19
Soil Dynamics and Earthquake Engineering 12 (1993) 239-257 Dynamic response of pile groups with different configurations George Gazetas, Ke Fan & Amir Kaynia 82 N. Kazantzaki St, Zografou 15772, Greece (Received and accepted 10 November 1992) A general methodology is outlined for a complete seismic soil-pile-foundation- structure interaction analysis. A Beam-on-Dynamic-Winkler-Foundation (BDWF) simplified model and a Green's-function-based rigorous method are utilized in determining the dynamic response of single piles and pile groups. The simplified model is validated through comparisons with the rigorous method. A comprehensive parameter study is then performed on the effect of pile group configuration on the dynamic impedances of pile foundations. Insight is gained into the nature of dynamic pile-soil-pile interaction. The results presented herein may be used in practice as a guide in obtaining the dynamic stiffness and damping of foundations with a large number of piles. INTRODUCTION AND GENERAL METHODOLOGY Seismic soil-pile-foundation-structure interaction analy- sis can be conveniently performed in three consecutive steps, as illustrated schematically in Figs 1-3: (1) Obtain the motion of the foundation in the absence of superstructure inertia. This so-called foundation input motion includes translational as well as rotational components. (2) Determine the dynamic impedances (springs and dashpots) associated with swaying (Kx or Ky), rocking (Kry and Krx) and cross-swaying-rocking (Kx-ry or Ky_rx) oscillations of the pile top. (3) Compute the seismic response of the super- structure, supported on the springs and dashpots of step 2 and subjected at its base to the foundation input motion of step 1. For each step of the analysis several alternative formulations have been developed and published in the literature, including finite-element formulations, boundary-element, semi-analytical and analytical sol- utions, and a variety of simplified methods. Table 1 lists some of the available methods. Three specific multi-step methods for computing soil-pile-foundation-structure interaction analysis have been proposed 1 which make Soil Dynamics and Earthquake Engineering 0267-7261/93/$06.00 © 1993 Elsevier Science Publishers Ltd. 239 use of rigorous as well as simplified methods. This paper uses the methods shown bold-faced in Table 1. The objective of this study is to investigate the effect of group configuration on dynamic impedances of pile foundations. The results presented may be utilized to obtain realistic estimates of dynamic impedances of large pile groups embedded in homogeneous as well as in inhomogeneous soil profiles. This paper should be seen as a continuation of two previous publications by the authors and co-workers. 2'3 SIMPLIFIED METHOD OF SOLUTION USED IN THIS PAPER A Beam-on-Dynamic-Winkler-Foundation (BDWF) model developed by Gazetas and his co-workers has been used to determine the dynamic response of single piles and pile groups. 3-7 The soil is modeled as a Winkler-foundation resisting the (vertical or lateral) pile motion by continuously distributed frequency- dependent linear springs (k) and dashpots (c) along the pile length, k + i~c constitutes the vertical or lateral local impedance of the Winkler foundation. Frequency-dependent values are assigned to these uniformly distributed spring and dashpot coefficients using the following algebraic expressions, developed by matching the dynamic pile-head displacements from Winkler and finite-element analyses. kz ~ 0"6Es(l + ½x/~) (1)

Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

  • Upload
    others

  • View
    23

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

Soil Dynamics and Earthquake Engineering 12 (1993) 239-257

Dynamic response of pile groups with different configurations

George Gazetas, Ke Fan & Amir Kaynia 82 N. Kazantzaki St, Zografou 15772, Greece

(Received and accepted 10 November 1992)

A general methodology is outlined for a complete seismic soil-pile-foundation- structure interaction analysis. A Beam-on-Dynamic-Winkler-Foundation (BDWF) simplified model and a Green's-function-based rigorous method are utilized in determining the dynamic response of single piles and pile groups. The simplified model is validated through comparisons with the rigorous method. A comprehensive parameter study is then performed on the effect of pile group configuration on the dynamic impedances of pile foundations. Insight is gained into the nature of dynamic pile-soil-pile interaction. The results presented herein may be used in practice as a guide in obtaining the dynamic stiffness and damping of foundations with a large number of piles.

INTRODUCTION AND GENERAL METHODOLOGY

Seismic soil-pile-foundation-structure interaction analy- sis can be conveniently performed in three consecutive steps, as illustrated schematically in Figs 1-3:

(1) Obtain the motion of the foundation in the absence of superstructure inertia. This so-called foundation input motion includes translational as well as rotational components.

(2) Determine the dynamic impedances (springs and dashpots) associated with swaying (Kx or Ky), rocking (Kry and Krx) and cross-swaying-rocking (Kx-ry or Ky_rx) oscillations of the pile top.

(3) Compute the seismic response of the super- structure, supported on the springs and dashpots of step 2 and subjected at its base to the foundation input motion of step 1.

For each step of the analysis several alternative formulations have been developed and published in the literature, including finite-element formulations, boundary-element, semi-analytical and analytical sol- utions, and a variety of simplified methods. Table 1 lists some of the available methods. Three specific multi-step methods for computing soil-pile-foundation-structure interaction analysis have been proposed 1 which make

Soil Dynamics and Earthquake Engineering 0267-7261/93/$06.00 © 1993 Elsevier Science Publishers Ltd.

239

use of rigorous as well as simplified methods. This paper uses the methods shown bold-faced in Table 1.

The objective of this study is to investigate the effect of group configuration on dynamic impedances of pile foundations. The results presented may be utilized to obtain realistic estimates of dynamic impedances of large pile groups embedded in homogeneous as well as in inhomogeneous soil profiles. This paper should be seen as a continuation of two previous publications by the authors and co-workers. 2'3

SIMPLIFIED METHOD OF SOLUTION USED IN THIS PAPER

A Beam-on-Dynamic-Winkler-Foundation (BDWF) model developed by Gazetas and his co-workers has been used to determine the dynamic response of single piles and pile groups. 3-7 The soil is modeled as a Winkler-foundation resisting the (vertical or lateral) pile motion by continuously distributed frequency- dependent linear springs (k) and dashpots (c) along the pile length, k + i~c constitutes the vertical or lateral local impedance of the Winkler foundation.

Frequency-dependent values are assigned to these uniformly distributed spring and dashpot coefficients using the following algebraic expressions, developed by matching the dynamic pile-head displacements from Winkler and finite-element analyses.

kz ~ 0"6Es(l + ½x/~) (1)

Page 2: Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

240 G. Gazetas, K. Fan, A. Kaynia

A k 2 T m 2 P i l e G r o u p Impedances

T 1111

~\\\\\\\\\\\\\\\\\\~, ,~N\\NNN\NNN\N'~ • -rJ 1¢~

~\\\\\\\~\\" "\\\~ ~ " x

'. " " " . " i . ": " • . . . . . ; • . . . t.' . . . . "l • "" • " " : ' " ' " - . . . % , ' , . : . - . . . . . . . . . . . . . . ~ . ~ . . . . , . . . . , . .

- . ' . . . - . - : - , . . . . . . - , : . : : . . . : ' : : : . . . ; : : . . . . . . : : - : . : .

~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ~

t t t $, seismic w a v e s

Fig. 1. Seismic soil pile-foundation-structure interaction: the whole system.

cz ~ 213s kz + aol/4psVsd (2)

kx ,~ l'2Es (3)

Cx "~ 2/3s kx + 6p s Vsd(ao)_]/4 (4) 0 J

in which Es is the Young's modulus, Ps is the mass density,/3 s is the hysteretic damping and V s is the shear wave velocity of the soil. Note that the unit of kx is stiffness per unit length of the pile ([F][L] -2) and the traditional subgrade modulus is in units of [F][L] -3.

Similar kx and c x values can be obtained by Novak's plane strain elastodynamic solution for a rod oscillating in a continuum. 8-1° Novak's results would be exact for an infinitely long-and-rigid rod fully embedded in a

(~ k(t)

free-field

u IT u k(t ) /

~",\\\'\\~'~- ~,~N\\'%" I ~ :-,\\\\'-,,\\\\\\\~; ' '~N.\\\\\\\\\\\\\\\'%"

" ? ' 7 . . - .. " . . . , : / • . . : . ~ . " . ' . , . . ' . ' . . . : . : . ' . ' . ' . ' - . . : . . : ..- . .~"

: . . . . . . . : ...., . . . : . - . ! :_ . " ~ ' " - ' " ' ' . " : ' " : 3 " . " . ' . ' . " . . " . . -

• ". : ' : ' . . : . / :..".-;-:','.i," '.']::'" :-;:': ' . .

~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4 j

U g U g

Fig. 2. Seismic soil-pile foundation-structure interaction: kinematic seismic response analysis.

Superstructure Response

lm2

) ml k 2

kx k

~ m o

I 9 k ~

' ~ \ \ - , \ \ \ ~ - ~ . \ \ - , - , \ \ - ~ ~ \ \ \ \ \ \ \ \ \ \ \ \ x \ \ \ \ \ ' ~

- ~ - - - - - - - ~ U k ( t )

~ , ~ ( t )

foundotion Input motion

Fig. 3. Seismic soil-pile-foundation-structure interaction: inertial response analyses.

continuum space. By contrast, the expressions given above for radiation damping are derived in two steps:

(1) their form is first determined from a simple one- dimensional 'cone' model u-13 which resembles Novak's model, but which, in contrast, does allow for some non-zero vertical deformation of the soil during lateral motion, as is appropriate due to the presence of the stress-free surface and to the non-uniformity with depth of pile deflections;

(2) the numerical coefficients of the expressions are then calibrated by essentially curve-fitting rigorous finite-element results, for a variety of pile-soil geometries and properties, as well as for different loading conditions.

The spring constants, on the other hand, are derived solely through curve-fitting, i.e. by matching pile-head stiffness of the Winkler and the finite-element formu- lations. One of the approximations introduced in deriving these equations is to neglect the (relatively small) influence of pile slenderness and flexibility (measured through L / d and Ep/Es).

The resulting values of kx and Cx from these equations at various frequencies are generally comparable with those of Novak. The expressions are preferred for three reasons. First, they are quite simple (since they do not

Page 3: Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

Dynamic response

Table 1. General methodology for seismic soil-pile-foundation- structure interaction

1 DETERMINATION OF KINEMATIC SEISMIC RESPONSE (a) Free-field (site) response

One-dimensional elastic or inelastic wave propagation theories

Two- and three-dimensional elastic wave propagation theories

(b) Single pile response Beam-on-Dynamic-Winkler-Foundation (BDWF)

model Extended-Tajimi formulation Finite-element formulations Semi-analytical and boundary-element-type

formulations (e) Pile group response

Simplified wave-transmission model Extended-Tajimi formulation Semi-analytical and boundary-element-type

formulations

2 DETERMINATION OF PILE-HEAD IMPEDANCES (a) Single pile

Simple expressions Extended-Tajimi formulation BDWF model Novak's plane-strain formulation Novak-Nogami's axisymmetry formulation Finite-element formulations Semi-analytical and boundary-element-type

formulations (b) Pile group

Superposition method (using dynamic interaction factors)

Extended-Tajimi formulation Finite-element formulation Other simplified solutions Semi-analytical and boundary-element-type

formulations

3. DETERMINATION OF SUPERSTRUCTURE SEISMIC RESPONSE

Must account for SSI through frequency-dependent foundation 'springs' and 'dashpots' from step 2 and must use the seismic response from step 1 as foundation excitation.

involve the rather complicated expressions with Bessel functions of complex argument of the Novak plane- strain solution). Second, they avoid the substantial underestimation of stiffness and overestimation of damping values by the plane-strain model at fre- quencies O3d/Vs < 1, i.e. in the range of practical interest (Novak compensates for the underestimation in stiffness and overestimation in damping through empirical adjustments, which assume constant kx and Cx below two different cut-off frequencies). Third, the lateral radiation damping expression does not exhibit the spurious high sensitivity to Poisson's ratio observed in the plane-strain Novak's solution, and which stems mainly from the restriction of vertical soil deformation.

It is also worth noting that dynamic Winkler springs and dashpots have been derived by Liou & Penzien, Roesset & Angelides and Kagawa & Kraft using yet

ofpi&groups 241

another methodology. 14-~6 They all utilized three- dimensional formulations (based either on Mindlin's static solution or on finite-element modeling) to relate local unit soil reaction to local pile deflection at various depths along the pile; a single complex-valued dynamic stiffness, Sz or Sx, to be uniformly distributed as springs and dashpots along the pile (as is appropriate for a Winkler foundation), was then derived by a suitable integration of local stiffnesses over depth. Only a limited number of results, pertaining to a uniform soil stratum, have been presented in those studies.

All the foregoing alternative methods give k and c values that are in reasonable accord for the range of frequencies of interest. Individual differences in the Winkler parameters usually do not exceed 10-20%.

The kx and Cx values obtained from eqns (3) and (4) apply in real-life situations for frequencies O3 above the stratum cut-off frequency. The latter is nearly identical with the natural frequency, O3s = rcVs/2Hs in horizontal (shear) vibrations of the soil stratum. For O3 < O3s radiation damping is vanishingly small, as a function of the material damping. One may then state:

C x -~- ( C x ) h y s t e r e s i s ~ 2 / 3 k__y~ (5) O3

Similarly, the kz and Cz expressions apply only for frequencies above the stratum cut-off frequency in vertical compression-extension vibration; this is approximately given by o3c = 3"4Ws/Tr( 1 - Us).

2.0

1.6 BDWF Model

1.4

1.2

I . = lu~ ~.0 V o / V b = l

0.8

0.6

0.4 • . . . . . . -

0.2

0.0 0.0 0.1 0.2 0.3 0.4 0.5

ao 2.0

13 Co) V a / V b =1 / 6 '"" """. ": 1.6

1.4

1.2

I. = J~-~ - 1.o

0.8

0.6

0.4

0.2

0.0 0.0 0.1 0,2 0.3 0.4 0.5

ao

Fig. 4. Kinematic seismic response of fixed-head single pile: (a) Va/V b : I, 1/2 and (b) Va/V b : 1/3, 1/6 ( E p / E s b = 1000,

h a = 5d, L/d = 20, Us = 0.4,/3 s = 0'05).

Page 4: Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

242 G. Gazetas, K. Fan, A. Kaynia

For ,J < ~c,

C z = (Cz)hysteresis = 2~3 kz

V A L I D A T I O N O F T H E S I M P L I F I E D M E T H O D

(6)

In order to verify the simplified method of solution utilized in this paper, the following selected compari- sons, with results from rigorous solutions as well as from other simplified methods, are presented.

Figure 4 shows the kinematic displacement factor I u of a single pile embedded in a two-layered stratum as a function of ao =- ~d/Vs, for a number of Va/Vb ratios, obtained by the simplified method. V a and Vb are the shear wave velocities of the upper and lower layers respectively. The thickness of the upper layer is one- quarter of the pile length. The same quantity evaluated by the boundary integral type of formulation 17 is also shown in the figure, which shows that the results from the simplified method agree extremely well with those of Kaynia & Kause117 for both homogeneous and two- layered deposits. An exception to the general shape of Iu versus a0 is observed in Fig. 4(b). It refers to a soil deposit containing a thin, soft top layer (bald _< 5 and Va/Vb < 1.3). As Va/Vb decreases, i.e. as the top layer becomes relatively softer, the kinematic displacement factor tends to fluctuate with frequency at an increasing rate. At certain frequencies, the pile-head deflection may even be greater than the free-field surface displacement. The reason is that the pile cannot follow the ground motion within this upper layer when the velocity

contrast between the two layers is large (e.g. Va/V b = 1/6).

The simplified method also gives encouraging results for the kinematic seismic response of pile groups. Figure 5 compares the kinematic displacement factor I u of a 1 × 2 fixed-head pile group from the simplified and the rigorous methods. Notice that the differences are significant only for very stiff piles relative to the soil (Ep/E, = 10000).

The dynamic impedances of a fixed-head single pile obtained from the BDWF model are displayed in Figs 6-8 and compared with the rigorous results (the impedances are normalized with the Young's modulus of the deposit). Evidently, the comparison between the corresponding swaying and cross-coupling impedances is very satisfactory. A minor discrepancy is observed between the rocking stiffnesses, but the damping terms match fairly well. Figure 9 compares the stiffness and damping computed by the two methods for a 2 × 2 pile group. Two pile spacing ratios (s/d= 5 and 10) are considered. The group stiffnesses and damping factors are in a good agreement.

The seismic response analysis of the complete soil- pile-foundation-structure system using the simplified method has been compared with the extended-Tajimi theory (see Ref. 18) and the results have been presented. 4's The two methods agree very well, although the extended- Tajimi method slightly overestimates the dynamic stiffness compared with the simplified method.

Therefore, it can be concluded that the simplified method of solution is satisfactory for both kinematic and inertial seismic response analyses.

1.00

1.20

Simpfified Method

Kaynia & Kauscl

0.40

O.BO _ I u ~ l

I u - ~

0.60

0.20

i i t i i i ! i | 0.2 0.3 0.5

0.00 I 0.o 0.1 0.4

cod

C/-O = - - ~ i

Fig. 5. Kinematic seismic response of a fixed-head 1 x 2 pile group.

Page 5: Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

Dynamic response of pile groups 243

4

dE----:s 3

o o.o o.1 0.2 0.3 0.4 0.5

a o

c~ 3 des

BDWF Model I ...... Kaynia & Kausel

°.°...'"

1 ~ . . . ~

0 0.0 0.1 0.2 0.3 0.4 0.5

ao

F i g . 6 . Horizontal impedance of a single pile: comparison with the rigorous solution (Ep/E s = 1000, Pp/Ps = 1 . 4 , u s = 0 " 4 , / 3 s = 0"05, L/d = 20).

EFFECT OF GROUP CONFIGURATION ON DYNAMIC IMPEDANCES OF PILE FOUNDATIONS IN SOFT SOIL

The major goal of this section is to investigate the influence of pile group configuration on dynamic impedances. Special attention is paid to the effects of frequency, spacing, the nature of the soil profile, and the number of piles in the group. In current engineering practice dynamic impedances of pile groups are usually estimated by using the impedances of a single pile and accounting for the group effect by means of static interaction factors. The other objective of this section is to study the applicability of dynamic interaction factors through comparison with rigorous numerical solution.

Figure 10 shows pile group configurations and soil profiles to be studied. All piles, of diameter d and length L, are considered to be linear elastic beams with

constant Young's modulus, Ep, and mass density, pp. Two typical soil deposits are investigated whose Young's modulus: (a) is constant (Es) and (b) is proportional to depth [Es(z ) =Es(L)z/L ]. In both cases the soil is assumed to be a linear hysteretic continuum with constant Poisson's ratio Us, constant material density Ps, and constant hysteretic damping

Three categories of groups of floating piles are studied:

(1) a rigidly-capped 1 x n linear pile group consisting of 1, 2, 3, 4, 6 or 9 piles in one row;

(2) a rigidly-capped 2 x n rectangular group of 2 x 2 , 2 x 3 , 2 x 4 , 2 x 5 , or 2 x 6 piles in two rows;

(3) a rigidly-capped n × n square group of 2 × 2, 3 × 3, 4 × 4, or 6 × 6 piles.

The pile group is subjected to harmonic excitation at

Page 6: Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

244 G. Gazetas, K. Fan, A. Kaynia

g,7 d 3 E s

lO

9

8

7

6

5

4

3

2

1

o o.o

w . . . . . . . . . . . . .

0.1 0.2 0.3 0.4 0.5

10 a o

Cry

d3E s

8

7

6

5

4

3

2

1

0 0.0

BDWF Model . . . . . . Kaynia & Kausel

. . . . . . . - - ' ' "

0.1 0.2 0.3 0.4 0.5

%

Fig. 7. Rocking impedance of a single pile: comparison with the rigorous solution (Ep/E s = 1000, Pp/Ps = 1"4, u s = 0-4, 13 s = 0-05, L/d = 20).

the top. The applied dynamic forces are transmitted onto each pile through a rigid cap. Vertical, horizontal, and rocking oscillations are considered. For each particular harmonic excitation of frequency w, the complex-valued dynamic impedance ~ of the group is defined as the ratio of total excitation (force F, or moment M) over the corresponding motion of rigid cap (displacement u, or rotation 0). In general, there are eight different impedances. Six of them correspond to the six possible modes of vibration of the pile head: vertical, ~z; horizontal, n~, and %; torsional, ~;t; and rocking, ~rx and ~ry- Moreover, since horizontal forces along principal axes induce rotational in additional to translational oscillations, two more cross-coupling horizontal-rocking impedances exist: ~xry and nyrx. Therefore, the 6 x 6 impedance matrix relating the force-movement vector { Fx, Fy, Fz, Mx, My, Mz} T with the displacement-rotation vector {Ux, uy, u~, Ox, Oy, Oz }

takes the form:

[ ~i~ nxry 0 0 0 0 n y ~ry 0 0 0 0

[hi = 0 ~y Xyrx 0 0 ! 0 ~yrx t~rx 0 0

0 0 0 ~z 0 0 0 0 0 I~ t

(7)

Presentation of parametric results

The impedances obtained by using the previous formulation are complex quantities and can be written a s

= / ( + ia0C' (8)

where K is the dynamic group stiffness, C is the group damping coefficient, which encompasses geometric and

Page 7: Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

Dynamic response o f pile groups 245

4O

3O

,d"-"i, 2o

"15

"~0

5

0

0.0 0,I 0.2 0.3 0.4 0,5

20

1,8

16

14

12 c,,y

8

6

4

2

0 '

0.0

~o

J

0A 0.2 0.3 0.4 0.5

%

F i g . 8 . Cross-coupling impedance of a single pile: comparison with the rigorous solution (Ep/E s = 1000, Pp/Ps = 1-4, us = 0.4, /3s ---- 0.05, L/d = 20).

hysteretic dissipation of energy, a0 = w d / V s is dimen- sionless frequency and Vs* is a characteristic value of the soil S-wave velocity profile (in this paper V~ is taken as equal to Vs for the homogeneous and to V~(L) for the nonhomogeneous profile).

Only vertical, horizontal and rotational impedances are given. Torsional and cross-coupling horizontal- rocking impedances will not be included here for lack of space. For vertical or horizontal oscillation, the dynamic impedance of the group is normalized with respect to the vertical or horizontal static stiffness of a single pile in the group (K~ 0) or Kx 0)) multiplied by the number of piles, whereas for the rocking impedance both vertical and rocking static stiffness (Kx 0) and Kr(x 1)) o f a single pile are used for normalization. Therefore, the 'dynamic stiffness group factor' k (") and the 'damping group factor D (n~ are introduced as follows:

For vertical oscillation,

kz (") K(n) Cz(n) nri, and = .... z -- nK(z 1)

For horizontal oscillation,

= nr(l---- ~ and

- Y__L._ and k(y n) K(n)

-- nK(yl )

For rocking oscillation,

k~ ) = /~r(x n) n ~.({) v--, 2 ,:(1) --rx + 2_,Y Ai

o(:= c'<°> nK( t )

nK~ ~)

and D~ ) ---

(9)

(io)

+

Page 8: Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

246 G. Gazetas, K. Fan, A. Kaynia

1.5

0.5

-0 .5

S / d = 5

S / d = 10 , -.

Simplified Method

Kaynia & Kausel

i i i 1

O. 0.4 0.~ 0.8 1.0

S / d = 10

- . . . . .

0 0.2 0.'4 0.'~ 0.8 1.tO

cud

~2° = V ~

Fig. 9. Dynamic stiffness and damping group factors (Ep/Es = 1000, Pp/Ps = 1.4).

b(n) --ry • ~ry and ten) = ~ r y ~ - -

nv(l) + E x2K} 1) nK}~ ) + E x2K(l)

(11)

The stiffness and damping group factors are plotted according to the pile spacing ratio and configurations as follows: Figs 11-25 present results for linear groups of piles in a row, Figs 26-33 are for rectangular pile groups, and Figs 34-39 are for square pile groups.

Tables 2-5 present impedance functions of single pile and pile groups resulting from different methods, normalized by the Young's modulus Es of the soil.

Analysis and discussion of results

The results presented here in figures and tables reveal the following significant trends.

An interesting common feature is that the group

behavior (due to pile-to-pile interaction) is more pronounced as the number of piles increases. If there had been no interaction, the curves would have coincided with those of a single pile (broken lines) in which the stiffness deviates only slightly from unity in the frequency range considered. The radical change of group stiffness and damping takes place as the number of piles increases from one to two (Figs 16-25). In a linear group, increasing the number of piles beyond two or three has only a small effect on the dynamic stiffness and damping group factors, and the variation of the group stiffness and damping with frequency is fairly smooth. It is straightforward to explain this lack of strong interaction between piles in a linear group. Each new pile 'introduced' in an existing linear group would generate waves which would only affect the two or three nearest piles; when these waves are 180 ° out of phase with one of these piles, they are in phase with the next pile(s). As a result, the combined effect of wave interferences on impedances is quite small.

Page 9: Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

Dynamic response of pile groups 247

M

. $ ! •

/ i . . . . . . . ,:?)

( "1 I""I

( I (~"1 1

i"-: (2):-" (~),'-':i

l x n 2 x n n x n

Fig. 10. Pile configurations and soil profiles studied.

By contrast, the interaction effect becomes increas- ingly pronounced as the number of rows in a pile group increases. Obviously, this is due to the pile-to-pile interaction between piles in opposite rows. Thus, peaks and valleys appear on the group stiffness and damping curves, which depend on the size of the group and the spacing of the piles. Figures 26-29 clearly show this transition of dynamic stiffness and damping group factors: smooth curves for the linear groups, fluctuating curves for rectangular and square pile groups. As a consequence, at certain frequencies the dynamic group efficiency may be much greater than unity. The only exception here is the rocking impedance mrx of 2 x n pile groups. The explanation will be given in the subsequent paragraph.

For horizontal and rocking modes of oscillation in linear and rectangular pile groups, the group stiffness and damping in the x and y directions are, of course, different. As explained above, it is the interaction between piles in different rows that plays a dominant role in the dynamic response of pile groups. Therefore, the behavior of the group impedances my and mrx is controlled by compression-extension waves emitted from the piles in one row or two rows, while the impedances mx and tory are dominated by shear wave interferences. The rate of fluctuation of the group stiffness and damping is thus faster for my and mrx

2 , 0 ~ . . . . . . . . . I . . . . . . . . . t . . . . . . . . . ~ . . . . . . . . . J . . . . . . . . .

t z~ ,~Id=3

1 . 5 ~ ta s / d = 5 L

I~ * ,/d=lO

=, , 1 . 0 -

17.5.

0.0 ......... i ......... i . . . . . . . . . ; ......... ; . . . . . . . .

0,0 0.1 0 . 2 0 . 3 0.4 0,5

1 0 . . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . .

8

4

2 - v

0 . . . . . . . . i . . . . . . . . . i . . . . . . . . . i . . . . . . . . . i . . . . . . . . .

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5

rod

(L)

Fig. 11. Normalized vertical dynamic stiffness and damping group factors of 1 × 4 rigidly-capped pile groups in a nonhomogeneous half-space (Ep/Es(L) =5000, L/d=20, Ps/Pp = 0 ' 7 , fls = 0'05 and us = 0-4): effects of frequency and

pile separation distance.

than for mx and tory. This is because compression- extension waves propagate at an apparent phase velocity V ~ V L a ('Lysmer's analog' velocity), where VLa = [3'4/7r(1 -- Us)]Vs ~ l'8Vs (for us = 0"4), leading to a faster fluctuation rate for my and krx.

For rocking around the x-axis of the linear and rectangular pile groups (Figs 19, 24 and 32), the variation of the group stiffness and damping with frequency is very smooth. This is due to very small interaction taking place as a result of rotational deformation at the head of each pile in a row and because piles located on the opposite side of the x-axis oscillate axially 180 ° out of phase. However, the case of square pile groups is more complicated, and high peaks and valleys do appear on the curves.

In engineering practice, three approaches are used to obtain the dynamic impedances of pile groups: (a) the superposition method with use of static interaction factors, ignoring the frequency dependence of pile-pile interaction; (b) superposition with use of (simplified or

Page 10: Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

248 G. Gazetas, K. Fan, A. Kaynia

~2

e"

2 . 0 . . . . . . . . t . . . . . . . . . i . . . . . . . . . I . . . . . . . . . I . . . . . . . . .

s/d=3

1 . 5 - a s / d = 5

o s / d = 1 0

0 . 5 -

0 . 0 . . . . . . . . . l . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . .

0 . 0 0 . 1 0 . 2 0, ,3 0 . 4 0 . 5

1 0 . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . .

8

4

¢ " c c 2 -

0 . . . . . . . . i . . . . . . . . . i . . . . . . . . . i . . . . . . . . . ; . . . . . . . . . .

0 . 0 0 .1 0.4 0.5 0 . 2 0 . 3

~ d

a ° - V s ( L )

Fig. 12. Normalized horizontal dynamic stiffness and damping group factors of 1 x 4 rigidly-capped pile groups in a nonhomogeneous half-space (Ep/Es(L) =5000 , L/d=20, pJpp = 0.7, /3 s = 0.05 and v s = 0-4): effects of frequency and

pile separation distance.

2.0 ........ I .... ~ .... I ......... I ......... I .........

s/d=3

o s / d = 5 t

1 . 5 - o z/d=10 .

0 . 5

O.C . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . i . . . . . . . . . ; . . . . . . . . .

0 . 0 0 . 1 0.2 0 . 3 0 . 4 0 . 5

1 0 . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . ,

8

6 A =

d 4

0 ~ " , " " ; . . . . . . . . . i . . . . . . . . . i . . . . . . . . .

0 . 0 0 .1 0 . 2 0 . 3 0 . 4 0 . 5

md

a ° - Vs (L)

Fig. 14. Normalized rotational dynamic stiffness and damping group factors of 1 x 4 rigidly-capped pile groups in a nonhomogeneous half-space (Ep/Es(L) = 5000, L/d = 20, PslPp = 0"7, fls = 0"05 and u s = 0.4): effects of frequency and

pile separation distance.

2 . 0 . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . ~ . . . . . . . .

a sld:5 ~ I

~ 1.0.

0 . 5 -

0 . 0 . . . . . ' " ; . . . . . . . " 1 . . . . . . . . . ; " . . . . . . . i . . . . . . . .

0.0 0 .1 0 . 2 0.3 0 . 4 0 . 5

1 0 . . . . . . . . . I . . . . . . . . . 1 . . . . . . . . . 1 . . . . . . . . . I . . . . . . . . .

8

4

2

0 . . . . . . . . ; . . . . . . . . . i . . . . . . . . . i . . . . . . . . . i . . . . . . "

0 . 0 0 .1 0 . 2 0 . 3 0 . 4 0 . 5

cod ao = V (L)

Fig. 13. Normalized horizontal dynamic stiffness and damping group factors of 1 × 4 rigidly-capped pile groups in a nonhomogeneous half-space (Ep/Es(L) =5000 , L/d=20, Ps/Pp = 0.7, fls = 0.05 and vs = 0.4): effects of frequency and

pile separation distance.

2.0 7 . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . .

A S/d=3

1 . 5 - e s / d = 5

<> a / d = 10

0 . 5 -

0 . 0 ' ' ' ' . . . . . i . . . . . . ' " i . . . . . . . . . ; ' . . . . . . . i . . . . . . . .

0.0 0.1 0.2 0.3 0.4 0.5

1 0 . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . .

8

6

~ 4

2

0 •

0 . 0 0 .1 0 . 2 0 . 3 0 . 4 0 . 5

(od

a° = V s(L)

Fig. 15. Normalized rotational dynamic stiffness and damping group factors of 1 x 4 rigidly-capped pile groups in a nonhomogeneous half-space (Ep/Es(L)=5000, L/d=20, PJPp = 0-7, ~s = 0.05 and us = 0.4): effects of frequency and

pile separation distance.

Page 11: Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

Dynamic response of pile groups 249

2 . 0 . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . .

1 . 5 -

D a o o a t ] o °

. _ ~ _ o = ~ ~ -

0.0 . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . .

0.0 0.1 0 .2 0 .3 0 ,4 0 .5

10 . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . J d

- - single pile • 1 ,4 p i les

= 1 ,2 p i les o 1 .6 pges ~_ 8

~ o 1 , 3 p l ies v 1 .9 pries

2

0 . " . . . . . . . ; . . . . . . . . . . . . . . . . . . .

0.0 0.1 0 .2 0 .3 0 .4 0 .5

cod ~ 0 - - Vs

Fig. 16. Normalized vertical dynamic stiffness and damping group factors of 1 x n rigidly-capped pile groups in a nonhomogeneous half-space (Ep/E~ = 10000, L / d = 20, s/d= 5, p J p p = 0-7, ~ = 0.05 a n d u s = 0.4): effect of pile

group configuration.

210 . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . .

1.5- _ ~

12 ....................................... 0.0 0.1 0.2 0.3 0.4 0.5

10 ., . . . . . . . . I . . . . . . . . . t . . . . . . . . . I . . . . . . . . . f . . . . . . . . . mingle pile

n 1 .2 piles 8 -

a I =3 piles

o 1 .4 pries 6 -

o N ~ o 1 . 6 piles

" ~ '~ " - ~ ~ - 1 .9 pi les

o o o o o o o o a o o o o o o o

2 . . . . . . . . . . . . . . . .

0 . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . .

0 .0 0.1 0 .2 0 .3 0 .4 0 .5

cod

a ° - Vs Fig. 18. Normalized horizontal dynamic stiffness and damping group factors of 1 x n rigidly-capped pile groups in a homogeneous half-space (Ep/E s = 10000, L/d = 20, s /d = 5, Ps/Pp = 0.7, fls = 0.05 and us = 0.4): effect of pile group

configurations.

2.0

1 . 5 -

.~. 1.o-

0.5-

0.0

. . . . . . . . . I . . . . f . . . . . . . . . I . . . . . . . . . I . . . . . . . .

o? oo o? ?_o

. . . . . . . . . ; . . . . . . . . . i . . . . . . . . . ; . . . . . . . . . ; . . . . . . ' ' '

0.0 0.1 0 .2 0 .3 0 .4 0 .5

10 . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . .

- - mingle prie

8 - ~ 1 *2 piles

o 1 . 3 piles

6 - o 1 ,4 piles

~ o 1 .6 piles

4 - v 1 *9 piles

0 . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . .

0 .0 0.1 0 .2 0 .3 0 .4 0.5

cod a° - - V$

Fig. 17. Normalized vertical dynamic stiffness and damping group factors of 1 × n rigidly-capped pile groups in a homogeneous half-space (Ep/E s = 10000, L/d = 20, s / d = 5, Ps/Pp = 0-7, /~s = 0"05 and v~ = 0.4): effect of pile group

configurations.

2 . 0 t , , i , I ] . ,

1 .5-

0.5,

0 . 0 . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . .

0.0 0.1 0 .2 0 .3 0 .4 0 .5

10 . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . .

- - mingle pile

8 - A 1 .2 piles

o 1 ,3 piles

6 o 1=4 piles =

I~ o 1 . 6 p~es ~ i

4 T 1 .9 p~es ~-

3

0 " i i i i i

0 . 0 0.1 0 .2 0 .3 0 .4 0 .5

cod

a ° - V$

Fig. 19. Normalized rotational dynamic stiffness and damping group factors of 1 x n rigidly-capped pile groups in a homogeneous half-space (E, /E s = 10000, L/d = 20, s /d = 5, Ps/Pp = 0.7, fls = 0.05 and ~ u s = 0.4): effect of pile group

configurations.

Page 12: Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

2 5 0 G. Gazetas, K. Fan, A. Kaynia

2.0 f . . . . . . . . . I . . . . . . . . . I . . . . . . . . . ] . . . . . . . . . I . . . . . . . .

1 .5 -

I - - - - . . . . . . . .

o o o o o o ~ e y_,.~r" o O

o o

0 . 5 .

0 . 0 ' " " . . . . . ; . . . . . . . . . i . . . . . . . . . ; . . . . . . . . . ; . . . . . . . .

0.0 0.1 0.2 0 .3 0.4 0.5

10 . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . .

- - single pile 1 .4 piles o

\ A 1 .2 piles o 1*6 piles 8 /

o t = 1 .3 piles ,, 1 .9 piles

6 \ o " o

0 o o a o o , _ _ . .

2

0.0 0.1 0.2 0.3 0 . 4 0.5

cod a 0 - - V s

Fig. 20. N o r m a l i z e d r o t a t i o n a l d y n a m i c stiffness a n d d a m p i n g g r o u p fac tors o f 1 x n r ig id ly -capped pile g roups in a h o m o g e n e o u s ha l f - space (Ep/E s = l0 000, L/d = 20, s/d = 5, Ps/Pp = 0.7, ~s = 0.05 a n d u s = 0.4): effect o f pile g r o u p

conf igura t ions .

2 1 0 ~ . . . . . . . . . I . . . . . . . . I . . . . . . . . . I . . . . . . . . . t . . . . . . . . .

1.5

1 .0 . . . . . . . . . . . . . . . . . - - -

0 . 5

0 . 0

0.0 0.1 0 .2 0 .3 0.4 0.5

. . . . . . . . . . . . . . . . . . . . . . . T . . . . . . . . . J 10 . . . . . . . . I . I . I . . s~ngle pile

a 1 *2 piles

8 a 1.3 p~les ~r 3

o 1 .4 piles :1 6

o 1.6 piles -I

4-

2

0 , , , . . . . . ; . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . i . . . . . . . .

0.0 0.1 0.2 0 .3 0 . 4 0.5

oad

a ° - Vs(L )

Fig. 22. N o r m a l i z e d h o r i z o n t a l d y n a m i c stiffness a n d d a m p i n g g r o u p fac tors o f 1 x n r ig id ly -capped pile g r o u p s in a n o n h o m o g e n e o u s ha l f - space (Ep/E~(L) = 5000, L/d = 20, s /d= 5, p s / , O p = 0"7, fls = 0"05 a n d u s = 0"4): effect of pile

g r o u p conf igura t ions .

2.C] . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . i . . . . . . . . .

1 . 5 -

1.0- ~ - ~

0 . 5 -

0 . 0

0.0 0.1 0.2 0 .3 0.4 0.5

I . . . . . . . . . 10 . . . . . . . . . I . . . . . . . . . E . . . . . . . . . I . . . . . . . . - - s ingle pile

a 1 .2 p~les 8

a 1 .3 piles

o 1 .4 piles 6

o 1 .6 piles

2 . 0

4 -

2 -

0 . . . . . . . . . ; . . . . . . . . . i . . . . . . . . . i . . . . . . . . . i . . . . . . . . .

0.0 0.1 0.2 0.3 0.4 0 5

cod

ao - V s(L)

Fig. 21. N o r m a l i z e d ver t ical d y n a m i c stiffness a n d d a m p i n g g r o u p fac to rs o f 1 x n r ig id ly -capped pile g roups in a n o n h o m o g e n e o u s ha l f - space (Ev/Es(L) = 5 0 0 0 , L / d = 2 0 , s /d= 5, Ps/Pp = 0"7, /3 s = 0-05 a n d v s = 0.4): effect o f pile

g r o u p conf igura t ions .

. . . . . . . . i . . . . . . . . . i . . . . . . . . . I . . . . . . . . . I . . . . . . . .

1.5-

~ 1.0-

0 .5 -

0.0 ......... ; ......... i ......... ; ......... i ........

0.0 0.1 0.2 0.3 0.4 0.5

10 . . . . . . . . 1 . . . . . . . . . t . . . . . . . . . I . . . . . . . . . I . . . . . . . . .

- - single pile

8 ~ 1 ,2 piles

a 1 .3 piles

6 " S% / a ~ * 1 .4 piles

~ / o f ~ , X ~ D ' ~ I ~ _ o 1.6 p~les

-! 0 . . . . . . . ; . . . . . . . . . i . . . . . . . . . ; . . . . . . . . . i "

0.0 0.1 0.2 0.3 0.4 0.5

cod

a ° - Vs ( L )

Fig. 23. N o r m a l i z e d h o r i z o n t a l d y n a m i c stiffness a n d d a m p i n g g r o u p fac tors o f 1 x n r ig id ly -capped pile g roups in a n o n h o m o g e n e o u s ha l f - space (Ep/Es(L) = 5000, L / d = 20, s/d = 5, Ps/Pp = 0-7, fls = 0,05 a n d u s = 0.4): effect o f pile

g r o u p conf igura t ions .

Page 13: Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

Dynamic response of pile groups 251

2 .0 . . . . . . . . . f . . . . . . . . . I . . . . . . . . . I . . . . . . . . . J . . . . . . . . .

1 . 5 -

~ . 1 . 0

0 .5 .

0.0 . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . .

0.0 0.1 0 .2 0 . 3 0 .4 0 . 5

10 . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . .

- - single pile

8 = 1 . 2 piles a 1 , 3 pries

6 o 1 , 4 pries

o 1 . 6 pries

4 v 1 . 9 pries

0 .0 0.1 0 . 2 0 . 3 0 .4 0 .5

cod a o = Vs (L)

Fig. 24. Normal ized rotational dynamic stiffness and damping group factors of 1 x n rigidly-capped pile groups in a nonhomogeneous half-space (Ep/Es(L)=5000, L/d=20, s /d = 5, Ps/Pp = 0'7, ~s = 0"05 and us = 0"4): effect of pile

group configurations.

3 . 0 ~ . . . . . . . . . I . . . . . . . . . t . . . . . . . . . i . . . . . . . . . I . . . . . . . . .

" s / d = 3

2 . 0 - a s/d=5

0 .0 .

- 1 . 0 . . . . . . . . . . . . . . . . . . . . . . . , , " ' ; . . . . . . . . . . . . . . . . . .

0 . 0 0.1 0 .2 0 3 0 .4 0 . 5

10 . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . .

6 -

4

2

0 . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . i . . . . . . . . .

0 . 0 0.1 0 . 2 0 . 3 0 .4 0 . 5

cod % - vo (L)

Fig. 26. Normalized vertical dynamic stiffness and damping group factors of 2 x 2 rigidly-capped pile groups in a nonhomogeneous halfospace (Ep /Es (L)=5000 , L / d = 2 0 , s/d= 5, Ps/Pp = 0 . 7 , ~s = 0 . 0 5 and u s =0-4) : effects of

frequency and pile separation distance.

2 . 0 ~ . . . . . . . . . I . . . . . . . . . 1 . . . . . . . . . I . . . . . . . . . I . . . . . . . . . .

1 , 5 ~ _ ~

1.0 = -" -" -" - - ' - " - ' - -='- " ~ - " " - . . . . . . ° - _~e - J ~ r - a - . " a a a o a a ° ~

o ° ° o o o o o o o @ # o ~ e ~ r O o o o o

O 0 . . . . . . . . . . . . . . . . . . . . . .

0 . 0 0.1 0 . 2 0 .3 0 .4 0 .5

10 . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . j

single pile

a 1 . 2 p i les ~_ 8 4

a 1 . 3 pr ies

4 o 1 * 4 p i les - -

6 \ o 1 , 6 piles

2

0 . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . i . . . . . . . . . ; " " . . . . . .

0.0 0.1 0 .2 0 . 3 0 .4 0 .5

cod

a ° - Vs (L)

Fig. 25. Normal ized rotational dynamic stiffness and damping group factors of 1 x n rigidly-capped pile groups in a nonhomogeneous half-space (Ep/Es(L) = 5000, L/d = 20, s/d= 5, Ps/Pp = 0.7, /3 s = 0.05 and us = 0-4): effect of pile

group configurations.

2 .0 . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . j

s / d = 3

a s / d = 5

1.5 - ~ =

=

~ 1.0-

0 .5 .

0.0 . . . . . . . . i ......... ; . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . .

0 . 0 0. I 0 .2 0 . 3 0 .4 0 .5

10 . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . .

8

=

4 .

2 -

0 . . . . . . . . i . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . ; . . . . . . . .

0.0 0.1 0 .2 0 .3 0 .4 0 .5

md

ao - v (L)

Fig. 27. Normal ized horizontal dynamic stiffness and damping group factors of 2 x 2 rigidly-capped pile groups in a nonhomogeneous half-space (Ep/Es(L)=5000, L/d=20, s / d = 5, Ps/Pp =0.7 , ~s =0-05 and us =0.4): effects of

frequency and pile separation distance.

Page 14: Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

252 G. Gazetas, K. Fan, A. Kayn ia

2 . 0

1 .5 -

= ~" 1 .0 -

c~

0 . 5 -

0.0 0.0

o , / o ?

0.1 0 . 2 0 . 3 0 . 4 0 . 5

10

8 .

6

4

2

0

0 . 0

. . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . .

. . . . . . . . ; . . . . . . . " i . . . . . . . . . i . . . . . . . . . i . . . . . . . . .

0.1 0 .2 0 . 3 0.4 0 .5

o)d a o - V s (L)

Fig. 28. Normalized rotational dynamic stiffness and damping group factors of 2 × 2 rigidly-capped pile groups in a nonhomogeneous half-space (Ep/Es(L) =5000, L / d = 2 0 , s / d = 5, Ps/Pp = 0 ' 7 , ~s =0"05 and Us =0.4) : effects of

frequency and pile separation distance.

2 .0 . . . . . . . . . I . . . . . . . . . . I . : . . . . . . . . l . . . . . . . . . I . . . . . . . . .

1 . 5 -

. ~ 1 . 0 -

0 . 5 .

0 . 0 0.1 0 . 2 0 . 3 0 . 4 0 .5

10 . . I . . . . . . . . . I . . . . . . . . . ' . . . . . . . . . • / ~ - - s l n g l e p i le

/ / A 2 . 2 p i l es

/AI i ° * \ ° ~.,pile, ' =.5pile,

2 -

0 . . . . " . . . . ; . . . . . . . . . ; . . . . . . . . . i . . . . . . . . . ; . . . . . . . . .

0 . 0 0.1 0 ,2 0 .3 0 . 4 0 . 5

cod

a ° - V s (L)

Fig. 31). Normalized horizontal dynamic stiffness and damping group factors of 2 x n rigidly-capped pile groups in a nonhomogeneous half-space (Ep/Es(L) = 5000, L / d = 20, s /d = 5, Ps/Pp = 0"7, .~s = 0"05 and u~ = 0-4): effect of pile

group configurations.

3 . 0 . . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . =o- : ~ 1 . 0 -

0 . 0 -

- 1 . 0 . . . . . . . . . ; . . . . . . . . . i . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . .

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5

. . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . [ . . . . . . . . . 10 ~ - . . ~ [ng le p i l e

= 2 , 2 p i l es

8 - a 2 , 3 p i l e s / 1 ~ = / , ~ i

6 ° pil', / _ ! l o =.sp,,,

2

0 . . . . . . . . ; . . . . . . . . . i . . . . . . . . . i . . . . . . . . . ; . . . . . . . . .

0 . 0 0.1 0 . 2 0 . 3 0 ,4 0 . 5

cod a ° - - v s (L)

Fig. 29. Normalized vertical dynamic stiffness and damping group factors of 2 × n rigidly-capped pile groups in a nonhomogeneous half-space (Ep/Es(L) = 5000, L / d = 2 0 , s / d = 5, Ps/Pp = 0.7, ~s = 0.05 and us = 0.4): effect of pile

group configurations. 2 . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ""

1 . 5 -

g , , 1 . 0 -

0 . 5 -

0 . 0

0 . 0 0.1 0 . 2 0 . 3 0 .4 0 .5

10 . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . i . . . . . . . . .

s i n g l e pile

a 2 , 2 p i les

a 2,3 p i les

L A L J °

8

6

4

2

0

0 . 0

' ' . . . . . i . . . . . . . . . i . . . . . . . . . i . . . . . . . . . i . . . . . . . . .

0.1 0 .2 0 . 3 0 .4 0 .5

~d a o = - v s (L)

Fig. 31. Normalized horizontal dynamic stiffness and damping group factors of 2 x n rigidly-capped pile groups in a nonhomogeneous half-space (Ep /Es (L )= 5000, L / d = 2 0 , s / d = 5, Ps/Pp = 0.7, fls = 0.05 and u s = 0.4): effect of pile

group configurations.

Page 15: Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

Dynamic response of pile groups 253

2 .0 . . . . . . . . . I . . . . . . . . . I . . . . . . . . . J . . . . . . . . . ! . . . . . . . .

1 .5-

[1.5-

O.C . . . . . . . . . ; . . . . . . . . . i . . . . . . . . . i . . . . . . . . . i . . . . . . . .

0 . 0 0.1 0 .2 0 3 0 . 4 0.5

10 . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . .

8 - - - single pile

A 2 , 2 pges 6 -

~' a 2 , 3 p~es

~ - • 2 , 4 p~es 4

o 2 , 5 piles

. . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . i . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . i . . . . . . . . . :

0.0 0.1 0 .2 0 .3 0.4 0 .5

(od

a ° - Vs (L)

Fig. 32. Normalized rotational dynamic stiffness and damping group factors of 2 x n rigidly-capped pile groups in a nonhomogeneous half-space (Ep/Es(L) =5000 , L/d=20, s /d= 5, Ps/Pp = 0.7, 3s = 0.05 and Us = 0.4): effect of pile

group configurations.

¢ L . . . . . . . . . 1 . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . .

~ 0

- 2

- 4 . . . . . . . . . i . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . i . . . . . . . . .

0 . 0 0.1 0.2 0 . 3 0 .4 0 .5

20 ' . . . . . . . . l . . . . . . . . . t . . . . . . . . . I . . . . . . . . . l . . . . . . . . .

- - - single pile 1 6 -

A 2 ,2 piles f

a 3 , 3 piles / ~ Y ~

- 12 <> 4 , 4 piles / 7 " . . / / /

8 .

2" 0 . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . i . . . . . . . . . ; . . . . . . . . . ::

0.0 0.1 0.2 0 .3 0.+ 0.5 od

ao = V'-~ Fig. 34. Normalized vertical dynamic stiffness and damping group factors of n x n rigidly-capped pile groups in a homogeneous half-space (Ep/E s = 1000, L/d= 15, s /d= 5, Ps/Pp = 0'7, ~s = 0"05 and v s = 0.4): effect of pile group

configurations.

2.0 . . . . . . . . . I . . . . . . . . . I . . . . . . . . . ! . . . . . . . . . I . . . . . . . .

1 . 5 - 0

~e LO-, %-° • a a a o a o a a a o a o¢~ o a a o a °

o o o o o o o o o o

0.5.

O.O ......... ; ......... ; ......... ; ......... ; .........

0.0 0.1 0 .2 0.3 0.4 0.5

10 : . . . . . . . . . I . . . . . . . . . I . . . . . . . . . f . . . . . . . . . I . . . . . . . . . J

i - - single pile

8 - A 2 * 2 piles

o 2 * 3 piles

^ 6 - • 2 , 4 p~es

= ~ o 2 , 5 piles A

• 2 * 6 piles J ° o ~ r ~ / o o - , ° o \ 4 - o o o O o o ¢

2 ~ ° o ° ° a a O o o a

. . . . . . . . . . . . . . . . . . . . . .

O . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . ; " ' . . . . ' ' ' :

0.0 0 . I 0.2 0.3 0 .4 0.5

cod

a ° - Vs (L)

Fig. 33. Normalized rotational dynamic stiffness and damping group factors of 2 x n rigidly-capped pile groups in a nonhomogeneous half-space (Ep/Es(L) =5000, L/d=20, s /d= 5, P s / P p = 0"7, 3s = 0"05 and v s = 0.4): effect of pile

group configurations.

++. _!i +- -+ +" " == :+ ++ 0.0 0.1 0.2 0.3 0.4 0.5

--- single pile

8 A 2 *2 piles

a 3 , 3 piles

6 e 4 , 4 piles

o 6 , 6 piles

2

0 . . . . . . . . i . . . . . . . . . i . . . . . . . . . ; . . . . . . . . . i . . . . . . . . . ,

0.0 0.1 0.2 0.3 0.4 0.5

cod

a ° - Vs Fig. 35. Normalized horizontal dynamic stiffness and damping group factors of n x n rigidly-capped pile groups in a homogeneous half-space (Ep/E s = 1000, L/d= 15, s /d= 5, Ps/Op = 0.7, 3s = 0.05 and v s = 0.4): effect of pile group

configurations.

Page 16: Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

254 G. Gazetas, K. Fan, A. Kaynia

4 . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . .

; -" . ± . : ± = - . . . . • •

2 0

- 2

- 4 . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . i . . . . . . . . . ; . . . . . . . . .

0.0 0.1 0 .2 0 .3 0 .4 0 .5

20 . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . .

- - - s~ngle p i le 16

= 2 , 2 pi les

o 3 , 3 pi les ~ , ~ /

~" 12 o 4 . 4 pi les ~" /x, / / °

g

4

0

0.0 o.1 0.2 0.3 0.4 0.5

(od

a ° - Vs

Fig. 36. Normalized rotational dynamic stiffness and damping group factors of n x n rigidly-capped pile groups in a homogeneous half-space (Ep/E s = 1000, L / d = 15, s / d = 5, Ps/Pp = 0.7, fls = 0.05 and u s = 0-4): effect of pile group

configurations.

]

0

- 1 . . . . . . . ; . . . . . . . . . ; . . . . . . . . . ; . . . . . . . . . i . . . . . . . . .

0 .0 0.1 0 .2 0 . 3 0 .4 0 .5

15 . . . . . . . . ] . . . . . . . I . . . . . . . . . I . . . . . . . . . , . . . . . . . .

/ 1 - - s l ng le p i le

12 | t t, 2 , 2 p i les

A / a p i les 3 * 3

9 I I _ ~ o 4 * 4 pffes

6

3 -

o . . . . . . . . i . . . . . . . . . i . - , , . . . . . i . . . . . . . . . , , , . . . . . . . 1

0.0 o.1 0.2 0.3 0.4 0.5

o)d

a ° - Vs(L )

Fig. 38. Normalized horizontal dynamic stiffness and damping group factors o f n x n r ig id ly -capped pile groups in a n o n h o m o g e n e o u s ha l f - space (Ep/Es(L)=5000, L /d= 15 , s/d = 5, Ps/Pp = 0-7, fls = 0.05 and u s = 0.4): effect o f pile

group conf igurat ions .

3 . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . .

2

0

- 1 , , = , ' '

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5

1 5 . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . J

1 - - s ing le p i le

12 t, 2 *2 p i les A

o 3 * 3 p i les J_

9 ° 4 " 4 p i l e s / / A ' ~ \ A

o 6 . 6 p i les

6 -

3 - _ . . . . . . .

I~ . . . . . . . . . i . . . . . . . . . i . . . . . . . . . i . . . . . . . . . i . . . . . . . ' '

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5

t . 0 d

a o = V s (L-----')

Fig. 3"/. Normalized vertical dynamic stiffness and damping group factors of n x n rigidly-capped pile groups in a nonhomogeneous half-space (Ep/Es(L) =5000 , L / d = 15, s / d = 5, Ps/Pp = 0.7, ~s = 0.05 and us = 0"4): effect of pile

group configurations.

3 . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . b . . . . . . . .

0 -

- 1 . . . . . . . . . i . . . . . . . . . ; . . . . . . . . . i . . . . . . . . . i . . . . . . . . .

0 . 0 0.1 0 .2 0 .3 0 .4 0 . 5

1,5 . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . . I . . . . . . . . .

- - s ing le p i le

12 = 2 . 2 p i les

o 3 . 3 p i les

9 o 4 . 4 p i les / ~ ]

3

0 • i i i i i

0 . 0 0.1 0 .2 0 . 3 0 .4 0 .5

cod

a ° - Vs (L )

Fig. 39. Normalized rotational dynamic stiffness and damping group factors o f n x n r ig id ly -capped pile groups in a n o n h o m o g e n e o u s ha l f - space (Ep/Es(L)=5000, L /d=15 , s/d = 5, Ps/Pp = 0-7, fls = 0"05 and u s = 0-4): effect o f pile

group conf igurat ions .

Page 17: Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

Dynamic response o f pile groups

Table 2. Impedance functions o f single piles: simplified" vs rigorous a (Ep/E s = 1000, ~ = R + i w C

L/d = is)

255

ao [C~xl [(,x2 Cxl Cx2 gzl t('z2 Czl Cz2 ~'rxI grx2 Crxl Crx2 dEs dEs dEs dEs dEs dEs dEs dEs d 3 Es d 3 Es d 3 Es d 3 Es ×5 x5 ×0-5 x0-5 x50 x50 x0.5 x0.5 x50 x50 x0.5 ×0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0-9 1.0

0"853

0-850 - - - - 0.176 - - - - 0.848 0.253 0.227 0.178 0.815 1.15 0.848 0.200 0.225 0.195 0.710 0.96 0.854 0.183 0.208 0.209 0.655 0.81 0.866 0.174 0-197 0.214 0-618 0-75 0.875 0.169 0.187 0-231 0.215 0-591 0.68 0.881 0.166 0.180 0.214 0.570 0.65 0.882 0.163 0.175 0.210 0-553 0.62 0.880 0.161 0.170 0.204 0.538 0.61 0-875 0.160 0.166 0.196 0.525 0-60 0.865 0.158 0.163 0.185 0-515 0.59

0.534

0.548 - - - - 0-552 0.65 0.661 0.559 0.508 0.523 0.569 0.460 0.462 0.580 0.436 0.418 0-590 0.422 0.380 0.599 0.412 0.350 0.606 0.405 0.329 0.612 0.400 0-313 0.618 0.396 0-300 0.624 0-393 0.290

a See Refs 19 and 25.

r igorous) dynamic in terac t ion factors; and (c) direct numer ica l solut ions.

In pr inciple the last m e t h o d is more r igorous , but a sophis t ica ted c o m p u t e r code is usual ly needed. The first and second me thods are conceptua l ly simple. They use the dynamic impedances o f single piles as the basis and account for the g roup effect by means o f in terac t ion factors (stat ic or dynamic) . C losed- form expressions for the impedances o f single piles in three ideal ized soil deposi ts , for all modes o f v ibra t ion , have been deve loped by Gazetas . 19

Table 2 compares the dynamic impedances o f single piles c o m p u t e d with these s imple expressions with those c o m p u t e d with the r igorous so lu t ion o f K a y n i a & Kausel . 17 The stiffness coefficient in the simplified m e t h o d is taken to be independen t o f frequency. This was conf i rmed as a good app rox ima t ion . Overal l the compa r i son is quite good. The ' r igo rous ' stiffness is prac t ica l ly independen t o f f requency and the da mp ing does not rely on f requency at in te rmedia te and high a0.

The use o f stat ic in terac t ion factors is still p o p u l a r in cur rent pract ice. The g roup stiffness and d a m p i n g are es t imated f rom the stat ic in te rac t ion fac tor (in displace- ment or ro ta t ion) f rom Poulos . 2°-22 This a p p r o a c h

canno t predic t p rope r ly the dynamic response o f pile groups, except pe rhaps at very low frequencies o f oscil lat ion. The dynamic in terac t ion factors are complex, quite different f rom stat ic ones, and bo th real and imag ina ry par t s can be negat ive at cer ta in frequencies, which means that at such frequencies the d isp lacements o f pile g roups m a y be less than those o f single piles subject to the same average pile loading. Therefore the dynamic g roup 'efficiency' may far exceed unity, whereas the stat ic 'efficiency' is well be low unity, especial ly with a large number o f piles.

Therefore , the dynamic - in te rac t ion - fac to r a p p r o a c h is the only one that can be r e c o m m e n d e d in engineering practice. The dynamic in terac t ion factors are avai lable in dimensionless char ts for two typical soil profiles (see Ref. 3). Also, they are avai lable in s imple analyt ica l

Table 3. Vertical impedance functions a of 2 × 2 piles (Ep/E s = 1000, L / d = 15, /~s = 0.05, u s = 0.4) t~ = K + i w C

ao s/d = 2 s/d = 5 s/d = 10

aE~ aE~ aEs aE~ aL'~ aL'~ aE~ aE~ aL'~ aE~ aEs aE~ aE~ aEs a~'~ aE~ aE~ aE~ ×50 x50 ×50 x5 ×5 ×5 ×50 ×50 ×50 x5 x5 ×5 x50 ×50 ×50 ×5 ×5 ×5

0.0 0.267 0.270 - - - - - - 0.348 0.350 - - - - 0.440 0.436 - - - - - - 0.1 0.250 0.256 0.250 0.251 0.310 0.312 0.401 0.413 0.395 0-393 0-650 0.661 0.2 0.252 0.253 0.221 0-226 0.268 0.261 0.412 0-423 0-563 0.607 0-808 0.895 0-3 0.231 0.231 0.204 0-206 0.160 0-165 0.432 0-449 1.619 1.590 0.486 0-290 0.4 0.175 0.176 0.191 0.194 0.016 0-016 0.559 0.560 1.I01 1.030 0.160 0.154 0-5 0-330 0 .093 0.094 0.101 0.190 0.189 0.444 0.462 0.461 0-136 0.900 0.899 0.553 0.803 0-794 0.169 0.178 0.183 0.6 -0-015 -0.014 0.185 0-188 2.946 2.940 0.454 0.462 0-670 0.661 0.208 0-214 0.7 -0-200 -0.154 0.186 0.191 2.014 2.010 0.147 0-152 0-587 0.580 0.238 0.241 0-8 -0.460 -0.336 0-183 0.185 1-490 1.450 0.135 0-130 0-545 0.540 0.275 0.270 0-9 -0.720 -0.570 0.186 0.186 1-126 1.120 0.144 0-137 0.661 0.667 0-342 0.308 1.0 -1.200 -0.877 0-186 0.190 0-881 0.885 0.144 0.148 1-180 1.120 0-294 0.291

a Subscripts: 1, using static interaction factors; 2, using dynamic interaction factors; 3, using rigorous method.

Page 18: Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

256 G. Gazetas, K. Fan, A. Kaynia

Table 4. Vert ical impedance functions a of 3 x 3 piles (Ep/Es = 1000, L / d = 1 5 , / 3 s = 0-05, v s = 0 .4) ec= K + i w C

ao s/d= 2 s/d 5 s/d= 10

K..l Kz2 Kz3 Czt Cz2 Cz3 Rzl Kz2 /~--3 Czl Cz2 Cz3 Kzl Kz2 Kz3 Czl Cz2 (--7::3 dE~ dE~ dEs dEs dE~ dE~ dE~ dE~ dE~ dE s dE~ dE~ dE~ dE~ dE s dE,, dE~. dE s x50 x50 x50 x5 x5 x5 x50 x50 x50 x5 x5 x5 x50 x50 x50 x5 ×5 x5

0"0 0"348 0-347 - - 0'495 0'506 - - - - 0-634 0-705 0"l 0'312 0"305 0"388 0.401 0"371 0"367 0"815 0'825 0.490 0.485 1.785 1"775 0-2 0'251 0-247 0-380 0-375 0-055 0"060 0'883 0"903 1.584 2.29 2"469 2"778 0"3 0"132 0"135 0"348 0-354 0.501 -0-494 1-133 1-131 3.643 3'120 0"729 0"588 0"4 -0'048 -0.052 0"339 0'344 -1'209 -1"210 1"808 1'810 2.695 2"770 0-585 0"382 0'5 0.425 -0'320 -0'309 0-114 0.344 0"344 0'642 4.830 4"780 0-172 2"987 2"892 0"892 1.820 1"780 0.240 0.299 0.293 0"6 -0'642 -0'635 0.341 0"345 7-603 6'270 0"650 0'646 1-114 1"140 I)'440 0-439 0'7 -1.223 -1-040 0.344 0"349 4.251 4"370 0"381 0'386 1-002 1.140 0.631 0'625 0-8 -1.865 -1.560 0.342 0'355 3.546 3"730 0'364 0"359 1.535 1-470 0"592 0-585 0'9 2.693 -2-210 0-292 0-361 3.210 3-340 0-258 0'254 0.930 0.925 0'658 0"666 1-0 -4-118 -3.040 0.201 0'367 2.243 2'300 0.225 0"216 2"780 2-870 0-837 0"779

Subscripts: 1, using static interaction factors; 2, using dynamic interaction factors; 3, using rigorous method.

forms for h o m o g e n e o u s a n d n o n h o m o g e n e o u s soils. F o r example , for a h o m o g e n e o u s soil profile:

F o r vert ical osci l la t ion,

1 {s'~-,/2 (-~sCOS'~ ( - i ~ s ' ~ (12) % ~ - ~ t ) exp \ - - - ~ s / exp \V-~---~ /

F o r ho r i zon t a l osci l la t ion,

l f s \ - i / 2 ['-/3sa~S" ~ ( - i a ; s ~ %(0: ' ) ~ ~ t d ) exp ~,-V-~La ) exp \--V--~a-La j (13)

c~h(90 °) ~ ~a,, (14)

O!h(0 c) ~ OZh(0 °) COS 2 0 + % ( 9 0 °) sin 2 0 (15)

The g roup stiffness a n d d a m p i n g are eva lua ted in a s imi lar way to the stat ic case. The i m p e d a n c e s o f 2 x 2 a n d 3 x 3 pile g roups p red ic ted f rom stat ic a n d d y n a m i c in t e rac t ion factors are c o m p a r e d with the r igorous numer i ca l so lu t ions in Tab les 3, 4 a n d 5.

In Tab les 3 a n d 4 the vert ical g roup stiffness a n d d a m p i n g coefficients f rom the d y n a m i c - i n t e r a c t i o n - factor m e t h o d c o m p a r e very well wi th the r igorous num er i ca l so lu t ion . Even some deta i led t rends are successfully predic ted. The difference be tween these two m e t h o d s is genera l ly wi th in 10%. The r eason why such a great ly s implif ied so lu t ion can p rov ide prac t ica l ly accura te resul ts to the compl i ca t ed b o u n d a r y - v a l u e p r o b l e m is tha t the key physica l fea ture o f cy l indr ica l shear wave in ter ference is adequa t e ly cap tu red . Tab l e 5 presents the results o f h o r i z o n t a l impedances for 2 x 2 pile g roups . The p red ic t ions by the d y n a m i c - i n t e r a c t i o n - factor a p p r o a c h is n o t fully sa t is factory, pa r t i cu la r ly nea r the peaks. This is p r o b a b l y due to the a s s u m p t i o n of s i m u l t a n e o u s emiss ion o f waves f rom different dep ths a l ong each o f the piles, which is a crucial a s s u m p t i o n in the m ode l o f D o b r y & Gaze ta s 23 and Makr i s & Gaze tas . 7 The flexural waves m a y p r o p a g a t e d o w n the

Table 5. Hor izonta l impedance functions" of 2 x 2 piles (Ep/Es = 1000, L / d = 15, /3~ = 0 .05 , v~ = 0 .4) = K + i w C

ao s/d= 2 s/d = 5 s/d= 10

R.~ K~2 Rx3 Cxl Cx2 Cx3 Kx~ Rx2 Rx3 Cxt Cx2 C~3 Rx~ Rx2 Kx3 C~t Cx2 C~3 dE~. dE s dEs dE,, dEs dEs dEs dEs dE,, dE~ dE s dEs dEs dE,, dE,. dE~ dEs dEs x50 x50 x50 x0.5 x0.5 ×0-5 x50 x50 x50 x0"5 x0.5 x0.5 x50 x50 x50 x0.5 x0.5 x0.5

0'0 0.143 0-155 - - - -- 0.170 0-202 - - 0"238 0.246 0"1 0"136 0"152 0"634 0.767 0"168 0"198 0-121 0-124 0-221 0.252 0-182 0"176 0.2 0.133 0-146 0.601 0-676 0.161 0.190 0.104 0"116 0-238 0.288 0.187 0.165 0-3 0-119 0-146 0'600 0.660 0.160 0-184 0"113 0"120 0"395 0.390 0.165 0"140 0.4 0.109 0'134 0'600 0-652 0-142 0-196 0.120 0-128 0-459 0.439 0.102 0"183 0.5 0'157 0 .0 8 5 0.125 0"327 0"590 0-641 0-220 0.147 0.235 0.458 0.143 0-136 0.270 0.425 0.391 0.560 0-064 0-062 0'6 0.068 0.113 0"580 0-631 0.255 0.334 0"167 0-143 0-408 0.348 0-063 0"063 0"7 0.051 0-097 0'59 0"629 0.391 0"518 0.146 0"124 0.374 0"335 0"062 0'067 0-8 0-027 0"076 0'600 0-629 0.593 0.592 0.123 0"082 0.357 0.327 0"065 0'070 0-9 -0.041 -0-051 0,610 0.634 0-541 0-523 0.097 0-058 0-348 0.338 0"071 0"073 1"0 -0-088 0'020 0-614 0-641 0.510 0.442 0-074 0"052 0"384 0-385 0-068 0"073

a Subscripts: 1, using static interaction factors; 2, using dynamic interaction factors; 3, using rigorous method.

Page 19: Dynamic response of pile groups with different configurationsssi.civil.ntua.gr/downloads/journals/1993-SDEE_Dynamic response of pile groups with...Dynamic response of pile groups with

Dynamic response of pile groups 257

laterally loaded pile at a finite apparent phase velocity, rendering the assumption of simultaneous arrival of these waves not strictly valid. Consequently, the waves that are arriving, even in homogeneous soil, have different phases along this pile, which is not accounted for in the simple model.

The group impedances predicted by using static interaction factors are close to those from the numerical solutions only at very low frequencies. At intermediate and high frequencies use of static interaction factors leads to erroneous results. In fact, it appears that it is better to ignore pile-to-pile interaction altogether than to use static interaction factors - - a conclusion echoed by Novak. 24

CONCLUSION

A systematic parametric study has been presented on the effect of pile group configuration upon dynamic impedances of piles embedded in homogeneous as well as in inhomogeneous soils. It has been shown that the cross-interaction between piles in different rows controls the dynamic response of a 'rectangular' pile group; increasing the number of piles in a line group has very little effect on the dynamic stiffness and damping factors.

The comparative study of two simple methods and the rigorous numerical solution has been conducted for 2 x 2 and 3 x 3 pile groups. It has been demonstrated that the predictions by the static-interaction-factor method are acceptable only for static and low- frequency cases; they may be very conservative or very unsafe at higher frequencies. The dynamic- interaction-factor approach successfully predicts the dynamic response of pile groups in most cases.

REFERENCES

1. Fan, K. Seismic response of pile foundations evaluated through case histories. Ph.D. dissertation, State University of New York, Buffalo, 1992.

2. Fan, K., Gazetas, G., Kaynia, A., Kausel, E. & Ahmad, S. Kinematic seismic response of single piles and pile groups. J. Geotech. Eng., ASCE, 1991, 117(12), 1860-79.

3. Gazetas, G., Fan, K., Kaynia, A. & Kausel, E. Dynamic interaction factors for floating pile groups. J. Geotech. Engng Div., ASCE, 1991, 117(10), 1531-48.

4. Gazetas, G. Seismic response of end-bearing single piles. Soil Dynamics Earthq. Engng, 1984, 3(2), 82 93.

5. Gazetas, G., Fan, K., Tazoh, T., Shimizu, K., Kavvadas, M. & Makris, N. et al. Seismic pile-group-structure interaction. Piles under Dynamic Loads, ed. S. Prakash, ASCE, New York City, NY, 1992, 56-94.

6. Kavvadas, M. & Gazetas, G. Kinematic seismic response and bending of free-head piles in layered soil. Geotechnique, 1993, 43(2), 207-22.

7. Makris, N. & Gazetas, G. Dynamic pile-soil-pile interaction. Part II: Lateral and seismic response. Earthq. Engng Struct. Dynamics, 1992, 21(2), 145-62.

8. Novak, M. Dynamic stiffness and damping of piles. Canadian Geotech. J., 1974, 11(4), 574-98.

9. Novak, M. Experiments with shallow and deep foun- dations. Vibration Problems in Geotechnical Engineering, ed. G. Gazetas & E.T. Selig. ASCE, 1985, pp. 1-26.

10. Novak, M., Nogami, T. & Aboul-Ellq, F. Dynamic soil reactions for plane strain case. J. Eng. Mech. Div., ASCE, 1978, 104, No. EM4, pp. 953-9.

11. Gazetas, G. & Dobry, R. Horizontal response of piles in layered soils. J. Geotech. Engng Div., ASCE, 1984, 110(1), 20 -40.

12. Gazetas, G. Simple physical methods for foundation impedances. Dynamic Behavior of Foundations and Buried Structures. Elsevier Applied Science, London, 1987, pp. 45-93.

13. Wolf, J.P. & Meek, J.W. Cone models for a pile foundation. Piles Under Dynamic Loads, ed. S. Prakash. ASCE, t992, pp.94-113.

14. Liou, D.D. & Penzien, J. Seismic analysis of an offshore structure supported on pile foundations. Report No. EERC77-25, University of California, Berkeley, 1977.

15. Roesset, J.M. & Angelides, D. Dynamic stiffness of piles. Numerical Methods in Offshore Piling. CE, London, 1980, pp. 75-81.

16. Kagawa, T. & Kraft, L.M. Lateral load-deflection relationship of piles subjected to dynamic loadings. Soils and Foundations, 1980, 20(4), 19-36.

17. Kaynia, A.M. & Kausel, E. Dynamic behavior of pile groups. Proc. 2nd International Conf. on Num. Meth. in Offshore Piling, Prustin, Texas, 1992, 509-32.

18. Tazoh, T., Shimizu, K. & Wakahara, T. Seismic obser- vations and analysis of grouped piles. Shimizu Technica Research Bulletin, No. 7, 1988.

19. Gazetas, G. Foundation vibrations. Foundation Engin- eering Handbook, 2nd edn, ed. Y. Fang, Van Nostrand Reinhold, New York, 1991, pp. 553-93.

20. Poulos, H.G. Analysis of the settlement of pile groups. Geotechnique, 1968, 19, 449-71.

21. Poulos, H.G. Behavior of laterally-loaded piles: II, Pile groups. J. Soil Mech. & Foundn Div., ASCE, 1971, 97, No. SM5, 733-51.

22. Poulos, G.G. & Davis, E.H. Pile Foundation Analysis and Design. John Wiley and Sons, New York, 1980.

23. Dobry, R. & Gazetas, G. Simple method for dynamic stiffness and damping of floating pile groups. Geotechnique, 1988, 38(4), 557-74.

24. Novak, M. Piles under dynamic loads: State of the art. Proc. 2nd lnt. Conf. on Recent Advances in Geotech. Earthq. Engng. & Soil Dynamics, III. Univ. of Missouri-Rolla, 1991, p.43.