E-Beam Flue Gas Treatment Plant for “Sviloza Power IAEA E-Beam Flue Gas Treatment Plant for “Sviloza Power Stationâ€‌ in Bulgaria - Engineering Consideration Cost

  • View
    216

  • Download
    3

Embed Size (px)

Text of E-Beam Flue Gas Treatment Plant for “Sviloza Power IAEA E-Beam Flue Gas Treatment...

  • 1IAEA

    E-Beam Flue Gas Treatment Plant for Sviloza Power Station in Bulgaria- Engineering Consideration & Cost Evaluation -

    J.K.Kim*, B.Han, Y.R.Kim (EB TECH, Korea)Nikolay Doutzkinov (NEK, Bulgaria)

    Konstantin Nikolov (Sviloza Power Station, Bulgaria)International Topical Meeting on Nuclear Research Applications and

    Utilization of Accelerators 4-8 May 2009, Vienna, Austria

    May 7, 2009

    International Atomic Energy Agency

  • 2IAEA

    1. Status of EB FGT Plant2. Sviloza Power Station3. Engineering Considerations of Process4. Cost Evaluation of EB FGT5. Summary

    Contents

  • 3IAEA

    1. Status of EB FGT Plant

    Hangzhou,China(2002)

    Chengdu,China(1997)

    Nagoya,Japan(1998)Tokyo,Japan(1992)

    Maritza,Bulgaria(2004)Pomorzany,Poland(1999)

    Indianapolis,USA(1984) Karlsruhe,Germany(1985)Kaweczyn,Poland(1992)

    Matsudo,Japan(1992)Nagoya,Japan(1992)Daejeon,Korea(1996)

    Karlsruhe,Germany(1985)

    Beijing,China(2005)

    TVA Shawnee,USA(1984)

    Miaynang,China(1999)

    Donbass,Ukraine(1998)

    Beijing,China(2000)

    Takasaki,Japan(2001)

    Svilosa, BulgariaKACST, Saudi Arabia

    Suralaya, Indonesia

    Pilot PlantCommercial PlantUnder Design

  • 4IAEA

    IEPE11.9M$

    1300kW/2,850 kW

    1000kV/500mA2 1000kV/300mA1

    4.9ton/hr (60$/ton)200mg/Nm3

    1464kGy

    90% / 20%1470ppm/583ppm630,000 Nm3/hr

    150MWBeijing(2005)*

    INCT21 M$

    1,200kW/1,686 kW

    800kV375mAx4300kg/h

    190mg/Nm3130-1508-12kGy90% / 70%

    525ppm/292ppm270,000Nm3/h

    130MWPomorzany(1999)**

    640kW/1,896 kW640kW/1,900 kWTotal power

    800kV/400mA2 800kV/400mA2 EB Accelerator

    9.1 M$11.4 M$Total capital cost

    90MW90MWBoiler Power

    EBARA

    2.3ton/hr (60$/ton)200mg/Nm3

    1323kGy

    80% / 10%1800ppm/400ppm300,000Nm3/h

    Chengdu (1997)*

    EBARA

    1.7ton/hr (60$/ton)200mg/Nm3

    1504kGy

    85% / 55%967ppm/200ppm305,400 Nm3/hr

    Hangzhou(2002)*

    Outlet PM conc.

    SO2 / NOx removalDose

    Inlet SO2 / NOx

    Process

    By-products

    Inlet flue gas temp.

    Flue gas flow

    Commercial Commercial EBFGT Plants inEBFGT Plants in the Worldthe World

    * Ben Jiang Mao, Process Of Flue Gas Desulphuration With Electron Beam Irradiation In China, 2005** Bogdan Tymiski, Andrzej Pawelec, Economical Evaluation of Electron Beam Flue Gas Treatment, IAEA Consultants Meeting on Radiation Processing of gaseous and Liquid Effluents 7-10 September 2004, Sofia, Bulgaria

  • 5IAEA

    2. TPS(Thermal Power Station) Sviloza

    Gases from each boiler are connected to the chimney

    Sviloza Power Station, photo from Danube river

  • 6IAEA

    - Installation site

    Danube Danube

    Boiler Boiler

    Chimney Chimney

    Empty space EBFGT in future

    +. All 8 stacks from 4 boilers (2 each) are connected to the chimney (150m in height)

    +. Planning to take by-pass lines from each stack to send the gases to EBFGT plant and connecting them to chimney after treatment.

    +. There is an empty space of over 50m X 60m

  • 7IAEA

    chimneyConnecting structure

    Space (from left) Space (from right)

  • 8IAEA

    1) Process Scheme2) Electron Accelerators - Number of scanners- Window structure- H.V connection3) Process reactor4) Emergency operation

    3. Engineering Consideration of Process 3. Engineering Consideration of Process

  • 9IAEA

    Flue gas flow rate (WB): 600 000 m3/h Inlet flue gas temperature 160C Inlet flue gas composition(O2 6%):

    -SO2 1680 ppm-NOx 780 ppm-CO2 10.4% vol.-O2 8.3% vol.-H2O 6.0% vol.-N2 to the balance-Fly ash < 400 mg/Nm3SO2 removal efficiency 90 %NOx removal efficiency 40 %Maximum dose 4 kGyAmmonia consumption 1,660 kg/hBy-product output 6,400 kg/h

    - Basic operational assumptions for TPS Sviloza1) Process Scheme

  • 10IAEA

    M (kg/s)* D (kJ/kg)P (kW) = --------------------------- 1,200~1,400 kW

    3600 * F

    Where P = required power of e-beam (kW = kJ/s)M = mass productivity (kg/hr)

    flow rate (600,000Nm3/h) X 1.372 (kg/Nm3)D = dose delivered (kGy = kJ/kg, 4kGy)F = efficiency of beam energy transfer (0.65~0.75)

    - For flue gas of 600,000Nm3/hr(165MWe) with 4kGy

  • 11IAEA

    - Basic design of two-stream EBI for flue gas purification

    N. Doutzkinov, K.Nikolov, The Possibility for Implementation of E-beam Technology in TPS Svilosa, Bulgaria, Meeting on Electron Beam Flue Gas Treatment, Warsaw, Poland 14 18 May 2007

    Cooling tower-1

    ESP-1 Ionization-reactor building-1

    Air-ammonia mixing block-1

    GGH-1

    Draft fansGas ductsGas Inlet

    GGH-2

    Gas ducts

    Gas ducts

    ESP-2

    Cooling tower-2

    Ionization-reactor building-2

    Gas Inlet

    Gas ducts

  • 12IAEA

    - Energy range 1.0 - 2.0 MeV for wastewater0.7 1.0 MeV for gaseous waste

    - Power of electron beam up to some MW- Consist of several hundred kW units- Efficiency : 85 95%- Continuous operation (over 8,000hrs/yr)- Computer control & Automatic system- High reliability in operation (discharge protection etc.)

    2) Electron Accelerators Required for Flue Gas Treatment2) Electron Accelerators Required for Flue Gas Treatment

  • 13IAEA

    0.6-1,0 MeV 1%

    500 mA 2%

    400 kW200 cm

  • 14IAEA

    - ELV-12 Accelerator (BINP, EB TECH)

  • 15IAEA

    Single-irradiator system Multi-irradiator system

    Number of scanners

    (2- scanners) (3- scanners)(1- scanner)

  • 16IAEA

    * Chmielewski, A.G., et al., Optimization of Energy Consumption for NOx Removal in Multistage Gas Irradiation Process, Radiat.Phys.Chem., Vol.45, No.6, 1995.

    Effect of double irradiation to removal efficiency of NOx

    Serial irradiation effect *

  • 17IAEA

    -. Power loss+. Theoretical 15%, 75kW for 500kW +. Too much power loss, requires huge

    cooling system

    -. Power loss+. Less than 1%, 4~5kW for 400kW+. power loss concentrated on small

    area (jumping area)

    One- scanner with multiple window (inside supporters), NIIEFA

    Multiple scanner with double window, BINP - EB TECH

    Window structure

  • 18IAEA

    H.V. Cable Connection (

  • 19IAEA

    5000(H)x4600(W)x14000(L)Horizontal rectangular(Both side irradiation)

    0.8MeVJapan, Nisi-Nagoya, 620,000Nm3/h

    2400(H)x1900(W)x14000(L)Horizontal rectangular0.8MeVJapan, Nagoya, 12,000Nm3/h

    2500(H)x4600(W)13100(L)Horizontal rectangular0.8 MeVChina, Hangzhou, 300,000Nm3/h2500(H)x4200(W)13000(L)Horizontal rectangular0.8 MeVChina, Chengdu 300,000Nm3/h260011000(L)Horizontal cylinder0.8 MeVPoland, Pomorzany 270,000Nm3/h292612000(L)Vertical cylinder0.8 MeVUSA, Indianapolis 24,000Nm3/h16007000(L)Horizontal cylinder0.7 MeVPoland, Kaweczyn 20,000 Nm3/h310011000(L)Horizontal cylinder0.8 MeVChina, Mianyang 12,000Nm3/h

    2600Vertical cylinder0.75 MeVJapan, Nippon Steel 10,000Nm3/h

    Reactor depthShape of reactorEnergyName- Typical dimension of process reactor****

    * Mao Benjiang, Flue Gas Desulphuration and Denitration with Electron Beam Irradiation and Ammonia Reagent, 2005

    3) Process reactor

  • 20IAEA

    39038437432526599378365356305243983733603442952339736635333629022696359345325280218953323152912531929030828726323017285

    1.0 MeV0.9MeV0.8 MeV0.7MeV0.6MeVDepth of Reactor (cmUtilization of

    E-beam

    * Mao Benjiang, Flue Gas Desulphuration and Denitration with Electron Beam Irradiation and Ammonia reagent, 2005

    200

    100

    -200

    -100

    0

    80 160 240 320 400

    Z (cm)

    X (cm

    )

    2.0E4 1.0E3 1.0E2 1.0E1 1.0E0 1.0E-1 1.0E-2

    E=0.8MeV

    200

    100

    -200

    -100

    0

    80 160 240 320 400Z (cm)

    X (cm

    )

    2.0E4 1.0E3 1.0E2 1.0E1 1.0E0 1.0E-1 1.0E-2

    E=1.0MeV

    - Determination of reactor depth*

    40032024016080-200

    -100

    200

    100

    0

    Z (cm)

    X (cm

    )

    1.8E41.0E31.0E21.0E11.0E01.0E-11.0E-2

    E=0.6MeV

  • 21IAEA

    13~15m

    Comparison on the scanner Numbers

    4.5m10~11m

    3m3m3m3mv = 11m/s

    300,000m3/h

    300,000m3/h

    300~350kW

    300~350kW

    300~350kW

    300~350kW

    4.5m

    6m 6m

  • 22IAEA

    450,000m3/h

    150,000m3/h

    Under repair 450kW

    450kW 450kW

    0.9MeV, 450kW X3 (1350kW)0.9MeV, 300~350kW X 4 (1200~1400kW)EmergencyNormal Operation

    4) Emergency Operation

  • 23IAEA

    4. Cost Evaluation of EBFGT

    1) Comparison of Cost with 4 Case EB Plant-. Case 1- Generalized EB Plant (2000)-. Case 2 - Chengdu Plant (China, 1997)-. Case 3 - EPS Pomorzany Plant (1999)-. Case 4 - SVILOZA Plant (estimated)

  • 24IAEA

    71 Million USDTotal capital cost202$/kWecapital unit cost

    -24$/kWe(-5.2$/t SO2)Unit operation cost

    50mg/Nm3Outlet particulate concentration

    10,200kW Total power consumption

    85% / 60%SO2 / NOx removal efficiency 5~10kGy (?)Dose

    5,500ppm/390ppmInlet SO2 / NOx concentration

    ?Electron accelerator 32.9ton/hr (100$/ton)By product

    140Inlet flue gas temperature

    1,500,000Nm3/h (350MW)Flue gas flow Design Values Items

    - Case 1 : Generalized Study for EB Process (2000)

    * IAEA- TECDOC-1189, Radiation processing of flue gases : Guidelines for feasibility studies, IAEA 2000

  • 25IAEA

    Design ValuesItems

    126.5$/kWeUnit capital cost11.4 Million USDTotal capital cost

    200mg/Nm3Outlet particulate

    1900kW Total power consumption

Recommended

View more >