164
M.S.P.VELAYUTHA NADAR LAKSHMITHAIAMMAL POLYTECHNIC COLLEGE SIVAGAMIPURAM, PAVOORCHATRAM-627808 THIRUNELVELI DISTRICT, TAMILNADU m s p vl p @ s a n c h arne t .in DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING ELECTRICAL CIRCUITS & INSTRUMENTATION Lab Manual YEAR: II SEMESTER: III AUTHOR: Mr. C. Saravana Sathya Seelan,, B.E Sr.Lecturer/ECE Mr. P. Rama Ganesan, B.E Lecturer/ECE PUBLISHER: M.S.P.V.L. POLYTECHNIC COLLEGE

Eci Lab Manul

Embed Size (px)

Citation preview

Page 1: Eci Lab Manul

M.S.P.VELAYUTHA NADAR

LAKSHMITHAIAMMAL

POLYTECHNIC COLLEGESIVAGAMIPURAM, PAVOORCHATRAM-627808

THIRUNELVELI DISTRICT, TAMILNADU

m s p vl p @ s a n c h arne t .in

DEPARTMENT OF ELECTRONICS AND

COMMUNICATION ENGINEERING

ELECTRICAL CIRCUITS & INSTRUMENTATION

Lab Manual

YEAR: II SEMESTER: III

AUTHOR:

Mr. C. Saravana Sathya Seelan,, B.E Sr.Lecturer/ECE

Mr. P. Rama Ganesan, B.ELecturer/ECE

PUBLISHER: M.S.P.V.L. POLYTECHNIC COLLEGE PAVOORCHATRAM – 627 808

Page 2: Eci Lab Manul

ECE Department ECI Lab Manual

C O N T E N TS

S. NO

NAME OF THE EXPERIMENT Page No.

1. VERIFICATION OF OHM’S LAW 3

2. VERIFICATION OF KIRCHOFF’S CURRENT&KIRCHOFF’S VOLTAGE LAW

7

3. VERIFICATION OF SUPER POSITION THEOREM 13

4. VERIFICATION OF THEVENIN’S THEOREM 17

5. VERIFICATION OF NORTONS THEOREM 23

6. VERIFICATION OF MAXIMUM POWER TRANSFER THEOREM

29

7. OC AND SC TEST ON A SINGLE PHASE TRANSFORMER

35

8. CALIBRATION OF AMMETER AND VOLTMETER 41

9. WHEATSTONE’S BRIDGE 47

10. WIEN BRIDGE 51

11. PHOTO ELECTRIC TRANSDUCER 57

12. MEASUREMENT OF FREQUENCY AND PHASE ANGLE

61

13. MEASUREMENT OF FREQUENCY AND AMPLITUDE USING CRO

67

14. RLC BRIDGE 71

15. STRAIN GAUGE MEASUREMENT 75

16. MEASUREMENT OF LOADCELL 79

17. LVDT MEASUREMENT 83

18. MEASUREMENT OF TEMPERATURE USING THERMISTOR

87

19. Extra syllabus:EXTENDING THE RANGE OF AMMETER

91

1

Page 3: Eci Lab Manul

ECE Department ECI Lab Manual

VERIFICATION OF OHM’S LAW:

CIRCUIT DIAGRAM:

DRB

+RPS

(0-30) V

-

+

(0–10) mA A

-

2

Page 4: Eci Lab Manul

ECE Department ECI Lab Manual

1. VERIFICATION OF OHM’S LAW

Aim:

To verify the ohm’s law using standard resistances, Ammeter and voltmeter.

Objective:

To know the relation between potential differences (v), current flow (I) and

Resistance(R).

Ohm’s law:

The ratio to potential difference (V) between any two points on aconductor

to the current (i) flowing between them is constant, provided the temperature of the conductor does not change.V/I=constant.

Apparatus Required:

S. No Apparatus Name Range Quantity1. RPS (0-30)V 1

2 Ammete (0-10)mA 13. Resistance 1 kΩ 14. Bread board - 1

5. Connecting wires - 10

Formula: V = IR

Where V = Voltage (potential difference) in voltsI = Current in milli Amperes

R=Resistance in ohms.

Theory:

Ohm’s law says that the current is directly proportional to the potential difference across the ends of the conductor, provided temperature is kept constant. This linear relation between V and I does not to all non metallic conductors and non linear devices such as Zener diodes and voltage regulators (VR) tubes.

Procedure:

Connections are made as shown in the circuit diagram. The voltage is varied and the corresponding current is noted. The ratio of voltage (v)and current (I)is noted

Page 5: Eci Lab Manul

3

Page 6: Eci Lab Manul

ECE Department ECI Lab Manual

Tabulation:

S.NO Applied voltage (V) Current I (mA)

Resistance R=V/Iin

ohm

4

Page 7: Eci Lab Manul

ECE Department ECI Lab Manual

Applications:

It is used in the electrical &electronics circuits.

Result:

Thus the ohm’s law was verified using standard resistances, ammeter and voltmeter.

5

Page 8: Eci Lab Manul

ECE Department ECI Lab Manual

Kirchoff’s Current LawCircuit Diagram:

TABULATION:

Voltage (V)Current (mA)

I3 = I1 + I2

(mA)I1 I2 I3

6

Page 9: Eci Lab Manul

ECE Department ECI Lab Manual

2. VERIFICATION OF KIRCHOFF’S CURRENT&KIRCHOFF’S VOLTAGE LAW

Aim:

To verify the Kirchoff’s current and kirchoff’s voltage law by using standard

resistances, Ammeter and voltmeter.

Kcl’s law:

This law states that the algebric sum of current at a junction of a network is

zero.

Kvl’s law:

This law states that the algebric sum of a voltage in a closed circuit is equal to

zero

Apparatus required:

S. No Apparatus Name Range Quantity

1. RPS (0-30)V 2

2 Ammeter

(0-10)mA 3

3. Resistance 1 KΩ 1

4. Resistance 10 KΩ 2

5. Resistance 5 KΩ 1

6. Bread board - 1

7. Connecting wires - 10

Theory:

Kirchoff’s Current Law (First Law):

The KCL states that the sum of current flowing towards a junction is equal to the sum of current flowing away from the junction.

Page 10: Eci Lab Manul

7

Page 11: Eci Lab Manul

ECE Department ECI Lab Manual

Kirchoff’s Voltage Law:Circuit Diagram:

Tabulation:

Voltage (V) Current I (mA)

Resistance I(R1 + R2)R1 R2

8

Page 12: Eci Lab Manul

ECE Department ECI Lab Manual

According to KCL,

i1 + i3 + i5 = i2 + i4Sum of incoming current = Sum of Outgoing current

(b) Second Law (or) Voltage Law:

The algebraic sum of voltage in a closed circuit is equal to zero.

(i.e) Alvebraic sum of emfs + Algebraic sum of voltage droft = 0

E = IR1 + IR2

E – IR1 – IR2 = 0

E – I (R1 + R2) = 0

Procedure:

KCL’s Law:

Connections are made as shown in the circuit diagram.

Switch on the power supply.

The voltage is varied and the corresponding current is noted.

Now verify the kirchoff’s current law

9

Page 13: Eci Lab Manul

ECE Department ECI Lab Manual

10

Page 14: Eci Lab Manul

ECE Department ECI Lab Manual

KCL’s Law: Connections are made as shown in the circuit diagram. Switch on the power supply. The voltage is varied and the corresponding current is

noted. Now verify the kirchoff’s voltage lawSafety Devices:

Tester Fuse Shoes

Precaution for Personal Safety:

The safety material should be wearied. Connection should be verified correctly Maintain some distance from equipments and stand. Keep the power supply “OFF” when making connection.

Precautions for Device Safety:

Turn the voltage knob in minimum position in the RPS before switch

‘ON’ the RPS. The current knob in the RPS must be in maximum position

before switch ‘ON’ the RPS. If the power supply indicates over load bring the voltage level

to zero and switch off the supply voltage. Before making connections, check the components correctly.

Viva Questions:

1. State KCL2. State KVL3. What is meant by Current?4. What is power? What is the unit of it?

Applications:

It is used in all the electrical &electronics circuits.

Result:

Thus the KCL and KVL was verified by using standard resistances, ammeter and voltmeter.

11

Page 15: Eci Lab Manul

ECE Department ECI Lab Manual

Verification of Super Position Theorem:

Circuit Diagram:

10KΩ

10KΩ

+

RPS(0–30)V-

V1

5.6KΩ

+

A (0–10) mA

-

+

RPS(0–30)V

-V2

V1 Source Shorted:

10KΩ

10KΩ

(5.6) KΩ

+

RPS(0–30) V

+-

A (0–10) mA

-

Page 16: Eci Lab Manul

12

Page 17: Eci Lab Manul

ECE Department ECI Lab Manual

3. VERIFICATION OF SUPER POSITIONTHEOREM

Aim:

To device an experiment to verify super position theorem.

Objective:

To acquire the knowledge about the replacement of voltage source by their internal resistance.

Super Position Theorem:

In a network of linear resistances containing more than one generator, the current which flows at any point is the sum of all the currents which would flow at that points if the each generator were considered separately and all the other generators replaced for the time being by resistance equal to their internal resistances.

Apparatus Required:

S.NO Apparatus Name Range Quantity

1. RPS (0-30)V 12 Ammete (0-10) mA 13. Resistance 10 k 24. Resistance 5.6 k 15. Bread board - 16. Connecting wires - 10

Formula:

I = I1+I2 mAI1 = Current due to one source,

mAI2 = Current due to one source, mAI = Total current at that point, mA

Theory:

In a linear circuit the response at any element due to several sources is given

by the super position of the responses due to individual sources acting one at a time while the next of the sources reduced to zero values. To apply the super position theorem for the analysis of a linear circuit, the constant voltage sources are reducedto zero voltages(short circuit) and the constant current sources are reduced to zerocurrent(open circuit).

Page 18: Eci Lab Manul

13

Page 19: Eci Lab Manul

1

ECE Department ECI Lab Manual

V2 Source Shorted:

Circuit Diagram:

10KΩ

10KΩ

+

RPS(0–30)V

5.6KΩ

+

V-

A (0–10) mA

-

Tabulation:

S.NOSource voltage(V1)

in voltSource voltage(V2)

in voltTotal current I(mA)

Page 20: Eci Lab Manul

14

Page 21: Eci Lab Manul

ECE Department ECI Lab Manual

Procedure:

Connections are made as shown in the circuit diagram. Both Supplies are switched “ON” and the reading of ammeter

is noted as I. The source v2 is replaced by short circuit and the source v1 is switched

“ON”, now the reading of Ammeter is noted asI1. The source v1 is replaced by short circuit and the source v2 is switched

“ON”. Now the reading of Ammeter is noted as I2.

Applications:

1. It is used for replacement of voltage sources.2. It is used when source of power are provided.

Viva Questions:

1. State the super position theorem?2. What is meant by network?3. What is meant by bilinear network?4. Application of super position Theorem.

Result:

Thus the super position theorem was verified.

Page 22: Eci Lab Manul

15

Page 23: Eci Lab Manul

Ω

ECE Department ECI Lab Manual

Verification of Thevenin’s Theorem:

Circuit Diagram:

To Find IL:

10KΩ 10KΩ

+

RPS(0–30)V

5.6K

-

1.5KΩ

+

A (0–10) mA

-

To Find RTH:

10KΩ 10KΩ

+

5.6KΩ M

-

16

Page 24: Eci Lab Manul

ECE Department ECI Lab Manual

4. VERIFICATION OF THEVENIN’S THEOREM

Aim:

To device an experiment to verify Thevenin’s Theorem.

Objective:

To make our complex circuit into equivalent simple circuit.

Apparatus Required:

S.NO Apparatus Name Range Quantity1. RPS (0-30) V 12. Ammete (0-10) mA 13. Voltmete (0-10)V 14. Resistor 10 kΩ 25. Resistor 5.6 kΩ 16. Resistor 1.5 kΩ 17. Bread board - 18. Multimete - 19. Connecting wires - 10

Formula:

IL

VTH mA(RTH RL )

Where VTH = Thevenin’s voltage, (V)

RTH = Thevenin’s Resistance (KΩ)RL = Load Resistance (KΩ)

Resistance (RTH) if viewed from any one point in a network.

17

Page 25: Eci Lab Manul

ECE Department ECI Lab Manual

To Find VTH:

10KΩ 10KΩ

++

RPS(0–30)V

5.6KΩ V

--

(0-10)V

To Find IL:

RT

H

+VTH

-

RL

+

A (0–10) mA

-

18

Page 26: Eci Lab Manul

L

ECE Department ECI Lab Manual

Theory:

In any linear network contains voltage sources and resistances can be replaced by equivalent voltage source

(VTH) in series with equivalent Resistance(RTH) if viewed from any one point in a network.

Step1: Remove the load Resistor RL where current is required.

Step2: Label the terminal from which RL is removed.

Step3: Calculate the open circuit voltage across the labeled

terminal. This is the Thevenin’s voltage (VTH).

Step4: Draw the equivalent circuit.

Step5: Find the current in RL using the formula, I

VTH

RTH RL

Procedure:

1. Connections are made as shown in the circuit diagram.2. Switch “ON” the power supply.3. The load current is noted from Ammeter.4. The load resistance RL and ammeter are removed from the circuit and VTH

is formed.5. The RPS is also removed and RTH is found.6. Now we can draw Thevenin’s equivalent circuit which consists of RTH and

RL connected in series with VTH.7. Now we can find IL.

Safety Devices:

Tester Fuse Shoes

Precautions for Machine Safety:

Turn the voltage knob in minimum position in the RPS before switch‘ON’ the RPS.The current knob in the RPS must be in maximum position before switch ‘ON’ the RPS.If the power supply indicates over load bring the voltage level to zero and switch off the supply voltage.Before making connections, check the components correctly.

Page 27: Eci Lab Manul

19

Page 28: Eci Lab Manul

L

ECE Department ECI Lab Manual

Tabulation for Thevenin’s Theorem:

Load current(IL) in mA

Thevenin’s Resistance

(RTH) in KΩ

Thevenin’s Voltage(VTH) in V

Model Calculation for Thevenin’s Theorem:

I VTH

RTH RL

When VTH = 5.37V, RTH=13.33KΩ and RL=1.5 KΩ

I 5.37

103L

13.33 1.5

5.37 3 1014.83

= 0.362mA

20

Page 29: Eci Lab Manul

ECE Department ECI Lab Manual

Precaution for Personal Safety:

The safety material should be weared. Connection should be verified correctlyMaintain some distance from equipments and stand. Keep the power supply “OFF” when making connection.

Application of the Skill in Professional Life:

Used to analyze the circuit and make it quit easy.Used to simplify the complex circuit into simple circuit.

Help in employment:

To become a circuit designer.

For example, in any power plant has many numbers of current (or) voltage sources it can be replaced by its equivalent circuit.

Viva Questions:

1. State the Thevenin’s theorem?

2. What’s the use of it?

3. What is Network?

4. What is meant by branch?

5. What is a junction?

6. What are the elements contained in the Thevenin’s equivalent circuit?

Result:

Thus the Thevenin’s Theorem was verified.

Page 30: Eci Lab Manul

21

Page 31: Eci Lab Manul

ECE Department ECI Lab Manual

Verification of Norton’s Theorem:

Circuit Diagram:

10KΩ 10KΩ

+RPS

(0–30)V 5.6KΩ

1.5KΩ

+- A (0–10) mA

-

To Find RN:

10KΩ 10KΩ

+

M5.6K

Ω-

22

Page 32: Eci Lab Manul

ECE Department ECI Lab Manual

5. VERIFICATION OF NORTON’S THEOREM

Aim:

To device an experiment to verify Norton’s theorem.

Objective:

To make our complex circuit into equivalent simple circuit.

Apparatus Required:

S.NO Apparatus Name Range Quantity1. RPS (0-30)V 12. Ammete (0-10) mA 13. Resistor 10 kΩ 24. Resistor 5.6 kΩ 15. Resistor 1.5 kΩ 16. Bread board - 17. Multimete - 18. Connecting wires - 10

Formula:

IL

IN R N mARN RL

Where IL

= Load current in (mA)

IN

= Norton current in (mA)

RN = Norton’s equivalent Resistance in (kΩ)

RL = Load Resistance in (kΩ)

Resistance (RTH) if viewed from any one point in a network

Norton’s Theorem:

Any two terminal active linear network containing voltage sources and resistance when viewed from its output terminals, is equivalent to a constant current source and a parallel resistance. The constant current is equal to the current which would flow ion a short circuit placed across the terminals and parallel resistance is the resistance of the network when viewed from these open circuited terminals afterall voltage and current sources have been removed and replaced by their internal resistances.

Page 33: Eci Lab Manul

23

Page 34: Eci Lab Manul

ECE Department ECI Lab Manual

To Find IN:

10KΩ 10KΩ

+RPS

(0–30)V 5.6KΩ

-

+

A (0–10)mA

-

To Find IL:

IL

IN RN 1.5KΩ

24

Page 35: Eci Lab Manul

R

ECE Department ECI Lab Manual

Step1: Remove the load Resistor RL (if any) and put a short circuit across

Step2: Find the short circuit current.

Step3: Calculate the Norton’s looking back resistance RN from the

Load Terminal.

Step4: Draw the equivalent circuit.

Step5: Find the current in RL using the formula,

I I

RN

L N N RL

Procedure:

1. Connections are made as shown in the circuit diagram.

2. Switch “ON” the power supply.

3. The load resistance RL and ammeter are removed from the circuit and

IN values is noted.

4. The RPS is also removed and RN is found.

5. Now we can draw Norton’s equivalent circuit.

6. Now we can find the value of load current IL.

Safety Devices:

Teste

r

Fuse

Shoes

Precautions for Machine Safety:

Turn the voltage knob in minimum position in the RPS before switch

‘ON’ the RPS.

The current knob in the RPS must be in maximum position

before switch ‘ON’ the RPS.

If the power supply indicates over load bring the voltage level to zero

and switch off the supply voltage.

Before making connections, check the components correctly.

Page 36: Eci Lab Manul

25

Page 37: Eci Lab Manul

3

ECE Department ECI Lab Manual

Tabulation for Norton’s Theorem:

Load current(IL) in mA

Norton’s Resistance (R N)in KΩ

Norton’s Current(IN)in mA

Model Calculation for Norton’s Theorem:

IL

IN R N mA(RN RL )

When IN = 0.28mA, RN=13.6KΩ&RL=1.5KΩ

I 0.28

10 13.6 103

L(13.6 103 1.5 103 )

= 0.25mA

Page 38: Eci Lab Manul

26

Page 39: Eci Lab Manul

ECE Department ECI Lab Manual

Precaution for Personal Safety:

The safety material should be

weared. Connection should be

verified correctly

Maintain some distance from equipments and

stand. Keep the power supply “OFF” when making

connection.

Viva Questions:

1. State the Norton’s theorem?

2. What’s the use of it?

3. What do you meant by linear network?

4. What are the elements contained in the Norton’s equivalent circuit?

Result:

Thus the Norton’s theorem was verified.

Page 40: Eci Lab Manul

27

Page 41: Eci Lab Manul

ECE Department ECI Lab Manual

Verification of Maximum Power Transfer Theorem:

Circuit Diagram:

1.5 KΩ

1.5 KΩ

(0–10) mA

+ A -

+RPS

(0-30) V

-

1.5KΩ

+

V (0-10) V

-

DRB

28

Page 42: Eci Lab Manul

ECE Department ECI Lab Manual

6. VERIFICATION OF MAXIMUM POWERTRANSFER THEOREM

Aim:

To verify the maximum power transfer theorem.

Objective:

To observe when the maximum power is transferred from source to load.

Apparatus Required:

S.NO Apparatus Name Range Quantity1. RPS (0-30) V 1

2. Ammete (0-10) mA 13. Resistor 1.5 kΩ 34. Multimet - 15. voltmete (0-10) V 16. DRB - 17. Bread board - 1

8. Connecting wires - 10

Theory:

A Resistive load will abstract maximum power from a network when the load resistance is equal to the resistance of the network as viewed from the output terminals, with all energy sources removed leaving behind their internal resistances.

Procedure:1. The connections are made as shown in the circuit diagram.

2. Keep the supply voltage constant by varying DRB and the

corresponding ammeter and voltmeter readings are noted.

3. Plot the curve between load resistance and power.

Page 43: Eci Lab Manul

29

Page 44: Eci Lab Manul

ECE Department ECI Lab Manual

Model Graph:

Load Resistance in KΩ

30

Page 45: Eci Lab Manul

ECE Department ECI Lab Manual

Safety Devices:Teste

r

Fuse

Shoes

Precautions for Machine Safety:

Turn the voltage knob in minimum position in the RPS before switch

‘ON’ the RPS.

The current knob in the RPS must be in maximum position

before switch ‘ON’ the RPS.

If the power supply indicates over load bring the voltage level to zero

and switch off the supply voltage.

Before making connections, check the components correctly.

Precaution for Personal Safety:

The safety material should be

weared. Connection should be

verified correctly

Maintain some distance from equipments and

stand. Keep the power supply “OFF” when making

connection.

Page 46: Eci Lab Manul

31

Page 47: Eci Lab Manul

ECE Department ECI Lab Manual

Tabulation:

S.NO Load resistor RL in KΩ

Voltage in volt

Current in mA

Power P=VIin W

Model Calculation:

If V =

3.75V&I=0.3mA The

power transferred to the load

P = V×I

= 3.75×0.3×10-3

W= 1.125×10-3

W

= 1.125mW

Page 48: Eci Lab Manul

32

Page 49: Eci Lab Manul

ECE Department ECI Lab Manual

Applications of the Skill:

1. In a public address system, the circuit is adjusted for maximum power transfer by making load (i.e. speaker) resistance equal to source (i.e. amplifier) resistance.

2. In starting a car engine, the power delivered to starter motor depend on the effective resistance of the motor and internal resistance of

the motor and internal resistance of the battery. If the two resistances are equal, m maximum power will be transferred to the motor to turn the engine.

3. Telephone and TV aerial leads to be matched with telephone

instrument and TV receiver respectively.4. Used in transmission lines and Antennas.

List of Viva Voice Questions:

1. State maximum power transfer theorem?

2. When the maximum power transfer theorem?

3. What is meant by power? Mention its unit?

4. What is meant by Energy?

5. What are the applications?

Result:

Thus the maximum power transfer theorem was verified and the graph was

drawn.

Page 50: Eci Lab Manul

33

Page 51: Eci Lab Manul

ECE Department ECI Lab Manual

Circuit diagram:

Tabulation for Open Circuit Test:

Multiplying Factor =

Vo(volts) Io(A) Woc (watts)

Actual Reading=Observed

Page 52: Eci Lab Manul

34

Page 53: Eci Lab Manul

ECE Department ECI Lab Manual

7. OC AND SC TEST ON A SINGLE PHASETRANSFORMER

Aim:

To conduct the open circuit and the short circuit test on a single phase

transformer and determine the percentage of efficiency.

Objective:

To calculate the losses occur in the transformer, the open &short circuit test is conducted.

Apparatus Required:

S.NO Apparatus Name Range Type Quantity

1. Ammeter (0-5)A MI 1

2. Ammeter (0-10)A MI 1

3. Voltmeter (0-150)V MI 1

4. Voltmeter (0-300)V MC 1

5. Wattmeter 300V,5A Dynamometer 16. Auto transformer - - 17. Transformer - - 18. Connecting wires - - 10

Formula Used:

Iron loss = Woc

Copper loss = Wsc

Total loss = Woc+Wsc

Output power = capacity*cos

% of efficiency

(Output Power) 100(Input Power)

Theory:

Open Circuit Test:

Open circuit test is called as no load test. The purpose of this test is to determine no-load loss or core loss and no load current Io which is helpful in winding Ro&Xo.Supply is given to the primary winding through a wattmeter with secondary winding open circuited. The readings of the wattmeter gives the no load losses when rated voltage is applied to the primary. No load current is very small and the primaryresistance is negligible.Therfore copper loss (I

2R) is very small. The

input to the transformer.

Page 54: Eci Lab Manul

35

Page 55: Eci Lab Manul

ECE Department ECI Lab Manual

Tabulation for Short Circuit Test:

Multiplying Factor=

Vsc(volts) Isc(A) Wsc(watts) Actual Reading=Observed

Page 56: Eci Lab Manul

36

Page 57: Eci Lab Manul

ECE Department ECI Lab Manual

Short Circuit Test:

Short circuit test can be determined by the copper loss. The copper loss occurs when the current flows through the winding .It is equal to I2R. This loss variesas the square of the load current knowing the load current and the equivalent resistance of secondary side the copper loss can be calculated by using an auto transformer the input voltage is varied from zero to small value. This is applied to the primary winding .Secondary winding is short circuited using the ammeter. Voltage is varied slowly till the secondary side ammeter reads rated secondary rated current. As the primary voltage is very small, the iron loses are assumed to be small and neglected. The wattmeter reading gives the total copper losses at full load current.

% efficiency

(output in watts) 100(output copper loss core loss)

Procedure:

Open Circuit Test or No Load Test:

1. The connections are made as shown in the circuit diagram.

2. The primary terminal of the high voltage side of transformer is kept up

to n.

3. The power supply is switched ‘ON’ by adjusting the auto

transformer. The rate voltage is applied to their position the

voltmeter readings are noted.

4. Switch ‘OFF’ the power supply.

Short Circuit Test or Impedance Test:

1. The connections are made as shown in the circuit diagram

2. The secondary terminal of the low voltage side of

transformer is kept as short circuit.

3. The power supply is switched ‘ON’ at this position of the voltage.

4. Ammeter and voltmeter readings are noted.

5. Switch ‘OFF’, the power supply.

Safety Devices:

Teste

r

Fuse

Shoes

Page 58: Eci Lab Manul

37

Page 59: Eci Lab Manul

ECE Department ECI Lab Manual

Model Calculation:

Iron loss Woc = 30w

Copper loss Wsc = 100w

Total loss = Woc+Wsc

= (30+100) w

= 130w

Capacity = 2KVA

= 2000VA

Cos = 0.8

Output power = Capacity*Cos

= 2000 VA *0.8

= 1600w

Input power = output power+losses

= 1600+130

= 1730w

%Efficiency = output power/ input

% = (1730/1600)*100

% = 92.49%

38

Page 60: Eci Lab Manul

ECE Department ECI Lab Manual

General Precautions:

Understand the equipment to be tested and apparatus to be used.

Select proper type (i.e. Ac or dc) and range of meters.

Do not touch live terminals.

Use suitable wires (type&size).

All the connections should be tight.

Do not leave wires not connected.

Get the connections checked by staff-in –charge, before switching ‘ON’

the supply.

Never exceed permissible values of current, voltage, speed&load etc.

Switch ‘ON’/switch ‘OFF’ the load gradually and not suddenly.

Viva Questions:

1. What are the different losses occurred in the transformer?

2. By conducting the o.c test, which loss can be determined?

3. By conducting the s.c test, which loss can be determined?

4. What is meant by power factor?

5. What is meant by efficiency?

Result:

Thus the open circuit and short circuit are conducted and the efficiency is calculated.

% Efficiency = ------------------------- Iron loss = ------------------------- Copper loss = -------------------------

39

Page 61: Eci Lab Manul

ECE Department ECI Lab Manual

Calibration of Ammeter:

Circuit Diagram:

DRB

(0 – 50) mA

(0 – 50) mA

+A - + A -

+RPS

-

(0 – 30) V

Calibration of Voltmeter:

1 KΩ

+

RPS

(0 – 30) V

(0 – 30) V

+ +(0 – 30) V

V V

-- -

Page 62: Eci Lab Manul

40

Page 63: Eci Lab Manul

ECE Department ECI Lab Manual

8. CALIBRATION OF AMMETER ANDVOLTMETER

Aim:

To calibrate the ammeter and voltmeter with the standard meter.

Apparatus Required:

S. No Apparatus name Range Quantity

1 RPS (0-30)V 1

2 Resistor 1KΩ/1w 1

3 Ammeter (0-50) mA 2

4 Voltmeter (0-30) V 2

5 Bread board - 1

6 Connecting wires - -

Procedure:

1. The connections are made as shown in the circuit diagram

2. Switch ON the power supply.

3. The RPS is varied and the corresponding standard and

test meter readings are noted and tabulated.

4. Switch OFF the power supply.

41

Page 64: Eci Lab Manul

ECE Department ECI Lab Manual

Tabulation:

Calibration of Ammeter:

S. No.IS in(mA)

IT in(mA)

Error =(IT - IS)(mA

Correction=(IS - IT) in (mA)

Model Graph

Error Curve Correction Curve

IT in mA

Is in mA

42

Page 65: Eci Lab Manul

ECE Department ECI Lab Manual

Graph:

Error Curve:

axis.

It is drawn by taking test meter voltage along X – axis and error along Y–

Correction Curve:

It is drawn by taking test meter voltage along X- axis and correction along

Y – axis.

Application:

Page 66: Eci Lab Manul

43

Page 67: Eci Lab Manul

ECE Department ECI Lab Manual

Tabulation:

Calibration of Voltmeter:

S. No.VS in(volts)

VT in(volts)

Error =( VT - VS ) Volts Correction= (VS - VT)

volts

Model Graph

Error Curve Correction Curve

IT in volt

Is in volt

44

Page 68: Eci Lab Manul

ECE Department ECI Lab Manual

Result:

Thus the voltmeter and ammeter were calibrated with standard

voltmeter and ammeter respectively.

Viva questions:

1. What is calibration?

2. What is the used of calibration?

3. What do you mean by error?

45

Page 69: Eci Lab Manul

ECE Department ECI Lab Manual

Circuit Diagram:

b33kΩ

12kΩ P Q

a G

S

Rx DRB

Under Balanced Condition,

PS = QRx

Rx =S

d

+ -

E = (0 – 30) V

Tabulation:

S. No.R1

(KΩ)R2

(KΩ)R3

(KΩ) R4 (KΩ)Theoretical Value

R Sx Q KΩ

46

Page 70: Eci Lab Manul

Ω

ECE Department ECI Lab Manual

9. WHEATSTONE’S BRIDGE

Aim:

To determine the unknown resistance value using wheatstone’s bridge.

Objective:

To find out the medium resistance value in the range of 1 to 0.1m

Apparatus Required:

S. No Apparatus Name Range Quantity

1. RPS (0-30)V 1

2. Resistors12KΩ 133K 1

3. DRB - 1

4. Galvanometer (30-0-30) V 1

5. Unknown resistance - 1

6. Bread board - 1

7. Multimeter 1

8. Connecting wires - -

Theory:

A very important device used in the measurement of medium resistances is the wheat stone bridge. It is still an accurate and reliable instrument and reliable instrument and is extensively used in industry. The wheat stone bridge is an instrument for making comparison measurements and operator upon a null indication principle. This means the indication is independent of the calibration of the null indicating instrument or any of its characteristics. For this reason, very high degreeof accuracy can be achieved using what stone bridge.

Fig. Shows the basic circuit of a wheat stone bridge. It has four resistive arms, consisting of resistances P, Q, R and S together with a source of emf (a battery) anda null detector (galvanometers) or other sensitive current meter.

Page 71: Eci Lab Manul

47

Page 72: Eci Lab Manul

ECE Department ECI Lab Manual

Formula Derivation:

The bridge is said to be balanced when there is no current

through the galvanometer or when the pot. Difference across the

galvanometer is zero. This occurs when.

Vb - a = Va-d

or

Vd - c = Vb-c

For bridge balance, we can write: I1, P= I2 R

For the galvanometer current to be zero, the following conditions also exist.

I1 I3

I I

E P Q

E

2

3

2 4R S

By substituting (2) and (3) in (1)

E PP Q

E P Q

ER S

E RR S

PR PS PR QR

PS = QR

Un known resistance R PS

Q

Page 73: Eci Lab Manul

48

Page 74: Eci Lab Manul

ECE Department ECI Lab Manual

Procedure:

1. Connections are made as shown in the circuit diagram2. By varying DRB, the voltage across the galvanometer is mode zero

and R3 is noted in DRB.3. The unknown resistance value is found by using the formula.

Application:

It can be used for measuring low resistance value exactly.

Result:

Thus the unknown resistance of the different resistors were found out by using Wheat stone’s bridge.

Viva Questions:

1. What is he bridge used for measuring inductance of the coil?

2. What is the bridge used for capacitance of capacitor?

3. What is accuracy?

4. What is precision?

5. What is sensitivity?

49

Page 75: Eci Lab Manul

ECE Department ECI Lab Manual

Wien Bridge Measuring Frequency:

Circuit Diagram:

R1 R2C1

E Detector

R3

R4C3

50

Page 76: Eci Lab Manul

Ω

ECE Department ECI Lab Manual

Aim:

10. WEIN BRIDGE

To determine the unknown capacitance value using wein bridge.

Objective:

It can be used for measuring frequency but also used as a notch filter.

Apparatus Required:

S. No Apparatus Name Range Quantity1.

Function Generator - 1

2. Resistors1KΩ 22K 1

3. Capacitor 1µF 14. DRB - 15. DCB - 16. Galvanometer (30-0-30) V 17. Bread board - 18. Multimeter - 19. Connecting wires - -

Wien Bridge:

Wien Bridge is used as an AC Bridge. This is used to measure frequency. Wien Bridge is used as a notch filter in the harmonic distortion analyzer. Also usedin audio and high frequency oscillators as the frequency determining element.

The Wien Bridge used for the measurement of frequency is shown in this bridge has a series RC combination in one arm and a parallel RC combination in the adjoining arm. The impedance of arm 1 is Z1 and an admittance of arm 3 is Y3.

Page 77: Eci Lab Manul

51

Page 78: Eci Lab Manul

ECE Department ECI Lab Manual

Tabulation:

S. No.Set Freq

(Hz)C1

(µF)R3

(KΩ)Frequency =

1Hz

52

Page 79: Eci Lab Manul

1

2

3 3

1

ECE Department ECI Lab Manual

For the Bridge to Balance,

Z1Z4 = Z2Z3

Z2

Z1Z 4Z3

(1)

Z2

R1 J

wC1

Z2 = R2

1 Z3

jwC3R3

Substituting for Z1, Z2, Z3 & Z4 in Equ. (1) We get

j 1R 2 R1

wCR 4 1

1

R 3 jwC 3

j 1 R2 R4

R1 jwC3

wC1 R3

R R4R 1 R R4 j R R

jwC

R4 wC 3

R4

wC R1 4 3

wC

Equating real and imaginary terms we have

R2 R1 R4

R3

C3R 4

C1

(2)

and

R4 wC R

R

0 (3)

wC1R

3

3 1 4

From equ. (2) We get

R2

R4

R1

R3

C3 (4)C1

From equ. (3) We get

1

wC1R3

Page 80: Eci Lab Manul

wC3R1

w 2

1

C1R1R3C3

53

Page 81: Eci Lab Manul

ECE Department ECI Lab Manual

54

Page 82: Eci Lab Manul

ECE Department ECI Lab Manual

w 1

C1C3R1R3

w = 2f

f

1 (5)

2 C1C3R1R3

In this the components are chosen so that R1 = R3 & C1 = C3 then equ. (4) reduces to

R2 2R4

Therefore Equ. (5) Reduces to

F 1

2RC

This bridge is used for measuring frequency in the audio range. Capacitors

C1 and C2 are normally of fixed values. Resistances R1 and R3 are having identical values. In the audio range (from 20-200-2k-20kHz), the resistances are used for range changing and capacitors C1 and C2

are used for the frequency control.

Procedure:

1. Switch on the power supply.

2. Set the value of frequency in FG.

3. By varying the value of capacitance & Resistance,

4. Note down the unknown value.

5. Find the value of calculated. f

1

2 C1C3R1R3

Uses:

1. Used for measuring frequency

2. Can be used for measuring capacitances.

3. Used in harmonic distortion analyzer as a notch filter.

4. Used as frequency determining element in audio frequency

and radio frequency oscillators.

5. Accuracy from 0.5% to 1% can be obtained.

Result:

Thus the unknown frequency were found out by using Wein’s Bridge.

Page 83: Eci Lab Manul

55

Page 84: Eci Lab Manul

ECE Department ECI Lab Manual

Circuit Diagram:

56

Page 85: Eci Lab Manul

ECE Department ECI Lab Manual

11. PHOTO ELECTRIC TRANSDUCER

Aim:

To determine the characteristics of photoelectric transducer (LDR).

Apparatus Required:

S. No Apparatus Name Range Quantity

1. RPS (0-30)V 1

2. Resistor 470Ω 1

3. Ammeter

(0-10) mA 1

4. LDR - 1

5. Lamp 60W 1

6. Bread Board - 1

7. Wires - -

Theory:

The photoconductive materials used are Cadmium Sulphide, Cadmium Selenide or Cadmium Sulpho Selenide. These materials are very sensitive to light radiation.

Procedure:

1. The connections are made as shown in the circuit diagram.

2. Switch ON the power supply and setting the fixed voltage.

3. Now the bulb is ON and it’s placed at certain distance.

4. The distance is increased or decreased and corresponding ammeter

readings are noted and tabulated.

5. Switch OFF the power supply.

Graph:

It is drawn by taking distance along X – axis and current along Y – axis.

57

Page 86: Eci Lab Manul

ECE Department ECI Lab Manual

Tabulation:

S. No. DISTANCE IN cm CURRENT IN mA

Model Graph:

Distance in cm

58

Page 87: Eci Lab Manul

ECE Department ECI Lab Manual

Application:

1. Opto electronic devices are designed for the emission and

absorption of optical radiation.

2. Used to detection and measurement of radiation in spectro photometers.

3. Used in pyrometry also.

Result:

Thus the characteristic of photoelectric transducer (LDR) was determined and the graph was drawn.

Viva Question:

1. What is photoelectric phenomenon?

2. What is photo emissive cell?

3. What is photoconductive cell?

59

Page 88: Eci Lab Manul

ECE Department ECI Lab Manual

To Measure the Phase Angle:

Circuit Diagram:

DCB

V

FGRH H

CRO

1240 V

To Measure the Frequency:

230 V50Hz

AC Supply

CRO

FunctionGenerator

Step Down Transformer

Page 89: Eci Lab Manul

60

Page 90: Eci Lab Manul

ECE Department ECI Lab Manual

12. MEASUREMENT OF FREQUENCY ANDPHASE ANGLE

Aim: To measure the frequency and phase angle using lissajious figure.

Apparatus required:

S.NO Apparatus name Range Quantity1. Function generator - 12. CRO - 13. Prob

e- 3

4. DRB

- 15. DC

B- 1

6. Bread board - 17. Connecting wires - 1

08. Transformer (6-0-6) V 1

Theory:

Frequency Measurement:

To measure a frequency, the waveform viewed by the oscilloscope must be periodic. For example, the period of the sine function is between any two alternate zero crossing. The period can also be measured between any two positive peaks or any two negative peaks. The frequency is determined by, Frequency = 1/period

Phase Angle Measurement

It is interesting to consider the characteristics of patterns that appear on the screen of a CRT when sinusoidal voltages are simultaneously applied to horizontal and vertical plates. These patterns are called ‘Lissajous patterns’.

When two sinusoidal voltages of equal frequency, which are in phase with each other, are applied to the horizontal and vertical deflection plates, the pattern appearing on the screen is a straight line. Thus when two equal voltages of equal frequency but with 90 phase displacement are applied to a CRO, the trace on the screen is a circle. When two equal voltages of equal frequency but with a phase shift (not equal to 0 or 90) are applied to a CRO we obtain an ellipse. The phase angle is either between 0 or 90 or between 270 to 360. When the major axis of ellipse lies in second and fourth quadrants i.e. when its slope is negative, the phase angle is either between 90 and 180 or between 180and 270.

Page 91: Eci Lab Manul

61

Page 92: Eci Lab Manul

ECE Department ECI Lab Manual

Frequency Measurement:

Tabulation:

S.NO.Frequency

F F

TH

in HzTH TV

V H T V

62

Page 93: Eci Lab Manul

ECE Department ECI Lab Manual

Calculation:

Frequency:

FV

FH

TH

TV

Phase Angle:

() Sin1 A B

Formula:

Phase angle ()

Sin1 A

B

Procedure:

Measurement of Phase Angle:

Connections are made as shown in the circuit diagram

A sinusoidal voltage is applied to the horizontal and vertical input

with same magnitude.

Press the X – Y button in the CRO. Now an ellipse is drawn on the CRO.

From this ellipse, the value of A & B is noted and phase angle is measured.

Measurement of Frequency:

The connections are made as shown in the circuit diagram.

A known frequency (FH) is applied to the horizontal input using

step down transformer.

By varying unknown frequency, a pattern with loops is obtained.

The number of lines which cut the horizontal input is noted as TH.

Similarly the number of lines cut the vertical input is noted as TV.

From the values FH, TH, TV, the value of unknown frequency is calculated.

63

Page 94: Eci Lab Manul

ECE Department ECI Lab Manual

64

Page 95: Eci Lab Manul

ECE Department ECI Lab Manual

Graph:

It is drawn by taking TH along X – axis and TV along Y – axis.

Result:

Thus the Phase Angle and Frequency were measured using lissajious figure.

Viva Questions:

1. What are the applications of CRO?

2. What is Lissajious pattern?

3. What is dual trace oscilloscope?

65

Page 96: Eci Lab Manul

ECE Department ECI Lab Manual

CIRCUIT DIAGRAM:

Tabulation:

Measurement of Frequency& Amplitude:

AMPLITUDE TIMEFREQUENCY

WAVEFORM

Ampin div.

No. ofBox

TotalAmp. (V)

Time in

div.

No. ofBox

TotalTime (ms)

IN KHz

SINEWAVEFORM

TRIANGULAR WAVEFORM

SQUARE WAVEFORM

Page 97: Eci Lab Manul

66

Page 98: Eci Lab Manul

ECE Department ECI Lab Manual

13. MEASUREMENT OF FREQUENCY AND

AMPLITUDE USING CRO

Aim:

circuit.

To measure the frequency and amplitude using dual trace CRO for different

Apparatus Required:

S.NO Apparatus name Quantity

1. Function generator 1

2. CRO 1

3. Probe

2

4. Bread board 1

5. Connecting wires 10

Theory:

The oscilloscope consists of one set of horizontal plates (X-plate) and one set

of vertical plates (Y-plate). The horizontal plates are connected to the vertical input points. A ramp generator generates a time base sawtooth voltage. The input to the Horizontal plates (X-input) can be applied either internally from the time base generator or externally. The voltage or the signal, which is to be analyzed, is appliedto the vertical plates (Y-input). The electrons emitted by the cathode towards aphosphor coated screen causes a luminous spot on the screen. The spot moves horizontally due to the electrostatic deflection caused by the X-plates.

Procedure:

1. The connections are made as shown in the circuit diagram.

2. Switch “ON” the CRO.

3. The Function generator is connected to the CRO.

4. By varying the frequency, the readings are noted and tabulated.

5. Switch “OFF” the power supply.

Page 99: Eci Lab Manul

67

Page 100: Eci Lab Manul

ECE Department ECI Lab Manual

Model Graph:

Amplitude (V) TIME in ms

Amplitude (V) TIME in ms

Amplitude (V) TIME in ms

68

Page 101: Eci Lab Manul

ECE Department ECI Lab Manual

Application:

CRO is a very fast X-Y plotter, which displays an input signal with respect to another signal or time. The luminous spot moves over the screen in response to the input voltage. The CRO can present visual representations of any dynamic phenomena by means of transducers, which convert pressure, strain, temperature, acceleration, …etc, into voltages.

Result:

Thus the frequency and amplitude were measured by using CRO.

69

Page 102: Eci Lab Manul

ECE Department ECI Lab Manual

RLC BRIDGE:WHEATSTONE’S BRIDGE

WEIN BRIDGE CIRCUIT DIAGRAM

R1 R2C1

E Detector

R3

R4C3

70

Page 103: Eci Lab Manul

ECE Department ECI Lab Manual

14. RLC BRIDGE

Aim:

To measure the value of the Resistance, Inductance and Capacitance using

RLC bridge.

Apparatus Required:

S.NO Apparatus name Quantity

1. Digital RLC Bridge 1

2. Unknown Resistor 2

3. Unknown Capacitor 2

4. DIB

1

5. Bread board 1

6. Connecting wires 10

Theory:

A simple bridge for the measurement of resistance, capacitance and inductance may be constructed with four resistance decades in one arm, and binding post terminals to which external resistors or capacitors may be connected, to complete the other arms. Such a skeleton arrangement is useful in the laboratory, since it permits the operator to set up a number of different bridge circuits simply by plugging standards and unknown units into the proper terminals.

Procedure:

1. At first we can set the components in the digital bridge.

2. The dial is positioned in the corresponding resistance, inductance and the capacitance mode.

3. Now the value should be noted from the display of the segment.

Page 104: Eci Lab Manul

71

Page 105: Eci Lab Manul

ECE Department ECI Lab Manual

Tabulation:

RLC bridge measurement

S.No. APPARATUS DIGITAL VALUE ACTUAL VALUE

72

Page 106: Eci Lab Manul

ECE Department ECI Lab Manual

Application:

This bridge is used for the measurement of resistance, capacitance and inductance

value by giving proper connections on the bridge arms

Result:

Thus the value of the Resistance, Inductance and Capacitance were measured using Digital RLC Bridge.

Viva Questions:

1. What is the bridge used for measurement of inductance value?

2. What is the use of Schering Bridge?

3. What is the use of Hay’s bridge?

73

Page 107: Eci Lab Manul

ECE Department ECI Lab Manual

Strain Gauge Measurement:

T2

SG1SG2

5VDC

SENSOR -

+SG3

SG4

Tp2 Gain

T4 T5

DPM

T3

Tp3

GainT

6P4

(0-5) V o/p

Tp4

OFFSET

Page 108: Eci Lab Manul

74

Page 109: Eci Lab Manul

ECE Department ECI Lab Manual

15. STRAIN GAUGE MEASUREMENT

Aim:

To measure the strain in the beam using Strain Gauge Trainer Kit.

Apparatus Required:

S.NO Apparatus name Quantity

1.

Stain Gauge Trainer Kit 1

2.

Connecting Pin 1

3.

Multimeter

1

4.

Load

100gm

5.

Cantilever Beam 1

Theory:

The strain gauge is an example of a passive transducer that uses the variation in electrical resistance in wires to sense the strain produced by a force on the wires.

It is well known that stress (force/unit area) and strain (elongation or compression/unit length) in a member or portion of any object under pressure is directly related to the modulus of elasticity.

Since strain can be measured more easily by using variable resistance transducers, it is a common practice to measure strain instead of stress, to serve as an index of pressure. Such transducers are popularly known as strain gauges.

If a metal conductor is stretched or compressed, its resistance changes on account of the fact that both the length and diameter of the conductor changes. Also, there is a change in the value of the Resistivity of the conductor when subjected to strain, a property called the Piezo –resistive gauges.

When a gauge is subjected to a positive stress, its length increases while its area of cross – section decreases. Since the resistance of a conductor is directly proportional to its length and inversely proportional to its area of cross – section, the resistance of the gauge increases with positive strain. The change in resistance value of a conductor under strain is more than for an increase in resistance due to its dimensional changes. This property is called the Piezo resistive effect.

Page 110: Eci Lab Manul

75

Page 111: Eci Lab Manul

ECE Department ECI Lab Manual

Tabulation:

Strain Gauge Measurement

S. NO. LOAD in kgBRIDGE

OUTPUT(T2, T3) mV

DISPLAY READING Volts

Model Graph:

LOAD in Kg

Page 112: Eci Lab Manul

76

Page 113: Eci Lab Manul

ECE Department ECI Lab Manual

Procedure:

1. The connections are made shown in the circuit diagram.

2. Switch ON the Stain Gauge tutor.

3. The bridge output and display readings are noted without applying any load in the input.

4. Then the input load is applied and the corresponding readings are taken.

5. The load is increased in 100gm for each step and readings are tabulated.

6. Switch OFF the supply.

Application: Strain gauge is used for measuring low input pressure or force

value in industries.

Model Graph:

The graph is drawn by taking Load along X – axis and display reading along Y

– axis.

Result:

Thus the Strain in the beam was measured using Strain Gauge Trainer Kit and Cantilever Beam.

Viva Questions:

1. What is hysteretic effect in strain gauge?

2. What are the types of strain gauge?

3. Define Gauge factor.

4. What is Piezo resistive effect?

5. What is the material used for making strain gauge transducer?

6. What is semi conductor strain gauge?

77

Page 114: Eci Lab Manul

-

ECE Department ECI Lab Manual

Load Cell Measurement:

T2

SG1SG2

5VSENSORDC

+SG3

SG4

Tp2

T4 T5

DPM

T3

Tp3

GainT

6P4

(0-5) V o/p

Tp4

OFFSET

Page 115: Eci Lab Manul

78

Page 116: Eci Lab Manul

ECE Department ECI Lab Manual

16. MEASUREMENT OF LOAD CELL

Aim: To measure the load using Load Cell Trainer Kit and load cell panel.

Apparatus Required:

S.NO Apparatus name Quantity1. Load Cell Trainer Kit 12. Load Cell Panel 13. Multimet

er1

4. Load

(0 - 5) Kg

Theory:

The load cell is an electromechanical sensor employed to measure static and dynamic forces. The device can be designed to handle a wide range of operating forces with high level of reliability, and hence is it one of the most popular transducerin industrial measurements. The load cell derives its output from the deformation ofan elastic member having high tensile strength.

Procedure:

1. The connections are made as shown in the circuit diagram.

2. Initially one Kg load is applied and the corresponding readings are noted.

3. Then the load is increased in step by step and the corresponding readings are noted and tabulated.

Model Graph:

The graph is drawn by taking load along X – axis and display reading along Y

– axis.

Application:

To measure high value of static and dynamic forces or pressure.

Page 117: Eci Lab Manul

79

Page 118: Eci Lab Manul

ECE Department ECI Lab Manual

Tabulation:

Load Cell Measurement

S. No. LOAD in KgBRIDGE

OUTPUT(T2, T3) mV

DISPLAY READING Volts

Model graph:

LOAD in Kg

Page 119: Eci Lab Manul

80

Page 120: Eci Lab Manul

ECE Department ECI Lab Manual

Result:

Thus the load was measured using Load Cell Trainer Kit & Load Cell Panel.

Viva Question:

1. Is there any difference between sensor and transducer?

2. What is the transducer used to measure low-pressure measurement?

3. What is the use of Piezo resistive transducers?

81

Page 121: Eci Lab Manul

ECE Department ECI Lab Manual

LVDT Measurement:

CORET6 T2 T

4

Half wave

Oscillation

LVDT AC Amplifier

sync RC Filter

TP3

T1

Buffer

T3

Phase Reference Amplifier

DPM

T8 T7Tp5 Gain

P4

(0-5) V o/p Tp

6

Non – Inverting Amplifier

OFFSET

Non – Inverting

Amplifier

TP2 - OFFSET

Page 122: Eci Lab Manul

82

Page 123: Eci Lab Manul

ECE Department ECI Lab Manual

17. LVDT MEASUREMENT

Aim:

To measure the displacement using LVDT Trainer Kit.

Apparatus Required:

S.NO Apparatus name Quantity1. LVDT Trainer Kit 12. Screw 13. Multimete 1

Theory:

The differential transformer is a passive inductive transformer. It is also known

as a Linear Variable Differential Transformer (LVDT). The transformer consists of a single primary winding P1 and two secondary windings S1

and S2 wound on a hollow cylindrical former. The secondary windings have an equal number of turns and are identically placed on either side of the primary winding. The primary winding is connected to an ac source. An movable soft iron core slides within the hollow former and therefore affects the magnetic coupling between the primary and the two secondaries. The displacement to be measured is applied to an arm attached to the soft iron core. (Ni –iron alloy)

When the core is in its normal (null) position, equal voltages are induced

in the two secondary windings. The frequency of the ac applied to the primary winding ranges from 50Hz to 20KHz.

The output voltage of the secondary windings S1 is Es1 and that of secondary winding S2 is Es2.

In order to convert the output from S1 to S2 into a single voltage signal, the two secondaries S1 and S2 are connected in series opposition.

Hence the output voltage of the transducer is the difference of the two

voltages. Therefore the differential output voltage E0 =Es1 ~ Es2.

Procedure:

1. The connections are made as shown in the circuit diagram.2. The power supply is switched ON.3. The screw gauge is adjusted so that the LVDT reads 8mm.4. The displacement of core is reduced by adjusting the Screw

Gauge step by step by 2mm and the corresponding readings are noted.

5. The Screw Gauge is adjusted up to the LVDT reads – 8mm. the Screw

Gauge reading is noted and display reading is noted across T1 and T8.6. The power supply is switched OFF.

Page 124: Eci Lab Manul

83

Page 125: Eci Lab Manul

ECE Department ECI Lab Manual

Tabulation:

LVDT Measurement:

S.No.

Screw guageReadings (mm)

LVDT Display LVDT output Readings (v)

Model Graph:

LVDT Output Readings (V)

LVDT Display Readings (mV)

84

Page 126: Eci Lab Manul

ECE Department ECI Lab Manual

Model Graph:

The graph is drawn by taking LVDT reading along X – axis and display reading along Y – axis.

Application:

It is widely used for measurement of displacement where linear displacement from few mm to few cm.

It is widely used in data systems to measure linear displacement, velocity, acceleration, pressure, force, level, and rate of flow of liquids.

Result:

Thus the displacement was measured using LVDT Trainer Kit.

Viva Question:

1. Is the output voltage of LVDT linear?

2. How much is the power consumption of LVDT?

85

Page 127: Eci Lab Manul

ECE Department ECI Lab Manual

Measurement of Temperature:

A

R2

+

-(0-30) V

R1

C+ G

-D

R3

Thermistor

Characteristics of Thermistor:

Thermistor

Platinum

Temperature in oC

Page 128: Eci Lab Manul

86

Page 129: Eci Lab Manul

ECE Department ECI Lab Manual

18. THERMISTOR

Aim:

To study the construction, operation and characteristics of Thermistor.

Thermistor:

It stands for thermal resistor. It is a bulk semiconductor device, which behaves

as a resistor with a high positive and negative temperature coefficient of resistance. Sometimes its coefficient as high as – 60º%/ deg C rise in temperature. This high sensitivity of Thermistor is highly useful in precision temperature measurement, temperature control and temperature compensation. It is mostly used in lower temperature range of – 100ºC to 300ºC.

The two types of Thermistor are1. NTC (Negative Temperature Coefficient Thermistor)2. PTC (Positive Temperature Coefficient Thermistor)

NTC Thermistor:

Thermistors are composed of a sintered mixture of metallic oxides such as Manganese, Nickel, Cobalt, Copper, Iron and Uranium. Their resistance at ambient temperature may range from 100Ω to 100KΩ. Thermistors are available in a wide variety of shapes and sizes such as bead, probe or rod.

Bead Thermistor:

It is a smallest Thermistor. It has a diameter of 15mm to 1.25mm. Beads may be sealed in the tips of solid glass rods to form probes. The glass probes are used to measure the temperature of liquids.

Disc Thermistor:

This is used when greater power dissipation is required. These Thermistors are made by pressing Thermistor material under high pressure Thermistor material into cylindrical shape. It has 1.25 – 2.5mm diameter and 0.25mm to .75mm thickness. These are sintered and coated with Silver on two flat surfaces.

Whasher Thermistor:

They are just like disc Thermistor but they have a hole in the centre. This hole

is suitable for mounting on a bolt. Washer can be placed in series or parallel to increases power dissipation rating.

Page 130: Eci Lab Manul

87

Page 131: Eci Lab Manul

ECE Department ECI Lab Manual

V-I Characteristics of NTC:

I

V

V-I Characteristics of PTC:

I

V

88

Page 132: Eci Lab Manul

ECE Department ECI Lab Manual

ROD Thermistor:

They are usually like long cylindrical units with 4.25mm diameter and 12.5 to

50mm long. Leads are attached to the ends of the rods. The advantage of this typeis they produce high resistance under moderate power.

Working:

The resistance of a Thermistor changes appreciably with a small change in temperature. These characteristics of a Thermistor permit to use for the accurate temperature measurement. For this purpose, Thermistor forms one of the four armsof Wheatstone bridge.

When there is no change in temperature the bridge is balanced and the Galvanometer reads zero. When the Thermistor is exposed to a medium whose temperature is to be measured, its resistance changes. This makes the bridge is unbalanced and current flows through the Galvanometer. The change in resistanceof Thermistor i.e.) current through the Galvanometer is a measure of the magnitudeof temperature.

PTC Thermistor:

They are usually made from Barium Titrate. It is made from small crystal, which is bonded to form inner cry stalling boundaries. The characteristics of PTC are more complex than the NTC Thermistor. Here the temperature increases, the resistance increases and this give a positive temperature coefficient. After some threshold voltage, further increase in voltage decreases current. This exhibits negative temperature coefficient.

Applications:

1. Thermistors are well suited for precisiontemperature measurement, temperature

measurement and compensation.2. It is used for the measurement of the liquid level, liquid flow and pressure of

liquid.3. Used for the measurement of composition of gases.4. Used for providing time delay.5. Used for Vacuum measurements.6. It can be used where linearity is not important because of its

non linear characteristic7. It is not used for wide temperature range.

Result:

Thus the construction, operation and characteristics of Thermistors were studied.

Viva Question:

Page 133: Eci Lab Manul

1. Where Thermistor is applied?2. What is active transducer?3. What is passive transducer?4. What is negative temperature co-efficient?

89

Page 134: Eci Lab Manul

ECE Department ECI Lab Manual

Circuit Diagram:

1KΩ

(0 – 100) mA

+A -

RPS+

Rsh +

(0 – 30) V

-

DRB

A (0 – 50) mA

-

90

Page 135: Eci Lab Manul

ECE Department ECI Lab Manual

19. EXTENDING THE RANGE OF AMMETER

Aim:

meter.

To extend the range of Ammeter and calibrate the Ammeter with the standard

Apparatus Required:

S. NO APPARATUS NAME RANGE QUANTITY1. RPS (0-30)V 1

2. Ammeter(0-100) mA 1(0-50) mA 1

3. DRB - 14. Bread Board - 15. Wires - -

Formula:

Shunt resistance Rsh

Rsh

(Im Rm)(I Im)

Rm(m 1)

Multiplication Factor m I

Im

Theory:

The range of an electrical measurement is actually limited by the current. This current can be carried by the coil of the instrument safely. The moving coil and the spiral springs are used as coil connectors. These can be designed for a maximum current of only 50mA and a potential drop of above 50mV. So, far measuring large current or voltage, the range of the instrument has to be extended.

The common devices employed for extending the range of instruments are shunts and multipliers. When instruments are supplied with such external devices, the instrument is calibrated over the range of associated shunt or multiplier.

The basic movement of a DC ammeter is a permanent magnet moving coil galvanometer. The basic movement coil is small and light. So it can carry only a very small current. When large current is to be measured, it becomes necessary to bypass the major part of current through shunt resistance.

An ammeter shunt is merely a low resistance. This is placed in parallel with the instrument coil circuit to measure large current.

Page 136: Eci Lab Manul

91

Page 137: Eci Lab Manul

ECE Department ECI Lab Manual

Tabulation:

Extending the Range of Ammeter:

S.NO.IS

in(mA)

IT = m * IT

(mA)

Error =(IT - IS)

(mA)

Correction=(IS - IT)(mA)

Model Graph:

Error Curve Correction Curve

IT in mA

Is in mA

Page 138: Eci Lab Manul

92

Page 139: Eci Lab Manul

ECE Department ECI Lab Manual

Procedure:

1. Connections are made as per the circuit diagram.

2. The power supply is switched ON.

3. RM is found by using Multimeter and find RSH.

4. By varying RPS test meter, standard meter readings are

noted and tabulated.

5. The power supply is switched OFF.

Graph:

Error Curve:

It is drawn by taking Is along X – axis and error along Y – axis.

Correction Curve:

It is drawn by taking IT along X – axis and correction along Y – axis.

Application:

The range of ammeter can be extended by using a suitable shunt across its terminals. By using this experiment, we can increase the measuring capacity of instrument.

Result:

Thus the range of ammeter was extended and the ammeter was calibrated with the standard meter.

Viva Question:

1. How do we extend the range of ammeter?

2. What is damping torque?

3. What is the use of controlling torque?

93