27
Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN474: (Analog) VLSI Circuit Design Fall 2012 Lecture 8: Current Mirrors

ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

  • Upload
    others

  • View
    7

  • Download
    2

Embed Size (px)

Citation preview

Page 1: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

Sam Palermo Analog & Mixed-Signal Center

Texas A&M University

ECEN474: (Analog) VLSI Circuit Design Fall 2012

Lecture 8: Current Mirrors

Page 2: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

Announcements & Agenda

• HW2 due Monday

• Reading • Razavi Chapter 5

• Biasing in ICs • Simple Current Mirror • Transistor Small-Signal Impedances

• Simple Amplifiers

• Other Current Mirror Topologies

2

Page 3: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

Current Source Properties

• Output Resistance

3

• Finite output resistance degrades current source accuracy and amplifier gain

• Other important properties: • Voltage headroom (compliance voltage) • Accuracy • Noise

Page 4: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

How Should We Bias Our Circuits?

• Resistive Biasing • Assuming saturation

4

( )2

21

2

2

21

21

+=

−=

TnGG

Goxn

TnGoxnD

VVddRR

RL

WC

VVL

WCI

µ

µ

• ID is sensitive to • Supply (Vdd) • Process (VTn and µnCoxW/L) • Temperature (VTn and µn)

Page 5: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

IC Biasing

• In IC design we often assume that we have one precise current source and we copy its value to our circuits

5

Page 6: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

Simple Current Mirror

• That copy circuit is a current mirror • Simple Current Mirror

6

( )

Tn

oxn

REFG

TnGoxnREFD

V

LWC

IV

VVL

WCII

+

=

==

1

2

1

2

21

?

µ

µ

GV isWhat

• If VG is applied to another transistor 2

1

2

221

−+

= TnTn

oxn

REFoxnout VV

LWC

IL

WCIµ

µ REFout I

LWL

W

I

1

2

=

Page 7: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

Ideal Current Mirror Example

7

I1=1mA

I2=1mA

I3=0.5mA

I4=1.5mA

• This bias scheme reduces sensitivity to process, voltage, and temperature variations

Page 8: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

CS Amplifier w/ Current Source

8

What is ID?

• Need to insure that M3 remains in saturation

( )

+

+

=+−= Tn

oxn

D

GG

GTnovGs V

LWC

IVddRR

RVVVV

1

21

21

2

µ

Page 9: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

TAMU-ELEN-474 2009 Jose Silva-Martinez

- 9 -

Current Mirrors: Accuracy limitations

VGS +

_

ID

1 ID

2

M1 M2

In general (W/L)2=N(W/L)1, most probably VT1≠VT2, then

( ) ( )

( ) ( )

( ) ( )( ) ( )( ) ( ) 1D

1DS12

1TGS1P

2DS22

2TGS2P1D

1DS12

1TGS1

OXn

2DS22

2TGS2

OXn

2D

2DS22

TGS2

OXn2D

NIV1VVKV1VVK

IV1VV

LW

2C

V1VVLW

2C

I

V1VVLW

2C

I

λλ

λµ

λµ

λµ

+−

+−=

+−

+−

=

+−

=

1DS12DS2 VVError λλ ≠≈

L1∝λ Long devices reduce the

error; make VDS1=VDS2

1P2P KKError ≠≈

Errors can be reduced (but not eliminated) by using replicas of the main device and good layout!

1T2T VVError ≠≈

Good solution ==> use cascode structures

Effective mobility and threshold voltages are sensitive to VDS.and Vdsat

Page 10: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

TAMU-ELEN-474 2009 Jose Silva-Martinez

- 10 -

DC Current Mirrors: Second-Order Effects

VGS +

_

ID

1 ID

2

M1 M2

( ) ( )( ) ( ) N

V1VVV1VV

II

1DS12

1TGS1n

2DS22

2TGS2n

1D

2D

λ+−µλ+−µ

=

12Error µ−µ≈

Error is minimized by using replicas of the basic device

1T2T VVError −≈crit

dsgs0

LV1

1V1

1

ε+θ+

µ=µ

W

VT

VT0

1-3µm

Mobility degradation

After good layout: Tolerances in N are in the range of 0.5-2 %. Usually mismatches are inversely proportional to gate area!

Intra-die VT mismatches are inversely proportional to gate area!

Page 11: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

Small-Signal Impedance: Simple Current Source

11

oout g

r 1=

Page 12: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

Small-Signal Impedance: “Diode” Load

12

momout ggg

r 11≈

+=

Page 13: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

Small-Signal Impedance: Looking Into Source

13

( ) ( )

mombmout

oombmo

oombmo

ggggr

vgggrvvggi

11≈

++=

++=++=

Page 14: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

Small-Signal Impedance: Looking Into Source w/ Drain Resistor

14

+

++=

o

D

ombmout r

Rggg

r 11

Page 15: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

TAMU-ELEN-474 2009 Jose Silva-Martinez

- 15 -

Small signal analysis: Common-source amplifier

VGS+vgs1

+

_

ID

1

ID

1

M1

M2

vgs1 vout r0

1 gm1vgs1

vout

1 : 1

r0

2

Small signal equivalent

0201

1

gggAv m

+−=

If VOUT>VDSAT1, VOUT<VDD-VSAT2

VGS

vout

vTH vGSQ

ID1

Operating point

Q gm1, g01, and g02 are function of Q

Page 16: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

TAMU-ELEN-474 2009 Jose Silva-Martinez

- 16 -

vgs

1 vout

r0

1 gm1vgs

1

r0

2

Small signal equivalent circuit

vout

Small signal analysis: Common-drain (source follower) amplifier

VGS +

_

ID

1

ID

2 M1 M2

VIA+vin

gmbvbs1

+

-

vin

vgs

1 vout

r0

1 r0

2 1/gmb

+

-

vin

1/gm1

0201mb1m

1m

in

out

ggggg

vv

+++=

How this is done? Why?

gm1vin

Page 17: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

TAMU-ELEN-474 2009 Jose Silva-Martinez

- 17 -

vgs

1

vout

r0

1 gm1vgs

1

r0

2

Small signal equivalent circuit

Small signal analysis: Common-gate amplifier (cascode)

gmbvbs1

+

- vin

vout

r0

1 gm1vin r0

2 gmbvin

0201

01mb1m

in

out

ggggg

vv

+++

=

ID

1

ID

1

M1

M2

vout

1 : 1

vin

VIN+vin

Impedance seen at Vin and Vout? Are they relevant?

Page 18: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

TAMU-ELEN-474 2009 Jose Silva-Martinez

- 18 -

Precise Current Mirrors: Cascode structure

_ ID

1

ID

2

1DS12DS2 VVError λ−λ≈

Transistors M1 and M2 are used as current mirrors

Transistors M3 and M4 are used to have VDS1=VDS2.

L1=L2 and ID1=ID2==>λ1=λ2

If M1=M2 then µ1=µ2, and VT1=VT2

VGS

1

+

_ M1 M2

Error can be reduced if and only λ2=λ1 and VDS2=VDS1

+

_ VGS

1

FUNDAMENTAL PRINCIPLE:

M1 AND M2 ARE ACTING AS CURRENT MIRRORS

???

VGS

2

+ M3 M4 ID

2

Page 19: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

TAMU-ELEN-474 2009 Jose Silva-Martinez

- 19 -

Output impedance: Cascode structure

OUTPUT IMPEDANCE

D2 iD

2

r02

id2

gm4vs4 rs

v02

S4

r04 2

02

dout i

vZ =

( )4s022d

4s4m044s022d

vgivggvvi

=−−=

04024m0402out rrgrrZ ++=

Notice that most of the AC current re-circulate within the cascode device and only id2 is extracted from v02 !! Compare gm4 with g02!

g02 vs4

(neglecting gmb4)

Page 20: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

TAMU-ELEN-474 2009 Jose Silva-Martinez

- 20 -

Comparison of current sources: output impedance and headroom

VGS +

_

ID

1 ID

2

M1 M2

v0

2 VGS

2

+

_

ID

1 ID

2

M3 M4

VGS

1

+

_ M1 M2

+

_ VGS

1

+

_ VDS

4

4DSAT1DSAT1T4SATD1GS0

04024mout

VVVVVV

rrgr

++=+>

2SATD0

02out

VV

rr

>

=

~ 100-400 mV ~ 0.9-1.5 V!

~ 100-400 mV ~ 1 - 1.5 V!

Page 21: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

TAMU-ELEN-474 2009 Jose Silva-Martinez

- 21 -

Double Cascode Structure: Advantages and drawbacks!

ID

1

ID

2

M3

VGS

1

+

_ M1 M2

+

_ VDS

2

+

_ VDS

3

( ) ( )

4320

0403023404314

DSATDSATDS

mmeqmout

VVVV

rrrggrrgr

++>

≅≅M4

+

_ VDS

4

VG3

VG4

How VG3 and VG4 can be generated????

Output resistance is increased Voltage swing is reduced Parasitic poles could be an issue

Small signal output resistance:

Usually this section is more complex to ensure VDS is similar in both transistors M1 and M2

Page 22: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

TAMU-ELEN-474 2009 Jose Silva-Martinez

- 22 -

Voltage references (biasing cascode structures)

ID

1

ID

2

M3

VGS1 +

_ M1 M2

+

_ VDS2

+

_ VDS3

VG3

Increasing L/W by 4, VDSAT increases by 2

Lets consider the case: VDS2=VDSAT2

VG3 must be VGS3+VDSAT2=VT3+VDSAT3+VDSAT2

ID

1

MR

1DR

R

OXnTRGSR I

WL

C2VV

µ+=

VDSATR

ID

1

ID

2

M3

VGS1

+

_ M1 M2

+

_ VDS2

+

_ VDS3

VG3

VX

ID

1

MR

According to (W/L)1, the gate dimensions for MR (W/L)R must be designed

Problem: VTR ≠ VT3 due to body effect Partial solution: (W/L)1 > 4(W/L)R ⇒ 9(W/L)R

Page 23: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

TAMU-ELEN-474 2009 Jose Silva-Martinez

- 23 -

Improved (self regulated) current source

ID

1

ID

2

M3

M4

VGS1 +

_ M1 M2

+

_ VDS2

+

_ VDS4

( ) 0402V4mout rrA1gr +≅

-AVVs4

D2 iD2

r02

iD2

gm4(1+AV)vs4

S4

r04

Similar to double cascode

Key issue: Please understand the concept!!

Page 24: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

TAMU-ELEN-474 2009 Jose Silva-Martinez

- 24 -

Other current sources ID

1 ID

2

M2

M3

M1

M4

Wilson Current Source

( )( )

2m2eq

042eqV4mout

g/1"r"

r"r"A1gr

=

+≅

ID

1

M2

M1

ID2

M4

M3

M1, M3 in triode region M2, M4 are saturated

rout = ?? Vout,min = ???

Output resistance similar to cascode

Page 25: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

TAMU-ELEN-474 2009 Jose Silva-Martinez

- 25 -

Other current sources

ID

1

M2

M1

ID2

M4

M3

M1, M3 in triode region M2, M4 are saturated

ID

1

Saturated

Triode

Triode

Triode

ID2

Saturated

Triode

Triode

Triode

Rout

[ ]

[ ]3DST3GSOX

eff3ds

DSDSTGSeff

OXD

VVVWC

Lr

VV5.0VVL

WCi

−−=

−−=

µ

µ

( )

4DSAT3DS0

3ds044mout

VVV

rrgr

+>

≅≅

Rout

( )dsi044mout rrgr ∑≅

Page 26: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

Low-Voltage Cascode Current Mirror

• M2 and M4 should be sized such that • VGS2 = VGS4

• M1 and M3 biased near edge of saturation • VDS1 ≈ VDS3 ≈ VDSAT • Vb = VGS2+(VGS1-VT1) =

VGS4+(VGS3-VT3)

26

VDD

Iin

M1 M3

Iout

M4

VDD

Ibias

MB

M2

Vb

A B

43 DSATDSAT VV += Voltage Compliance

• Improved Vb generation circuit • M5 sized such that VGS5 ≈ VGS2

• Some body effect error here

• Size M6 and Rb such that • VDS6 = VGS6-RbI1 ≈ VGS1-VT1

[Razavi]

Page 27: ECEN474: (Analog) VLSI Circuit Design Fall 2012 · 2020. 10. 30. · M1 I. D2. M4 . M3 . M1, M3 in triode region . M2, M4 are saturated . I. D 1. Saturated . Triode . Triode . Triode

Next Time

• Single-Stage Amplifiers

27