRO, M. N. S.

Frutos de Palmeiras da Amazônia. Manaus: MCT INPA, p. 7-10, 2001.

MUCHUGI, A.; MULUVI, G. M.; SIMONS, A. J.; WACHIRA, F. N.; JAMNADASS, R. H.

Estimation of out-crossing rate in a natural breeding population of Warburgia ugandensis

using AFLP marker. African Journal of Biotechnology, v.7, p. 139-146, 2008.

MULUVI, G. M.; SPRENT, J. I.; POWELL, W. Estimates of outcrossing rates in Moringa

oleifera using Amplified fragment length polymorphism (AFLP). African Journal of

Biotechnology, v. 3, n. 2, p. 146-151, 2004.

Muñoz, M., Moreira. Géneros Endémicos Monocotiledóneas, Chile. Registro Propriedad

Intelectual n° 114.968, 2000. Available in: <http://www.mnhn.cl/apuntes/botanica/

jubaea.htm>. Acess in 19 apr. 2014.

OLIVEIRA, A. F.; CARVALHO, D.; ROSADO, S. C. S. Taxa de cruzamento e sistema

reprodutivo de uma população natural de Copaifera langsdorffii Desf. na região de Lavras

(MG) por meio de isoenzimas. Revista Brasileira de Botânica, v. 25, n. 3, p. 331-338, 2002.

OLIVEIRA, M. S. P., COUTURIER, G., BESERRA, P. Biologia da polinização da palmeira

tucumã (Astrocaryum vulgare Mart.) em Belém, Pará, Brasil. Acta Botanica Brasilica. 17,

343-353, 2003.

OLIVEIRA, N. N. S.; VIANA, A. P.; QUINTAL, S. S. R.; PAIVA, C. L.; MARINHO, C. S.

Análise de distância genética entre acessos do gênero Psidium via marcadores ISSR. Revista

Brasileira de Fruticultura, v. 36, n. 4, p. 917-923, 2014.

OOSTERMEIJER, J. G. B.; LUIJTEN, S. H.; DEN NIJS, J. C. M. Integrating demographic

and genetic approaches in plant conservation. Biology Conservation, v. 113, p. 389-398,

2003.

PEREIRA, D. S.; SOUSA, J. E. S.; PEREIRA, M. S.; GONÇALVES, N. R.; BEZERRA, A.

M. E. Emergence and initial growth of Copernicia prunifera (Arecaceae) as a function of fruit

maturation. Journal of Seed Science, v. 36, n. 1, p. 009-014, 2014.

PICANÇO-RODRIGUES, D.; ASTOLFI-FILHO, S.; LEMES, M. R.; GRIBEL, R.;

SEBBENN, A. M.; CLEMENT, C. R. Conservation implications of the mating system of the

Pampa Hermosa landrace of peach palm analyzed with microsatellite markers. Genetics and

Molecular Biology, v. 38, n. 1, p. 59-66, 2015.

RAMOS, S. L. F.; LOPES, M. T. G.; LOPES, R.; CUNHA, R. N. V.; MACÊDO, J. L. V.;

CONTIM, L. A. S.; CLEMENT, C. R.; RODRIGUES, D. P.; BERNARDES, L. G.

Page 14: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

13

Determination of the mating system of Tucumã palm using microsatellite markers. Crop

Breeding and Applied Biotechnology, v. 11, n. 2, p. 181-185, 2011.

SLOTTA, T. A. B.; PORTER, D. M. Genetic variation within and between Iliamna corei and

I. remota (Malvaceae): implications for species delimitation. Botanical Journal of the

Linnean Society, v. 151, p. 345-354, 2006.

SOUZA, V. C.; LORENZI, H. Botânica sistemática: guia ilustrado para identificação das

famílias de fanerógamas nativas e exóticas no Brasil, baseado no APG II. Nova Odessa:

Instituto Plantarun, 2. ed., 2008.

SOUZA, V. C.; LORENZI, H. Botânica Sistemática: guia ilustrado para identificação de

famílias de Angiospermas da flora brasileira, baseado em APG II. Nova Odessa, SP:

Instituto Plantarum, 2005.

TANNUS, J. L. S.; ASSIS, M.A.; MORELLATO, L. P. C. Fenologia reprodutiva em campo

sujo e campo úmido numa área de cerrado no sudeste do Brasil, Itirapina – SP. Biota

Neotropica, v. 6, n. 3, p. 1-27, 2006.

VIEIRA, F. A.; APPOLINÁRIO V.; FAJARDO C. G.; CARVALHO, D. Reproductive

biology of Protium spruceanum (Burseraceae), a dominant dioecious tree in vegetation

corridors in Southeastern Brazil. Revista Brasileira de Botânica, v. 33, n. 4, p. 711–715,

2010.

Page 15: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

14

Capítulo 1: REPRODUCTIVE ECOLOGY OF THE Copernicia prunifera, A NATIVE

PALM FROM BRAZILIAN SEMIARID

Artigo submetido à Revista Floresta e Ambiente (Qualis CAPES B1)

ABSTRACT The objective of this study was to describe the reproductive characteristics of

the palm Copernicia prunifera in different locations, in the state of Rio Grande do Norte,

Brazil. We evaluated the reproductive events (flower buds, anthesis, immature and ripe fruit).

The structure of the inflorescence was also described, and we estimated the percentage of

viable pollen. Differences were observed in the reproductive patterns among the populations

evaluated, throughout continuous observation of production of flowers and ripe fruit in the

Parnamirim population, and discontinuous observation in the Macaíba population.

Hermaphroditic flowers have multiple inflorescences with light coloration. In addition, the

flowers are composed of 3 sepals, 3 petals, 6 stamens and 3 carpels. The average percentage

of viable pollen was 62%. The characterization of the reproductive ecology of Copernicia

prunifera rendered important information for future studies of germplasm conservation of the

species.

Keywords: Caatinga, Arecaceae, Carnaúba, Reproductive events, Reproductive structures.

Introduction

The Caatinga biome is found predominantly in the Northeastern region of Brazil,

occupying an area of approximately 844,453 km2

or 54.53% of the area of the region (IBGE,

2005). Due to a dearth of studies about the biome, the devastation of the Caatinga continues,

due to both extensive livestock and agricultural production systems, and by the indiscriminate

Page 16: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

15

extraction of wood and plywood (Santana and Souto, 2006). This process of environmental

degradation has caused a great loss of the forest resources of the biome (Santos et al., 2011;

Silva et al., 2009).

Among the hundreds of species that can be found in the Caatinga, the Arecaceae

family stands out, of which globally there are, approximately, 200 genera and 2,000 species

(Souza and Lorenzi, 2008). Due to their botanical characteristics, consist in very interesting

plant group, in addition to having great ornamental, nutritional, and economic value

(Bauermann et al., 2010).

The palm Copernicia prunifera (Miller) H. E. Moore stands out, a species native to the

semiarid region of northeastern Brazil. Its distribution occurs in a geographic area of the

states of Tocantins, Maranhão, Piauí, Ceará, Rio Grande do Norte, Paraíba, Pernambuco,

Alagoas, Sergipe, Bahia, and Mato Grosso (LEITMAN et al., 2015). Copernicia prunifera

individuals primarily can be found in the northeastern river valleys (D'alva, 2007). According

to Carvalho (2008), the economics of Copernicia prunifera consist of the set of activities that

make use of the leaves, stem, fiber, fruit and roots of this palm tree for the manufacture of

numerous industrial and handicraft products. Beyond this, there are no studies related to the

reproductive ecology of the species.

Phenological study is an important tool in the characterization of forest dynamics,

facilitating the understanding of processes such as pollination, reproduction, regeneration and

establishment of species in their natural environment (Tannus et al., 2006). The time, duration

and degree of synchrony of phenological stages have important implications on the quantity

and quality of resources available to the consumer (pollinators, seed dispersers and predators)

(Williams et al., 1999).

Moreover, knowledge of the reproductive structures of a species is essential for

description of its reproductive success (Lenzi and Orth, 2004; Vieira et al., 2010). Thus, the

Page 17: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

16

understanding of the reproductive biology is important in the sense of financing new works by

management, breeding and domestication of native species (Oliveira et al., 2003; Vieira et al.,

2012).

The knowledge of the floral biology, reproductive organs and pollinators of a species

is essential to support taxonomy of work, management, breeding and domestication of native

species while providing the interpretation of mechanisms for the pollination and elucidation

of the relationship between plants and the environment (Vieira et al., 2010). Silberbauer-

Gottsberger (1990) and Henderson (1986) argue that it is unlikely the hypothesis of

anemophily be the only type of pollination occurring in the family Arecaceae, given the

importance of insects pollination reproduction of family representatives. In fact, the most

common pollen dispersal agents in palm trees are beetles, followed by bees and flies (Barfod

et al., 2003). The protandry where the anthers mature before the stigma being receptive, it is

quite common in Arecaceae, which favors the cross-fertilization (Mantovani and Morellato,

2000). According Silberbauer-Gottsberger (1990) to protandry it should be related to

anemophily and entomophily.

Studies of reproductive biology with species of the genus Copernicia are nonexistent,

and are of great importance for the ecological characterization of a species native to the

semiarid Northeast. Overall, the objective of this study was to describe the reproductive

characteristics of the palm Copernicia prunifera.

Material and methods

Areas of study

Copernicia prunifera populations were sampled in three locations. The first was a

natural population in the municipality of Lagoa de Pedras, RN. The second was another

natural population in the municipality of Macaíba, RN, and the third was an urban plantation

Page 18: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

17

on the edge of the Cotovelo Beach, in the municipality of Parnamirim, RN. According to the

Köppen climate classification (Peel et al., 2007), the locations studied feature tropical climate

with a rainy season (As).

The population in Lagoa de Pedras is situated in a rural area of the municipality, in the

state of Rio Grande do Norte. The site is located in Northeast Brazil, with coordinates 6° 12'

33.51"S, 35° 27' 38.24"W and an altitude of 105 meters. The second population is located in

the area belonging to the Unidade Acadêmica Especializada em Ciências Agrárias, UAECIA -

UFRN, in the municipality of Macaíba, RN. The area is located in the Northeast region of

Brazil, with coordinates 5° 53' 57"S, 35° 59' 22"W, altitude of 26 meters. Individuals of

Cotovelo Beach are situated in the municipality of Parnamirim, RN, on the coastal region of

the state, with coordinates 5° 57' 59.14"S and 35° 08' 34"W and altitude of 12 meters.

For characterization of reproductive events of Copernicia prunifera, individuals were

sampled populations of Macaíba and Cotovelo Beach, RN. The study of reproductive biology

was developed in the population in the municipality of Lagoa de Pedras.

Reproductive events

We evaluated 20 and 29 individuals in each population, respectively. As a rule of

inclusion, we evaluated only reproductive individuals, systematically and on trails throughout

the area population using the methodology of D'eça-Neves and Morellato (2004).

The evaluations were carried out in the period between the months of October 2011

and december 2012, at intervals of 15 days in the populations of Macaíba and Cotovelo

Beach. The ranges of assessments were defined as the dynamics of changes of the

reproductive events, where sites with larger variations in phenophases were evaluated more

frequently. The following reproductive events were observed: floral buds, flower, immature

fruit and ripe.

Page 19: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

18

The phenophases were quantified through the activity index, by evaluating the

presence or absence of reproductive event; and intensity of Fournier (1974), by means of a

scale of five semiquantitative categories (0 to 4), separated at intervals of 25%. Reproductive

events were reported for each population. For data analysis, Excel spreadsheets were used.

Reproductive biology

Three individuals were selected to provide the data on the structure of the

inflorescence and two for pollen viability. Then collected the reproductive parts (flower buds

and flower), were subsequently packaged in Falcon tubes containing the solution of the FAA

50 (10% formaldehyde, 85% ethyl alcohol and 5% acetic acid). The reproductive structures

were collected in february of 2014.

The structure of the inflorescence was characterized by the length of the rachis (cm);

the number of rachillae up in inflorescence; the position of the rachilla, which is subdivided

into three distinct areas, basal, intermediate and apical region; the number of multiple

inflorescences and blooms at rachilla (Figure 1). The sexual type and flower morphological

characterization was determined with the aid of a stereoscopic microscope Medilux®.

For pollen viability analysis, there were eight repetitions in blades. The pollen grains

were stained with acetic orcein solution 1% (Dafni, 1992; Kearns and Inouye, 1993). Then the

pollen grains once stained were covered with coverslipping mountant for observation in an

optical microscope, using the magnifying lens of 40X. In order to obtain a random sampling

of stained pollen grains, we counted 100 pollen grains per blade.

The pollen grains were analyzed and classified normal/viable, with cytoplasm stained

recorded as normal and abnormal/inviable recorded for those with little or no cytoplasm

evidenced. The percentage of viable pollen was calculated by the equation: pollen Viability

(%) = number of colored grains/grain number counted * 100.

Page 20: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

19

Results

It was found that the species presents multiple inflorescences, being made up of

hermaphroditic flowers, with a yellowish coloration (Figure 1B). In addition, the flowers are

composed of 3 sepals, 3 petals, 3 stamens and 6 carpels. The average percentage of viable

pollen was 62% (Figure 1C).

Fig. 1 Reproductive structures of Copernicia prunifera. A: Rachis (a), rachilla (b) and portion of rachilla (c). B:

multiple inflorescences of C. prunifera. C: Pollen grains of palm C. prunifera, viewed in the objective lens 40X.

The reproductive phase of Copernicia prunifera proved to be subannual, with more

than one episode of flowering per year. The occurrence of buds and flowers in individuals of

Parnamirim occurred throughout the year, with higher intensities in the months of october and

november (34.48% and 48.28%, respectively) (Figure 2B and D). The population of Macaíba,

Page 21: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

20

in december, with buds and flower emission rates of 26.25% and 42.50%, respectively

(Figure 2A and C).

Fig. 2 Indexes of activity and intensity of reproductive phenology of Copernicia prunifera.

Floral budding in populations Macaíba (A) and Parnamirim (B) and flower in populations of

Macaíba (C) and Parnamirim (D).

Immature fruit production occurred throughout the period evaluated in the population

of Parnamirim, featuring greater intensity from december to january, with average of 60.77%

(Figure 3B). However, the same did not occur in the population of Macaíba, where the same

immature fruit production presented higher than in the months of January and February, with

average of 43.75% (Figure 3A). However, the population of Cotovelo beach had a production

of mature fruits continuously during the evaluated period, with high intensity in the months of

February to May 2012, with rates of 14.65% and 16.38%, respectively (Figure 3D).

Page 22: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

21

Fig. 3 Indices of activity and intensity of reproductive phenology of Copernicia prunifera.

Immature fruit in populations of Macaíba (A) and Parnamirim (B) and ripe fruit in

populations of Macaíba (C) and Parnamirim (D).

Despite the occurrence of immature fruit production in the population of Macaíba,

most of these fruits had not reached the final stage of maturation, causing low rate of ripe

fruits, observed during the months of november through april, though with greater maximum

intensity in the months of February/2011 (13.75%) and March 2012 (30.00%) (Figure 3C).

The length of the rachis averaged 1.29 m; the ratio of the number of rachilla by

inflorescence ranged from 4.00 to 15.00. The rachilla exhibited greater length in the basal

portion, averaging 62.50 cm. The number of subrachilla and flowers by rachilla were

concentrated with higher proportions in the basal portion, with average values of 6.17 and

1,735.50, respectively (Table 1).

Page 23: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

22

Table 1 Rachis length, quantitative rachilla per inflorescence, length of rachilla, number of

subrachilla, number of flowers per rachille in basal, intermediate and apical Copernicia prunifera. (n),

sample size; mean; maximum and minimum values.

Characters Portion n Minimum Mean Maximum

Rachis length (m) Total

3

1.05

1.29

1.60

Quantitative

rachilla per

inflorescence

Total

3

4.00 10.67

15.00

Length of rachilla

(cm)

Basal 3 33.00 62.50 80.00

Intermediate 3 18.00 38.17 65.00

Apical 3 6.00 19.17 54.00

Number of

subrachilla

Basal 3 4.00 6.17 9.00

Intermediate 3 3.00 5.50 8.00

Apical 3 1.00 2.00 5.00

Number of flowers

per rachille

Basal 2 803.00 1,735.50 2,668.00

Intermediate 2 871.00 1,649.00 2,427.00

Apical 2 225.00 1,014.00 1,803.00

In the studied population showed the sanhaçú do coqueiro (Tangara palmarum)

visiting the tops of some individuals (Figure 4A). Floral visits were also recorded from the

maribondo-caboclo (Polistes canadensis Linnaeus) and of irapuá (Trigona spinipes Fabricius)

(Figures 4B and 4C).

Page 24: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

23

Fig. 4 Tangara palmarum (A), Polistes canadensis (B) and Trigona spinipes (C) in individual

Copernicia prunifera.

Discussion

Studies that compare the reproductive events of Copernicia prunifera palm in distinct

populations are nonexistent, and the results of this work are relevant, especially in regards to

defining the ideal period for gathering fruits and seeds, in addition to the dispersal and

pollination mechanisms of the species. The frequency of reproductive events observed in a

population of Copernicia alba were divergent to those of Copernicia prunifera, with higher

peak flowering between july and december and fruiting from december to may (Salis and

Mattos, 1994).

Rocha et al. (2015), after correlating the phenological data of Copernicia prunifera

with climatic variables, in the same population, found that the mature fruits showed a

significant negative correlation with the relative humidity in the studied population,

demonstrating greater number of trees with ripe fruits in periods with low humidity. In

addition, there was no significant correlation with precipitation in the evaluated period.

Page 25: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

24

The fact that the fruits do not reach the final stage of maturation in the population of

Macaíba can be linked to environmental factors, mainly to low rainfall, high

evapotranspiration and pollinators (Vilela et al., 2008; Nazareno and Reis, 2012).

Additionally, the occurrence and intensity of some reproductive events usually are associated

with factors abiotic factors, such as, temperature, precipitation, humidity, soil; and/or biotic

factors, such as pollinators (Spina et al., 2001). Thus, the availability of water becomes an

essential factor to produce fleshy fruits (Tabarelli et al., 2003).

Souza et al. (2002) reported that pollen viability in forest species is only considered

high for values above 70%. In relation to the rate of floral visitors, it is estimated that

probably, the low frequency of visits in the population adversely interferes with pollination

rate. Information on pollination in palm trees are incipient and under the existing entomophily

(pollination by insects) and wind (pollination by wind action), have been reported as the main

systems of pollination, with highlight to entomophily (Oliveira et al., 2003).

Regarding the observation of insects in individuals of Copernicia prunifera, there have

been more frequent in the population of Parnamirim. Nevertheless, Silveira et al. (2010), in a

study conducted with individuals from Vaccinium myrtillus, family Ericaceae, identified that

species Trigona spinipes is harmful to the species, especially at the time of flowering, fruiting

and fruit with reduced size. The presence of insects observed in the population is an indication

that they are the likely pollinators of the species (Pina-Rodrigues and Piratelli, 1993).

In tropical vegetation, the zoochory is the dominant dispersal syndrome (Bollen et al.,

2004). Purificação et al. (2015) verified that in individuals from Schefflera morototoni

(Araliaceae), the Tangara palmarum presents itself as one of the main dispersers of the fruits

of this species. Additionally, in remarks carried in individuals of Cecropia pachystachya,

noted that Tangara palmarum is omnivorous, with a habit of visiting and reap the rewards in

plants (Gonçalves and Vitorino, 2014).

Page 26: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

25

Conclusion

There are differences in reproductive patterns among populations evaluated, observed

continuously in the production of flowers and ripe fruit in the population of Parnamirim, and

discontinuously in the population of Macaíba. The Copernicia prunifera flowers are

hermaphroditic. Relatively low pollen viability was observed, and may lead to low fruit

production. Suggested the pollen viability studies in other natural populations, as also the

record of pollinators and seed dispersers.

Acknowledgments

The Fundação de Apoio à Pesquisa do Rio Grande do Norte (FAPERN), for providing

the fellowship, and Conselho Nacional de Desenvolvimento Científico e Tecnológico

(CNPq). We thank Carley Nichole Fuller for English editing of the manuscript.

References

Bauermann, S.G., Evaldt, A.C.P., Zanchin, J.R., Bordignon, S.A.L., 2010. Diferenciação

polínica de Butia, Euterpe, Geonoma, Syagrus e Thritrinax e implicações paleoecológicas

de Arecaceae para o Rio Grande do Sul. Iheringia. 65, 35-46.

Bollen, A., Elsacker, L.V., Ganzhorn, J.U., 2004. Tree dispersal strategies in the forest of

Saint Luce (SE - Madagascar). Oecologia. 139, 604-616.

Carvalho, J.N.F., 2008. Pobreza e tecnologias sociais no extrativismo da carnaúba.

Universidade Federal do Piauí. 100p. (Post-graduate Dissertation).

D’alva, O.A., 2007. O extrativismo da carnaúba no Ceará. Fortaleza: Banco do Nordeste do

Brasil. 172p.

Dafni, A., 1992. Pollination ecology: a practical approach (the practical approach series). New

York: University Press, 250p.

Page 27: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

26

D’eça-Neves, F.F., Morellato, L.P.C., 2004. Métodos de amostragem e avaliação utilizados

em estudos fenológicos de florestas tropicais. Acta Botânica Brasilica. 18, 99-108.

Gonçalves, G.L, Vitorino, B.D., 2014. Comportamento alimentar de aves em Cecropia

pachystachya Trécul (Urticacea) em um ambiente urbano no município de Luz, Minas

Gerais, Brasil. Biota Amazônia. 4, 100-105.

IBGE - Instituto Brasileiro de Geografia e Estatística. Rio de Janeiro. Mapa de Biomas e de

Vegetação. Disponível em: <http://www.ibge.gov.br>. Acess in 29 aug. 2014.

Kearns, C.A., Inouye, D., 1993. Techniques for pollinations biologists. Niwot: University

press of Colorado, 579p.

Lenzi, M., Orth, A.I., 2004. Fenologia reprodutiva e biologia floral de Schinus terenbithifolius

Raddi (Anacardiaceae), em restinga da Ilha de Santa Catarina, Brasil. Biotemas. 17, 67-89.

Muñoz, M., Moreira. Géneros Endémicos Monocotiledóneas, Chile. Registro Propriedad

Intelectual n° 114.968, 2000. Available in: <http://www.mnhn.cl/apuntes/botanica/

jubaea.htm>. Acess in 19 apr. 2014.

Nazareno, A.G., Reis, M.S., 2012. Linking phenology to mating system: exploring the

reproductive biology of the threatened palm species Butia eriospatha. Journal of Heredity.

103, 842-852.

Oliveira, M.S.P., Couturier, G., Beserra, P., 2003. Biologia da polinização da palmeira

tucumã (Astrocaryum vulgare Mart.) em Belém, Pará, Brasil. Acta Botanica Brasilica. 17,

343-353.

Peel, M.C., Finlayson, B.L., Mcmahon, T.A., 2007. Updated world map of the Köppen-

Geiger climate classification. Hydrology and Earth System Sciences. 11, 1633–1644.

Pinã-rodrigues, F.C.M., Piratelli, A.J., 1993. Aspectos Ecológicos da Produção de Sementes.

In; AGUIAR, I.B., PIÑA-RODRIGUES, F.C.M. Sementes Florestais Tropicais. Brasília:

Abrates. 350p.

Page 28: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

27

Purificação, K.N., Pascotto, M.C., Mohr, A., Lenza, E., 2015. Frugivory by birds on

Schefflera morototoni (Araliaceae) in a Cerrado-Amazon Forest transition area, eastern

Mato Grosso, Brazil. Acta Amazonica. 45, 57-64.

Rocha, T.G.F., Silva, R.A.R., Dantas, E.X., Vieira, F.A., 2015. Fenologia da Copernicia

prunifera (Arecaceae) em uma área de caatinga do Rio Grande do Norte. Cerne. 4, 673-

682.

Salis, S.M.; Mattos, P.P., 1994. Fenologia de Acrocomia totai Mart. e Copernicia alba

Morong no Pantanal. In: Congresso de Ecologia do Brasil.

Santana, J.A.S.; Souto, J.S., 2006. Diversidade e estrutura fitossociológica da Caatinga na

Estação Ecológica do Seridó - RN. Revista Brasileira de Biologia e Ciências da Terra. 6,

232-242.

Santos, J.C., Leal, I.R., Almeida-Cortez, J.S, Fernandes, G.W, Tabarelli, M., 2011. Caatinga:

the scientific negligence experienced by a dry tropical forest. Science. 4, 276–286.

Silberbauer-Gottsberger, I. 1990. Pollination and evolution in palms. Horn. 30, 213-233.

Silva, A.P.N., Moura, G.B.A., Giongo, P.R., Silva, A.O., 2009. Dinâmica espaço-temporal da

vegetação no semiárido de Pernambuco. Revista Caatinga. 22, 195-205.

Silveira, T.M.T., Raseira, M.C.B., Nava, D.E., Couto, M., 2010. Influência do dano da abelha

irapuá em flores de mirtileiro sobre a frutificação das frutas produzidas. Revista Brasileira

de Fruticultura. 32, 303-307.

SOUZA, V.C., LORENZI, H., 2008. Botânica sistemática: guia ilustrado para identificação

das famílias de fanerógamas nativas e exóticas no Brasil, baseado no APG II. Nova

Odessa: Instituto Plantarun, 2. ed., 324p.

Spina, A.P., Ferreira, W.M., Leitão Filho, H.F., 2001. Floração, frutificação e síndromes de

dispersão de uma comunidade de floresta de brejo na região de Campinas (SP). Acta

Botanica Brasilica. 15, 349-368.

Page 29: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

28

Souza, M.M., Pereira, T.N.S., Martins, E. R., 2002. Microsporogênese e microgametogênese

associadas ao tamanho do botão floral e da antera e viabilidade polínica em maracujazeiro-

amarelo (Passiflora edulis Sims f. flavicarpa degener). Ciência Agrotêcnica. 26, 1209-

1217.

Tabarelli, M., Vicente, A., Barbosa, D.C.A., 2003. Variation of seed dispersal spectrum of

woody plants across a rainfall gradient in northeastern Brazil. Journal of Arid

Environmental. 53, 197-210.

Tannus, J.L.S., Assis, M.A.; Morellato, L.P.C., 2006. Fenologia reprodutiva em campo sujo e

campo úmido numa área de cerrado no sudeste do Brasil, Itirapina – SP. Biota Neotropica.

6, 1-27.

Vieira, F.A., Appolinário, V., Fajardo, C.G., Carvalho, D., 2010. Reproductive biology of

Protium spruceanum (Burseraceae), a dominant dioecious tree in vegetation corridors in

Southeastern Brazil. Revista Brasileira de Botânica. 33, 711-715.

Vieira, F.A., Fajardo, C.G., Carvalho, D., 2012. Floral biology of candeia (Eremanthus

erythropappus, Asteraceae). Pesquisa Florestal Brasileira. 32, 477-481.

Vilela, G.F., Carvalho, D., Vieira F.A., 2008. Fenologia de Caryocar brasiliense Camb.

(Caryocaraceae) no Alto Rio Grande, sul de Minas Gerais. Cerne. 14, 317-329.

Williams, R.J., Myers, B.A., Eamus, D., Duff, G.A., 1999. Reproductive phenology of woody

species in a North Australian Tropical savanna. Biotropica. 31, 626-636.

Page 30: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

29

Capítulo 2: MATING SYSTEM OF Copernicia prunifera (ARECACEAE)

ABSTRACT

Understanding the genetic diversity and reproductive mating system of forest species is

important in assessing the genetic factors associated with, and effects of, forest fragmentation.

The objective of this study is to investigate the genetic diversity and mating system of a

population of Copernicia prunifera using ISSR (Inter-Simple Sequence Repeat) markers. We

found that the markers used presented high polymorphism and were considered informative.

The values of the diversity indices among adults and progenies did not differ statistically (He

= 0.319 and I = 0.470; He = 0.337 and I = 0.505, respectively). In testing for the presence of

genetic bottlenecks using the infinite allele model (IAM) and stepwise mutation model

(SMM), we observed a reduction in the effective population, as well as a deficit in

heterozygosity (P < 0.0001). Outcrossing rates at the population level (n = 247) produced a

multilocus outcrossing rate (tm) of 0.878 and single locus outcrossing rate (ts) of 0.738,

indicating that Copernicia prunifera has a mixed mating system that is preferentially

allogamous. The rate of mating among relatives (tm - ts) was low, indicating limited

outcrossing between closely related individuals. The fixation index between seed trees (F)

was negative (- 0.200), suggesting an absence of inbreeding, while the correlation of selfing

(rs) was high (0.914). The results of this study inform management strategies for the

conservation and genetic improvement of the Copernicia prunifera palm.

Key words: Caatinga; Genetic diversity; ISSR; Carnauba palm; Outcrossing rate

INTRODUCTION

The palm Copernicia prunifera (Miller) H. E. Moore, commonly known as carnaúba,

belongs to the Arecaceae family and the species is native to the Caatinga biome that occurs

across the states of Tocantins, Maranhão, Piauí, Ceará, Rio Grande do Norte, Paraíba,

Pernambuco, Alagoas, Sergipe, Bahia, and Mato Grosso (LEITMAN et al., 2015). The

species can be used for a variety of purposes, from urban forestry (MACHADO et al., 2006)

to wax extraction from its leaves, the main product of the species, which is used in cosmetics,

varnishes, and even for polishing fruit (JACOMINO et al., 2003; MOTA et al., 2006; SILVA

et al., 2009).

Due to the economic and social importance of Copernicia prunifera, determining its

mating system is vital, because it is an aspect that must be considered in the management,

Page 31: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

30

conservation, and genetic improvement of the species (ARRUDA et al., 2015; VIEIRA et al.,

2010). Mating systems can alter the genetic dynamics of populations by influencing the

genetic composition of subsequent generations (OOSTERMEIJER et al., 2003). In addition,

the mating system determines the magnitude of inbreeding in the descendent population

(MORI et al., 2013). It is important to consider how the recombination of genes in each

reproductive event is expressed in descendant populations (MORI et al., 2013). Thus,

knowledge of the mating system is necessary to determine the genetic composition of

populations as it is the source of the distribution of genetic diversity and subdivisions within

and across populations (HAMRICK, 1982).

In this context, approaches to assessing the mating systems of forest species have

important implications for understanding the genetic factors (SAMANT et al., 2013) and

effects of forest fragmentation (SEOANE et al., 2005). Additionally, population genetics

studies indicate that progenies from fragmented populations are more likely to be generated

by selfing or from mating between few individuals (SEOANE et al., 2000; CASCANTE et al.,

2002; FUCHS et al., 2003).

The mating system of hermaphroditic species can combine selfing with outcrossing,

through which both random or correlated mating occurs (MORI et al., 2013). In addition,

most palm species present mixed mating systems, being preferentially allogamous (CONTE et

al., 2008; RAMOS et al., 2011; ABREU et al., 2012; NAZARENE and REIS., 2012;

OTTEWELL et al., 2012; PICANÇO-RODRIGUES et al., 2015). Due to the effects of

anthropization in the region, and because the species occurs in monodominant groups at high

densities in the studied area, it is expected that Copernicia prunifera presents a mixed mating

system, with a high rate of outcrossing between related individuals.

Analyses of the mating system of forest species can be performed using dominant

(GAIOTTO et al., 1997; SANTOS and NETO, 2011; FERREIRA et al., 2010) or co-dominant

markers (GAIOTTO et al., 2003; ALVES et al., 2015; WADT et al., 2015). To overcome

limitations in the analysis of individual genotypes, Ritland (2002) developed the multilocus

model, which includes dominant markers in the evaluation of the mating system of plant

species. Among the dominant markers, inter-simple sequence repeat (ISSR) markers are

usefull (HAN et al., 2009; SOUZA et al., 2012): they are effective in detecting

polymorphism, easily reproduced, and have lower costs than SSR markers (SANTANA et al.,

2011). In addition, along with microsatellites, ISSR markers amplify genomic fragments that

are abundant and widely distributed throughout the genome of eukaryote individuals, and do

not require sequencing (GE, 2005).

Page 32: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

31

The aim of this study is to investigate the genetic diversity and mating system of a

natural population of Copernicia prunifera using ISSR markers, generating information that

can help us understand the reproduction mechanism of the species.

MATERIAL AND METHODS

Plant Sampling

The sampled population of Copernicia prunifera is located in the municipality of São

Miguel do Gostoso, Rio Grande do Norte, Brazil (5° 07' 18'' S and 35° 41' 02" W) (Figure 1).

The municipality is located in a microregion of the northeastern coast, with a tropical climate

with dry season (As), according to the Köppen climate classification (ALVARES et al.,

2013). The vegetation of the study area is hipoxerophytic caatinga, made up of shrubs and

thorny trees. In addition, the site presents high levels of anthropization, mainly due to the

expansion of wind power plants. The linear distance from the population to the coast is

approximately 1.5 km.

To study the mating system, leaf samples and fruits were collected from 16 adult

reproductive individuals, in a 0.55 ha area. Due to the limited number of fruits available for

some individuals, the number of progenies ranged from 4 to 20 (Figure 1). Progenies of

Copernicia prunifera were obtained based on the seed germination methodology described by

Araújo et al. (2013). The population was georeferenced using GPS and individuals were

mapped with a tape measure for greater accuracy.

Page 33: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

32

Figure 1: Geographical location of the Copernicia prunifera individuals, in the municipality

of São Miguel do Gostoso, Rio Grande do Norte, Brazil. n = number of progenies.

Leaf tissue samples of adult individuals were placed in 2 mL plastic tubes containing

CTAB 2X (cationic hexadecyl trimethylammonium bromide), labelled and transported to the

lab. For progenies, we collected the first leaves to develop which were then stored in a freezer

at - 20°C until DNA extraction.

The PCR reactions were carried out in a Veriti thermocycler, in a volume of 12 μL,

containing diluted genomic DNA, 10X PCR buffer, 1.0 mg.ml-1

BSA, 2.5 mM dntp, 50 mM

MgCl2, 5 U.µL-1

Taq DNA polymerase, 2 µM primer, and ultra pure water. The PCR protocol

consisted of an initial denaturation for 2 min at 94 °C, followed by 37 amplification cycles of

15 seconds at 94 °C, 30 seconds at 47 °C, 1 min at 72 °C, a final extension for 7 min at 72 °C,

and cooling to 4 °C.

The PCR products were stained with GelRedTM

and analyzed using horizontal

electrophoresis, separated on 1.5% agarose gel, in a solution of 1X TAE (Tris-Acetate-

EDTA), at 100 V for 2.5 hours. We used a molecular weight marker (Ladder) of 10,000 bp

and the gels were photographed in ultraviolet light in an E-Box VX2.

m

m

Page 34: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

33

Statistical analysis

Diversity, identity, and genetic distance

To determine the genetic diversity parameters, we built a binary array based on the

presence (1) and absence (0) of loci in gels. The data were used to calculate the percentage of

polymorphic loci, number of effective alleles, number of observed alleles, Nei's genetic

diversity (He), and Shannon diversity index (I). The adult individuals and progenies were

evaluated and analyses were carried out using the program POPGENE v. 1.32 (YEH et al.,

1997). The results from the diversity indices were submitted to analysis of variance

(ANOVA) using the program ASSISTAT 7.7 (SILVA, 2014).

Genetic identity was obtained using the program NTSYS (ROHLF, 1993), with the

goal of constructing a dendrogram of Unweighted Pair Group Method with Arithmetic mean

(UPGMA) for the 16 seed trees, based on Nei's genetic identity (1978). Analysis of Nei's

genetic distance was conducted with the POPGENE program v. 1.32 (YEH et al., 1997).

Value of PIC

The polymorphic information content (PIC) was used to test the efficiency of the ISSR

markers to detect polymorphism between two individuals, through the presence or absence of

loci. According to Botstein et al. (1980), molecular markers are classified as satisfactory in

informational content when the PIC value is greater than 0.5. Values from 0.25 to 0.5 are

moderately informative, and values below 0.25 have little information value. For this, we

used the formula proposed by Anderson et al. (1993): ∑

, where Pij is the

frequency of allele "j" at marker "i".

Genetic bottleneck detection

To verify the presence of a genetic bottleneck that resulted in a reduction in the

effective size of the population over generations, we used the infinite allele model (IAM),

according to Kimura and Crow (1964), and the stepwise mutation model (SMM), according to

Kimura and Otha (1978). The analyses were performed using the program Bottleneck 1.2.02

(CORNUET and LUIKART, 1996).

Analysis of the mating system

The mating system was assessed using the mixed mating model (RITLAND and JAIN,

1981) and correlated mating model (RITLAND, 1989). The standard deviations of the

estimates were obtained by 1,000 bootstraps. The estimated parameters were: a) multilocus

Page 35: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

34

outcrossing rate (tm); b) single locus outcrossing rate (ts); c) rate of mating among relatives (tm

- ts); d) selfing rate (s = 1 - tm); e) fixation index between seed trees (F); f) expected fixation

index F = [(1 - tm) / (1 + tm)]; g) correlation of selfing (rs); h) multilocus paternity correlation

(rp(m)); i) single locus paternity correlation (rp(s)); j) correlation of the estimate of tm (rt); and k)

the relatedness between pollen donor trees (rp(s) - rp(m)). The parameters were obtained using

the program MLTR (RITLAND, 2004). The standard deviations were obtained by 1,000

bootstraps.

RESULTS

Polymorphism and PIC

The markers show a large numbers of loci, as well as good resolution for the analyzed

fragments (Figure 2). Eight ISSR markers were used, producing 104 loci with 100%

polymorphism (Table 1). The number of loci ranged between 10 and 17, with an average of

13 per marker. The PIC of markers ranged from 0.416 to 0.500, with an average of 0.477.

Figure 2: Pattern of ISSR amplification fragments resulting from UBC 825 primer for 19

progenies of Copernicia prunifera. L = Ladder 1 kb.

Page 36: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

35

Table 1: Nucleotide sequence of the ISSR markers, number of loci, and the PIC value for each

primer.

ISSR Primer Sequence (5’ - 3’) Loci PIC

UBC 825 (AC)8-T ACA CAC ACA CAC ACA CT 17 0.498

UBC 827 (AC)8-G ACA CAC ACA CAC ACA CG 11 0.484

UBC 840 (GA)8-YT GAC AGA GAG AGA GAG AYT 14 0.500

UBC 851 (GT)8-YG GTG TGT GTG TGT GTG TYG 12 0.416

UBC 857 (AC)8-YG ACA CAC ACA CAC ACA CYG 13 0.492

UBC 859 (TG)8-RC TGT GTG TGT GTG TGT GRC 13 0.439

UBC 860 (TG)8-RA TGT GTG TGT GTG TGT GRA 10 0.494

UBC 873 (GACA)4 GAC AGA CAG ACA GAC A 14 0.495

Average 13 0.477

R = purine (A or G) and Y = pyrimidine (C or T).

Diversity and genetic identity

For the parameters of genetic diversity (Table 2), the adults showed 84.62%

polymorphic loci, while the progenies presented 100% polymorphism. The number of alleles

observed (Na) and the number of effective alleles (Ne) were higher among progenies than

adults, 2.000 (± 0.000) and 1.575 (± 0.020), respectively. We found no statistical difference in

the results for Nei's genetic diversity (He), assuming Hardy-Weinberg equilibrium, and the

Shannon index (I) between adults and progenies.

Table 2: Genetic diversity parameters for the population of Copernicia prunifera.

Population n Lp (%) Na Ne He I

Adults 16 84.62 1.846±0.090 1.558±0.087 0.319±0.044 0.470±0.061

Progenies 251 100 2.000±0.000 1.575±0.020 0.337±0.009 0.505±0.011

Total 267 100 2.000±0.000 1.607±0.018 0.353±0.008 0.526±0.010

Sample size (n), percentage of polymorphic loci (Lp%), number of alleles observed (Na),

number of effective alleles (Ne), Nei's genetic diversity index (He), Shannon index (I). Values

represent the average ± standard error.

Based on Nei's genetic identity (1978), the UPGMA dendrogram grouped the

population into two groups: one formed by individuals 1, 3, 5, and 9; and the other made up

of the remaining individuals (Figure 3). Individuals 9, 10, and 12 showed less genetic

similarity in relation to the others.

Page 37: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

36

Figure 3: Dendrogram of Nei's genetic identity between Copernicia prunifera individuals.

Estimates of Nei's genetic distance between individuals are shown in Table 3. We

observed that individuals who have less genetic similarity based on the identity analysis

showed greater genetic distance: primarily between individuals 9 and 2 (0.838), 10 and 3

(0.693), 10 and 5 (0.693), 10 and 11 (0.501), 12 and 9 (0.732), 12 and 15 (0.637).

Page 38: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

37

Table 3: Estimates of Nei's genetic distance (1978) between Copernicia prunifera individuals. Values in bold represent greater divergence

between individuals that are less genetically similar.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0

2 0.425 0

3 0.288 0.288 0

4 0.753 0.354 0.601 0

5 0.288 0.486 0.214 0.713 0

6 0.486 0.288 0.486 0.202 0.550 0

7 0.517 0.214 0.486 0.226 0.655 0.167 0

8 0.455 0.262 0.340 0.275 0.486 0.190 0.190 0

9 0.382 0.838 0.637 0.732 0.410 0.753 1.034 0.794 0

10 0.517 0.550 0.693 0.250 0.693 0.314 0.396 0.368 0.501 0

11 0.470 0.301 0.327 0.425 0.440 0.226 0.354 0.354 0.584 0.501 0

12 0.637 0.470 0.713 0.340 0.713 0.567 0.410 0.470 0.732 0.440 0.693 0

13 0.486 0.368 0.486 0.470 0.486 0.262 0.396 0.425 0.567 0.486 0.134 0.567 0

14 0.470 0.382 0.410 0.455 0.410 0.327 0.470 0.410 0.455 0.470 0.190 0.486 0.070 0

15 0.517 0.396 0.396 0.410 0.455 0.288 0.455 0.396 0.501 0.396 0.156 0.637 0.167 0.134 0

16 0.455 0.425 0.396 0.470 0.425 0.340 0.517 0.425 0.410 0.455 0.112 0.567 0.123 0.091 0.101 0

Page 39: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

In the analysis to determine a reduction in the effective population, both the IAM and the

SMM detected genetic bottleneck in the population (Table 4). Additionally, the signal test

showed a significant deficit of heterozygosity based on the evaluated models (P < 0.0001).

Table 4: Tests to verify the reduction of effective population size of Copernicia prunifera using

the models IAM and SMM.

Population IAM SMM

N Hd/He P n Hd/He P

Adults 50.59 31/73 0.00001⃰ 49.35 34/70 0.00003⃰

Progenies 38.59 15/89 0.00000* 44.86 23/81 0.00000⃰

Total 38.56 11/93 0.00000⃰ 44.65 16/88 0.00000⃰

n = expected number of loci with excess heterozygosity under the respective model; Hd/He =

number of loci with deficit of heterozygosity / number of loci with excess heterozygosity; P =

probability; * = significant at 1% probability.

Mating system

Estimates of population-level outcrossing (Table 5) showed rates of tm = 0.878, ts = 0.738,

and s = 0.122. Mating among relatives (tm – ts) was positive (0.140). The main coefficient of

selfing between seed trees was negative (-0.200), and lower than expected (0.065).

For selfing and multilocus and single-locus paternity correlation, we found high rates of

direct selfing correlation (0.914) and low rates of single-locus paternity correlation (0.017). The

level of relatedness between pollen donors in the population was -0.296.

Table 5: Estimates of mating system parameters for the Copernicia prunifera population.

Parameters Average

Multilocus outcrossing rate: tm 0.878 (0.037)

Single locus outcrossing rate: ts 0.738 (0.037)

Mating among relatives rate: tm - ts 0.140 (0.037)

Selfing rate: s = 1 - tm 0.122

Fixation index between seed tree: F - 0.200 (0.023)

Fixation index expected: F = (1 - tm) / (1 + tm) 0.065

Correlation of selfing: rs 0.914 (0.110)

Multilocus paternity correlation: rp(m) 0.313 (0.043)

Single locus paternity correlation: rp(s) 0.017 (0.030)

Correlation of the estimate of tm: rt 0.597 (0.095)

Relatedness between pollen donors: rp(s) - rp(m) - 0.296 (0.041)

( ) Standard deviation

Page 40: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

39

DISCUSSION

The number of loci evaluated in this study was high (n = 104) in comparison with other

studies on the genetic diversity of palms using dominant markers, with results ranging between

47 and 93 (OLIVEIRA et al., 2012; VIEIRA et al., 2015; CHAGAS et al., 2015). Using ISSR

markers to study the palm species Phoenix dactylifera and Mauritia flexuosa, the percentage of

polymorphic found by Mirbahar et al. (2014) and Rossi et al. (2014) was similar to that found in

the present study. However, Chagas et al. (2015) found low levels of genetic polymorphism in a

population of Elaeis guineenses. Thus, estimates of the level of genetic variability in a population

can be influenced by the percentage of polymorphic loci.

The PIC value determines the effectiveness of molecular markers in identifying molecular

polymorphism between individuals (RESENDE et al., 2009). Thus, the markers used in this study

were moderate, according to the classification by Botstein et al. (1980). Vieira et al. (2015),

testing seven ISSR markers for Copernicia prunifera, found PIC values ranging from 0.079 and

0.444, with an average of 0.277. The PIC may vary depending on the type of molecular marker

used. According to Goudet et al. (1996) and Buonaccorsi et al. (1999), among all genetic

markers, microsatellite markers offer greater information content.

In relation to the Shannon index (I) and Nei's genetic diversity index (He), the results can

range from 0 to 1, with 0 showing an absence of diversity and 1 suggesting maximum genetic

diversity (GIUSTINA et al., 2014). Therefore, the results obtained in the present study (I = 0.526

and He = 0.353) can be considered moderate. The rate of He in this study was higher than

expected for long-lived perennial species and outcrossing (He = 0.25 and 0.27, respectively)

(NYBOM, 2004).

Our results are very similar to those seen in other natural population of Copernicia

prunifera (I = 0.44 and He = 0.228; VIEIRA et al., 2015), and relatively higher than the Shannon

index of a natural population of Phoenix dactylifera, with values between 0.290 and 0.097

(MARSAFARI and MEHRABI, 2013). As such, the differences between the values of genetic

diversity indices reflect the interaction of several processes, such as: forest fragmentation

(YOUNG et al., 1996), spatial genetic structure (ERBANO et al., 2015), and outcrossing rate

(ARRUDA et al., 2015). All these factors may result in the loss of rare alleles, a reduction in

heterozygosity, and increased inbreeding (ROSSI et al., 2014).

Page 41: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

40

The population analyzed presented genetic bottleneck, based on IAM and SMM (P <

0.01). Therefore, there is no balance between mutation and drift in the sampled population. This

result is similar to that found for a population of Elaeis guineenses where the authors also

reported a reduction in the effective population size (CHAGAS et al., 2015). A reduction in the

effective population size can be the result of human intervention in the region, through the

installation of wind turbine towers and the introduction of cattle in the study area. These

disturbed environments can lead to an increased risk of extinction of local populations, as well as

decrease the evolutionary potential of species due to changes in the natural environment

(HAMRICK, 2004; JUMP and PEÑUELAS, 2006). Clearly, the detection of recent bottlenecks

in a population suggests the species is at risk of extinction (GONÇALVES et al., 2016).

The mating system parameters based on the mixed mating and correlated mating model

(RITLAND and JAIN, 1981; RITLAND, 1989) indicate that Copernicia prunifera is a mixed

mating species (t < 0.95), that is preferentially allogamous (tm = 0.878). In addition, the single

locus outcrossing rate was high (ts = 0.738). These values are consistent with those found for

other tropical palms, which are predominantly outcrossing, such as Acrocomia aculeata (ABREU

et al., 2012) and Hermosa landrace (PICANÇO-RODRIGUES et al., 2015). Ward et al. (2005) in

36 studies surveyed found > 90% outcrossed mating for 45 hermaphroditic or monoecious

species. Another parameter that defines allogamy is the rate of selfing (s); the result from present

study (s = 0.122) falls within the range expected for a predominantly allogamous species (s <

20%) (OLIVEIRA et al., 2002; WINN et al., 2011).

The outcrossing rate in hermaphroditic species, such as Copernicia prunifera, depends on

factors including: pollinator behaviour, which is influenced by the density of flowering

individuals in the population; selective abortion of fruits and seeds from outcrossing; presence

and intensity of self-incompatibility mechanisms; and the degree of protogyny and protandry

(MURAWSKI and HAMRICK, 1991; MENEZES and OLIVEIRA, 2011).

The rate of mating among relatives (tm - ts) showed that, although outcrossing in the

population is high, some individuals are the product of mating between relatives (0.140).

Picanço-Rodrigues et al. (2015) found a similar result for the palm Hermosa landrace.

Additionally, the correlation of selfing was high (rs = 0.914), suggesting that some plants produce

more descendants from selfing than outcrossing.

Page 42: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

41

The fixation index between seed trees (F = - 0.200) indicates an absence of inbreeding

among reproductive individuals. Ramos et al. (2011) and Abreu et al. (2012) also identified an

absence of inbreeding in natural populations of the palms Astrocaryum aculeatum and Acrocomia

aculeata. The lack of inbreeding in the study population is consistent with the low level of mating

among relatives. Therefore, despite the occurrence of Copernicia prunifera individuals in an

anthropogenized area, in monodominant clusters, and at high densities, we can reject the

assumption of a high rate of outcrossing between related individuals expected for the study

population. In addition, we found low levels of relatedness between pollen donor trees (rp(s) - rp(m)

= - 0.296).

IMPLICATIONS FOR CONSERVATION AND MANAGEMENT

The study area suffers constant anthropogenic pressure, primarily through the

advancement of wind energy facilities in the region. Without proper planning, these facilities can

have a negative impact on the studied Copernicia prunifera population, which can lead to habitat

fragmentation and a loss of genetic variability. The genetic bottleneck detected through our

analysis may be associated with anthropogenic interventions in the study population (CHAGAS

et al., 2015).

With the aim of supporting species conservation, our study shows that the local

population and wind energy companies must be better informed about the importance of

maintaining the existing population. Furthermore, the exploitation of the species must be carried

out in a sustainable manner. For this, government programs should be developed to reduce the

anthropogenic impacts on Copernicia prunifera. Considering future genetic improvement studies

and programs for the species, we propose the formation of a base population with seeds of

different populations, collecting preferably in the study population, seeds from individuals 9, 10,

and 12, as they are the most diverse individuals in the population. For that, indicates the

methodology used by Sebbenn et al. (2003). In addition, in order to conserve the current genetic

diversity, we suggest the creation of a genebank, based on these divergent genotypes. In relation

to the results obtained for the reproductive system of Copernicia prunifera, our study shows a

clear need for conservation of populations with large numbers of individuals.

Page 43: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

42

ACKNOWLEDGMENTS

The authors thank the Fundação de Apoio à Pesquisa do Rio Grande do Norte (FAPERN)

for providing a scholarship and the Conselho Nacional de Desenvolvimento Científico e

Tecnológico (CNPq) for the financial assistance, process n° 471099/2012-0. We also thank Dr.

Evelyn R. Nimmo for assistance in editing the manuscript.

REFERENCES

ABREU, A. G.; PRIOLLI, R. H. G.; AZEVEDO-FILHO, J. A.; NUCCI, S. M.; ZUCCHI, M. I.;

COELHO, R. M.; COLOMBO, C. A. The genetic structure and mating system of Acrocomia

aculeata (Arecaceae). Genetics and Molecular Biology, n. 35, v. 1, p. 119-121, 2012.

ALVARES, C. A; STAPE, J. L; SENTELHAS, P. C; GONÇALVES, J. L. M; SPAROVEK, G.

Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-

728, 2013.

ALVES, P. F.; SEBBENN, A. M.; MANOEL, R. O.; CAMBUIM, J.; MORAES, M. A.;

JUNIOR, E. F.; KUBOTA, T. Y. K.; PUPIN, S.; MORAES, M. L. T. Sistema de reprodução em

uma população base de Jatropha curcas L. Scientia Forestalis, v. 43, n. 106, p. 427-434, 2015.

ANDERSON, J. A.; CHURCHILL, G. A.; AUTRIQUE, J. E.; TANKSLEY, S. D; SORRELLS,

M. E. Optimizing parental selection for genetic linkage maps. Genome, v. 36, p. 181-186, 1993.

ARAÚJO, L. H, B.; SILVA, R. A. R.; DANTAS, E. X.; SOUSA, R. F.; VIEIRA, F. A.

Germinação de sementes da Copernicia prunifera: biometria, pré-embebição e estabelecimento

de mudas. Enciclopédia Biosfera, v. 9, n. 17, p. 1517-1528, 2013.

ARRUDA, C. C.; SILVA, M. B.; SEBBENN, A. M.; KANASHIRO, M.; LEMES, M. R.;

GRIBEL, R. Mating system and genetic diversity of progenies before and after logging: a case

study of Bagassa guianensis (Moraceae), a low-density dioecious tree of the Amazonian forest.

Tree Genetics & Genomes, v. 11, p. 3, 2015.

Page 44: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

43

BOTSTEIN, D.; WHITE, R. L.; SKOLNICK, M.; DAVIS, R. W. Construction of a genetic

linkage map in man using restriction fragment length polymorphisms. The American Journal of

Human Genetics, v.32, n.2, p.314-331. 1980.

BUONACCORSI, V. P.; REECE, K. S.; MORGAN, L. W.; GRAVES, J. E. Geographic

distribution of molecular variance within the blue marlin (Makaira nigricans): a hierarchical

analysis of allozyme, single-copy nuclear DNA, and mitochondrial DNA markers. Evolution, v.

53, p. 568–579, 1999.

CAMPOS, T.; CUNHA, M. O.; SOUSA, A. C. B.; TEIXEIRA, R. B.; RAPOSO, A.; SEBBENN,

A. M.; WADT, L.H.O. Mating system parameters in a high density population of andirobas in the

Amazon forest. Pesquisa Agropecuária Brasileira, v. 48, p. 504-509, 2013.

CASCANTE, A.; QUESADA, M.; LOBO, S. A.; FUCHS, E. J. Effects of dry tropical forest

fragmentation on the reproductive success and genetic structure of the tree Samanea saman.

Conservation Biology, v. 16, p. 137–147, 2002.

CHAGAS, K. P. T.; SOUSA, R. F.; FAJARDO, C. G.; VIEIRA, F. A. Seleção de marcadores

ISSR e diversidade genética em uma população de Elaeis guineenses. Agrária, v. 10, n. 1, p.

147-152, 2015.

CONTE, R.; SEDREZ, M. R.; MANTOVANI, A.; VENCOVSKY, R. Genetic structure and

mating system of Euterpe edulis Mart. Populations: a comparative analysis using microsatellite

and allozyme markers. The Journal of Heredity, v. 99, n. 5, p. 476-482, 2008.

CORNUET, J. M.; LUIKART, G. Description and power analysis of two tests for detecting

recent population bottlenecks from allele frequency data. Genetics, v. 144, p. 2001-2014, 1996.

DOYLE, J. J.; DOYLE, J. L. Isolation of plant DNA from fresh tissue. Focus, v. 12, n. 1, p. 13-

15, 1987.

Page 45: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

44

FERREIRA, T. G. T.; PENHA, H. A.; ZUCCHI, M. I.; SANTOS, A. A.; HANAI, L. R.;

JUNQUEIRA, N.; BRAGA, M. F.; VENCOVSKY, R.; VIEIRA, M. L. C. Outcrossing rate in

sweet passion fruit based on molecular markers. Plant Breed, v. 129, p. 727-730, 2010.

FUCHS, E. J.; LOBO, J. A.; QUESADA, M. Effects of forest fragmentation and flowering

phenology on the reproductive success and mating patterns of the tropical dry forest tree Pachira

quinata. Conservation Biology, v. 17, p. 149-157, 2003.

GAIOTTO, F. A.; BRAMUCCI, M.; GRATTAPAGLIA, D. Estimation of outcrossing rate in a

breeding population of Eucalyptus urophylla with dominant RAPD and AFLP markers. Theor

Appl Genet, v. 95, p. 842-849, 1997.

GAIOTOO, F. A.; GRATTAPAGLIA, D.; VENCOVSKY, R. Genetic Structure, Mating System,

and Long-Distance Gene Flow in Heart of Palm (Euterpe edulis Mart.). Journal of Heredity, v.

94, n. 5, p. 399-406, 2003.

GE, X. J. Low genetic diversity and significant population structuring in the relict Amentotaxus

argotaenia complex (Taxaceae) based on ISSR fingerprinting. Journal of Plant Research, v.

118, p. 415-422, 2005.

GIUSTINA, L. D.; LUZ, L. N.; VIEIRA, F. S.; ROSSI, F. S.; SOARES-LOPES,C. R. A.;

PEREIRA, T. N. S.; ROSSI, A. A. B. Population structure and genetic diversity in natural

populations os Theobroma speciosum Willd. Ex Spreng (Malvaceae). Genetics and molecular

Research, v. 13, n. 5, p. 47-53, 2014.

GONÇALVES, F. R.; VIEIRA, F. A.; CARVALHO, D. Naturally fragmented but not genetically

isolated populations of Podocarpus sellowii Klotzsch (Podocarpaceae) in southeast Brazil.

Genetics and Molecular Research, v. 15, n. 4, p. 1-17, 2016.

Page 46: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

45

GONELA, A.; SEBBENN, A. M.; SORIANI, H. H.; MESTRINER, M. A.; MARTINEZ, C. A.;

ALZATE-MARIN, A. L. Genetic diversity and mating system of Copaifera langsdorffii

(Leguminosae/Caesalpinioideae). Genetics and Molecular Research, v. 12, p. 569-580, 2013.

GOUDET, J.; RAYMOND, M.; DE MEEUS, T.; ROUSSET, F. Testing differentiation in diploid

populations. Genetics, v. 139, n. 4, p. 463–471, 1996.

HAN, Y.; TENG, C.; WAHITI, G. R.; ZHOU, M.; HU, Z.; SONG, Y. Mating system and genetic

diversity in natural populations of Nelumbo nucifera (Nelumbonaceae) detected by ISSR

markers. Plant Systematics and Evolution, v. 277, p. 13-20, 2009.

HAMRICK, J. L. Plant population genetics and evolution. American Journal of Botany, v. 69,

n. 10, p. 1685-1693, 1982.

HAMRICK, J. L. Response of florest trees to global environmental changes. Forest Ecology and

Management, v. 197, p. 323-335, 2004.

JACOMINO, A. P.; OJEDA, R. M.; KLUGE, R. A.; FILHO, J. A. S. Conservação de goiabas

tratadas com emulsões de cera de carnaúba. Revista Brasileira de Fruticultura, Jaboticabal, v.

25, n. 3, p. 401-405, 2003.

JUMP, A. S. PEÑUELAS, J. Genetic effects of chronic habitat fragmentation in a wind-

pollinated tree. Proceedings of National Academy of Science, v. 103, n. 21, p. 8096-8100,

2006.

KIMURA M.; OTHA T. Stepwise mutation model and distribution of allelic frequencies in a

finite populations. Proceedings of the National Academy of Sciences of the USA, v.75, n.6, p.

2868–2872, 1978.

KIMURA M.; CROW, J. The number of alleles that can be maintained in a finite population.

Genetics, v.49, n.4, p. 725– 738, 1964.

Page 47: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

46

LEITMAN, P.; SOARES, K.; HENDERSON, A.; NOBLICK, L.; MARTINS, R. C. Arecaceae

in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro, 2015. Available in:

<http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB53>. Access in september of 2016.

MACHADO, R. R. B.; MEUNIER, I. M. J.; SILVA, J. A. A.; CASTRO, A. A. J. F. Árvores

nativas para a arborização de Teresina, Piauí. Revista da Sociedade Brasileira de Arborização

Urbana, Piracicaba, v. 1, n. 1, p. 10-18, 2006.

MENEZES, S. P.; OLIVEIRA, A. C. Biologia floral, sistema reprodutivo e métodos artificiais de

hibridação de Hemerocallis hybrida. Ciência e Agrotecnologia, v. 35, n. 1, p. 28-34, 2011.

MIRBAHAR, A. A.; MARKHAND, G. S.; KHAN, S.; ABUL-SOAD, A. A. Molecular

characterization of some pakistani date palm (Phoenix dactylifera L.) cultivars by RAPD

markers. Pakistan Journal of Botany, v. 46, n. 2, p. 619-625, 2014.

MORI, E. S.; SEBBENN, A. M.; TAMBARUSSI, E.V.; GURIES, R. P. Sistema de reprodução

em populações naturais de Peltophorum dubium. Scientia Forestalis, v. 41, p. 307-318, 2013.

MOTA, W. F.; SALOMÃO, L. C. C.; NERES, C. R. L.; MIZOBUTSI, G. P.; NEVES, L. L. M.

Uso de cera de carnaúba e saco plástico poliolefínico na conservação pós-colheita do maracujá-

amarelo. Revista Brasileira de Fruticultura, v. 28, n. 2, p. 190-193, 2006.

MURAWSKI, D. A.; HAMRICK, J. L. The effect of the density of flowering individuals on the

mating systems of nine tropical tree species. Heredity, v. 67, p. 167-174, 1991.

NAZARENO, A. G.; REIS, M. S. Linking phenology to mating system: exploring the

reproductive biology of the threatened palm species Butia eriospatha. The Journal of Heredity,

v. 103, n. 6, p. 842-852, 2012.

NEI, M. Estimation of average heterozygosity and genetic distance from a small number of

individuals. Genetics, v. 89, p. 586-590, 1978.

Page 48: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

47

NYBOM, H. Comparison of different nuclear DNA markers for estimating intraspecific genetic

diversity in plants. Molecular Ecology, v. 13, p. 1143-1155, 2004.

OLIVEIRA, A. F.; CARVALHO, D.; ROSADO, S. C. S. Taxa de cruzamento e sistema

reprodutivo de uma população natural de Copaifera langsdorffii Desf. na região de Lavras (MG)

por meio de isoenzimas. Brazilian Journal of Botany, v. 25, n. 3, p. 331-338, 2002.

OLIVEIRA, D. A.; JUNIOR, A. F. M.; BRANDÃO, M. M.; RODRIGUES, L. A.; MENEZES,

E. V.; FERREIRA, P. R. B. Genetic diversity in populations of Acrocomia aculeata (Arecaceae)

in the northern region of Minas Gerais, Brazil. Genetics and Molecular Research, v. 11, n. 1, p.

531-538, 2012.

OOSTERMEIJER, J. G. B.; LUIJTEN, S. H.; DEN NIJS, J. C. M. Integrating demographic and

genetic approaches in plant conservation. Biology Conservation, v. 113, p. 389-398, 2003.

OTTEWELL, K.; GREY, E.; CASTILLO, F.; KARUBIAN, J. The pollen dispersal kernel and

mating system of an insect-pollinated tropical palm, Oenocarpus bataua. Heredity, v. 109, n. 6,

p. 332-339, 2012.

PICANÇO-RODRIGUES, D.; ASTOLFI-FILHO, S.; LEMES, M. R.; GRIBEL, R.; SEBBENN,

A. M.; CLEMENT, C. R. Conservation implications of the mating system of the Pampa Hermosa

landrace of peach palm analyzed with microsatellite markers. Genetics and Molecular Biology,

v. 38, n. 1, p. 59-66, 2015.

RAMOS, S. L. F.; LOPES, M. T. G.; LOPES, R.; CUNHA, R. N. V.; MACÊDO, J. L. V.;

CONTIM, L. A. S.; CLEMENT, C. R.; RODRIGUES, D. P.; BERNARDES, L. G.

Determination of the mating system of Tucumã palm using microsatellite markers. Crop

Breeding and Applied Biotechnology, v. 11, n. 2, p. 181-185, 2011.

Page 49: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

48

RESENDE, R. K. S.; VILELA, P. L.; CHALFUN, J. A.; PEREIRA, T. P.; ELISA, M. T.

Divergência genética entre cultivares de gérbera utilizando marcadores RAPD. Ciência Rural, v.

39, n. 8, p. 2435-2440, 2009.

RITLAND, K. Correlated matings in the partial selfer Mimulus guttatus. Evolution, v. 43, n. 4, p.

848-859, 1989.

RITLAND, K. Extensions of models for the estimation of mating systems using n independent

loci. Heredity, v. 88, p. 221-228, 2002.

RITLAND, K. Multilocus mating system program MLTR. Version 3.1. Vancouver:

University of British Columbia, 2004. Available in:

<http://genetics.forestry.ubc.ca/ritland/programs.html>. Access in march of 2016.

RITLAND, K.; JAIN, S. A model for the estimation of outcrossing rate and gene frequencies

using independent loci. Heredity, v. 47, n. 1, p. 35-52, 1981.

ROHLF, F. J. NTSYS: Numerical Taxonomy and Multivariate Analysis System (v. 1.8).

Exeter Software, New York, 1993.

ROSSI, F. S.; ROSSI, A. A. B.; DARDENGO, J. F. E.; BRAUWERS, L. R.; SILVA, M. L.;

SEBBENN, A. M. Diversidade genética em populações naturais de Mauritia flexuosa L. f.

(Arecaceae) com uso de marcadores ISSR. Scientia Forestalis, v. 42, n. 104, p. 631-639, 2014.

SANT’ANNA, C. S.; SEBBENN, A. M.; KLABUNDE, G. H.; BITTENCOURT, R.; NODARI,

R. O.; MANTOVANI, A ; REIS, M. S. Realized pollen and seed dispersal within a continuous

population of the dioecious coniferous Brazilian pine [Araucaria angustifolia (Bertol.) Kuntze].

Conservation Genetics, v. 14, p. 601-613, 2013.

SANTANA, I. B. B.; OLIVEIRA, E. J.; SOARES FILHO, W. S.; RITZINGER, R.; AMORIM,

E. P.; COSTA, M. A. P. C.; MOREIRA, R. F. C. Variabilidade genética entre acessos de umbu-

Page 50: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

49

cajazeira mediante análise de marcadores ISSR. Revista Brasileira de Fruticultura, v. 33, n. 3,

p. 868-876, 2011.

SEBBENN, A. M.; KAGEYAMA, P. Y.; VENCOVSKY, R. Conservação genética in situ e

número de matrizes para a coleta de sementes em população de Genipa americana L. Scientia

Forestalis, Piracicaba, v. 63, p. 13-22, 2003.

SEOANE, C. E. S.; SEBBENN, A. M.; KAGEYAMA, P. Y. Efeitos da fragmentação florestal

em populações de Esenbeckia leiocarpa Engl. Scientia Forestalis, Piracicaba, n. 57, p. 123-139,

2000.

SEOANE, C. E. S.; SEBBENN, A. M.; KAGEYAMA, P. Y. Sistema de reprodução em duas

populações naturais de Euterpe edulis M. sob diferentes condições de fragmentação florestal.

Scientia Forestalis, Piracicaba, n. 69, p. 13-24, 2005.

SILVA, F. A. S. ASSISTAT: Versão 7.7 beta. DEAG – CTRN – UFCG – Updated 01 de abril

de 2014. Available in <http://www.assistat.com/>. Access in july of 2016.

SILVA, F. D. B.; FILHO, S. M.; BEZERRA, A. M. E.; FREITAS, J. B. S.; ASSUNÇÃO, M. V.

Pré-embebição e profundidade de semeadura na emergência de Copernicia prunifera (Miller) H.

E. Moore. Revista Ciência Agronômica, v. 40, n. 2, p. 272-278, 2009.

SOUZA, R. A. V.; FERREIRA, J. L.; BRAGA, F. T.; AZEVEDO, P. H.; SANT’ANA, G. C.;

RIBEIRO, A. P.; BORÉM, A.; CANÇADO, G. M. A. Outcrossing rate in olive assessed by

microsatellite and inter simple sequence repeat (ISSR) markers. African Journal of

Biotechnology, v. 11, n. 53, p. 11580-11584, 2012.

VIEIRA, F. A.; APPOLINÁRIO V.; FAJARDO C. G.; CARVALHO, D. Reproductive biology

of Protium spruceanum (Burseraceae), a dominant dioecious tree in vegetation corridors in

Southeastern Brazil. Revista Brasileira de Botânica, v. 33, n. 4, p. 711–715, 2010.

Page 51: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

50

VIEIRA, F. A.; SOUSA, R. F.; SILVA, R. A. R.; FAJARDO, C. G.; MOLINA, W. F.

Diversidade genética de Copernicia prunifera com o uso de marcadores moleculares ISSR.

Agrária, v. 10, n. 4, p. 525-531, 2015.

WADT, L. H. O.; BALDONI, A. B.; SILVA, V. S.; CAMPOS, T.; MARTINS, K.; AZEVEDO,

V. C. R.; MATA, L. R.; BOTIN, A. A.; HOOGERHEIDE, E. S. S.; TONINI, H.; SEBBENN, A.

M. Mating system variation among populations, individuals and within and among fruits in

Bertholletia excelsa. Silvae Genetica, v. 64, p. 248-259, 2015.

WARD, M.; DICK, C. W.; GRIBEL, R.; LOWE, A. J. To self, or not to selfy… A review of

outcrossing and pollen-mediated gene flow in neotropical trees. Heredity, v. 95, p. 246-254,

2005.

WINN, A. A.; ELLE, E.; KALISZ, S.; CHEPTOU, P. O. ECKERT, C. G.; GOODWILLIE, C.;

JOHNSTON, M. O.; MOELLER, D. A.; REE, R. H.; SARGENT, R. D.; MARIO, V. M.

Analysis of inbreeding depression in mixed-mating plants provides evidence for selective

interference and stable mixed mating. Evolution, v. 65, p. 3339-3359, 2011.

YEH, F. C.; YANG, R. C.; BOYLE, T. B. J.; YE, Z. H.; MAO, J. X. POPGENE, the user-

friendly shareware for population genetic analysis. Edmonton: Molecular Biology and

Biotechnology Centre. Edmonton: University of Alberta, 1997.

YOUNG, A.; BOYLE, T.; BROWN, T. The population genetic consequences of habitat

fragmentation for plants. Trends in Ecology and Evolution, v. 11, p. 413-418. 1996.

Page 52: ECOLOGIA REPRODUTIVA, DIVERSIDADE GENÉTICA E SISTEMA ...€¦ · Ecologia reprodutiva, diversidade genética e sistema reprodutivo de Copernicia prunifera (ARECACEAE) / Richeliel

51

CONCLUSÕES GERAIS

Existem divergências nos padrões reprodutivos entre as populações avaliadas, sendo

observadas atividade contínua na produção de flores e frutos maduros na população de

Parnamirim, e descontínua na população de Macaíba.

As flores da Copernicia prunifera são hermafroditas, fornecendo como recurso pólen para

possíveis insetos polinizadores (Trigona spinipes e Polistes canadensis).

Foi observada viabilidade polínica relativamente baixa, podendo acarretar baixa produção de

frutos.

Observaram-se elevados percentuais de locos polimórficos, com valores acima de 84%, além

de índices de diversidade genética de Shannon (I) e Nei (He) intermediários.

Observaram-se decréscimos populacionais, conforme modelos IAM e SMM, entretanto não

houve endogamia, com base na baixa taxa entre indivíduos aparentados.

De acordo com os resultados obtidos do sistema reprodutivo da Copernicia prunifera, a

espécie apresenta sistema misto de reprodução, sendo preferencialmente alógama.